

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at <u>www.onsemi.com</u>. Please email any questions regarding the system integration to <u>Fairchild_questions@onsemi.com</u>.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an ad experson

FDPC8014AS PowerTrench[®] Power Clip 25V Asymmetric Dual N-Channel MOSFET

Features

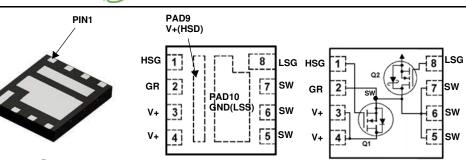
Q1: N-Channel

- Max $r_{DS(on)}$ = 3.8 m Ω at V_{GS} = 10 V, I_D = 20 A
- Max $r_{DS(on)}$ = 4.7 m Ω at V_{GS} = 4.5 V, I_D = 18 A

Q2: N-Channel

- Max $r_{DS(on)} = 1.0 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 40 \text{ A}$
- Max $r_{DS(on)}$ = 1.2 m Ω at V_{GS} = 4.5 V, I_D = 37 A
- Low Inductance Packaging Shortens Rise/fall Times, Resulting in Lower Switching Losses
- MOSFET Integration Enables Optimum Layout for Lower Circuit Inductance and Reduced Switch Node Ringing

PIN1


RoHS Compliant

General Description

This device includes two specialized N-Channel MOSFETs in a dual package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q1) and synchronous SyncFETTM (Q2) have been designed to provide optimal power efficiency.

Applications

- Computing
- Communications
- General Purpose Point of Load

Top Power Clip 5X6 Bottom

Pin	Name	Description	Pin	Name	Description	Pin	Name	Description
1	HSG	High Side Gate	3,4,9	V+(HSD)	High Side Drain	8	LSG	Low Side Gate
2	GR	Gate Return	5,6,7	SW	Switching Node, Low Side Drain	10	GND(LSS)	Low Side Source

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted.

Symbol	Parameter		Q1	Q2	Units	
V _{DS}	Drain to Source Voltage			25 ^{Note5}	25	V
V _{GS}	Gate to Source Voltage			±12	±12	V
	Drain Current -Continuous	T _C = 25 °C	(Note 6)	59	159	
	-Continuous	T _C = 100 °C	(Note 6)	37	100	
D	-Continuous	T _A = 25 °C		20 ^{Note1a}	40 ^{Note1b}	A
	-Pulsed		(Note 4)	266	1116	
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	73	294	mJ
D	Power Dissipation for Single Operation		T _C = 25 °C	21 2.1 ^{Note1a}	37	w
P _D	Power Dissipation for Single Operation $T_A = 25 \circ C$				2.3 Note1b	vv
T _J , T _{STG}	Operating and Storage Junction Temperature Range)		-55 to	+150	°C

Thermal Characteristics

$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case	6.0	3.3	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	60 ^{Note1a}	55 ^{Note1b}	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	130 ^{Note1c}	120 ^{Note1d}	

December 2015

	Device	Package	Reel Size		Tape W		Quantity 3000 units		
014AS	FDPC8014AS	Power Clip 56	Fower Clip 56 15		12 mm			JUNITS	
al Chara	cteristics T _J = 25 °C	unless otherwise note	d.						
	Parameter	Test Cond	litions	Туре	Min.	Тур.	Max.	Units	
cteristics									
Drain to Sc	ource Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} =$		Q1	25			v	
	5		I _D = 1 mA, V _{GS} = 0 V		25	04		· ·	
Breakdown Voltage Temperature Coefficient		$I_D = 250 \ \mu A$, referen $I_D = 10 \ mA$, referen		Q1 Q2		24 25		mV/°C	
Zero Gate	Voltage Drain Current	$V_{DS} = 20 V, V_{GS} = 0$		Q1			1	μA	
	urce Leakage Current,	$V_{DS} = 20 \text{ V}, \text{ V}_{GS} = 0$ $V_{GS} = 12 \text{ V}/-8 \text{ V}, \text{ V}_{DS}$		Q2 Q1			500 ±100	μA nA	
Forward		$V_{GS} = 12 \text{ V} - 6 \text{ V}, \text{ V}_{E}$ $V_{GS} = 12 \text{ V} - 8 \text{ V}, \text{ V}_{E}$		Q2			±100	nA	
teristics									
	urce Threshold Voltage	$V_{GS} = V_{DS}, I_D = 25$		Q1	0.8	1.3	2.5	v	
	urce Threshold Voltage	$V_{GS} = V_{DS}, I_D = 1 r$ $I_D = 250 \mu A, reference$		Q2 Q1	1.0	1.5 -4	3.0		
	re Coefficient	$I_D = 250 \ \mu$ A, referen		Q2		-4 -3		mV/°C	
		$V_{GS} = 10V, I_D = 20$		Q1		2.9	3.8		
		$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 18$ $V_{GS} = 10 \text{ V}, \text{ I}_{D} = 20$	$V_{GS} = 4.5 \text{ V}, I_D = 18 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}, T_J = 125 \text{ °C}$			3.6 3.9	4.7 5.3		
Drain to Sc	ource On Resistance	V _{GS} = 10V, I _D = 40	A			0.75	1.0	mΩ	
		$V_{GS} = 4.5 \text{ V}, I_D = 37$ $V_{CS} = 10 \text{ V}, I_D = 40$	V _{GS} = 4.5 V, I _D = 37 A V _{GS} = 10 V, I _D = 40 A ,T _J =125 °C			0.9 1.0	1.2 1.5		
Forward Tr	ansconductance	$V_{DS} = 5 V, I_D = 20$		Q1		182	1.0	S	
i oiwaiu ii	ansconductance	$V_{DS} = 5 V, I_{D} = 40$	A	Q2		296		0	
haracter	ristics								
Input Capa	citance	Q1:		Q1 Q2		1695 6985	2375 9780	pF	
	aaitanaa	V _{DS} = 13 V, V _{GS} = 0 V, f = 1 MHZ		Q1		495	710	ьE	
Output Cap	Jachance	Q2:		Q2		2170	3040	pF	
Reverse Tr	ansfer Capacitance	$V_{DS} = 13 V, V_{GS} = 0$) V, f = 1 MHZ	Q1 Q2		54 172	100 245	pF	
Gate Resis	tance				0.1	0.4	1.2	Ω	
				Q2	0.1	0.4	1.2	32	
Characte	eristics								
Turn-On De	elay Time			Q1 Q2		8 16	16 29	ns	
Rise Time		Q1: V _{DD} = 13 V, I _D = 20	A, $R_{GEN} = 6 \Omega$	Q1 Q2		2	10 12	ns	
Turn-Off De	elay Time	Q2:		Q1 Q2		24 48	38 76	ns	
Fall Time		V _{DD} = 13 V, I _D = 40	Α, Π _{GEN} = ο Ω	Q1 Q2		2 5	10 10	ns	
Total Gate	Charge	V _{GS} = 0 V to 10 V	Q1	Q1 Q2		25 97	35 135	nC	
Total Gate	Charge	V_{GS} = 0 V to 4.5 V		Q1 Q2		11 44	16 62	nC	
Gate to So	urce Gate Charge		Q2 $V_{DD} = 13 \text{ V}, \text{ I}_{D}$	Q1 Q2		3.4 14		nC	
Gate to Dra	ain "Miller" Charge		= 40 A	Q1		2.2		nC	
Gate to Dra	ain "Miller" Charge			Q2		9			

©2015 Fairchild Semiconductor Corporation FDPC8014AS Rev.1.0

Electrical Chara

Package Marking and Ordering Information

Off Characteristics Drain to So

 BV_{DSS} ΔBV_{DSS} Breakdown ΔT_{J} Coefficient Zero Gate IDSS Gate to Sou I_{GSS} Forward

On Characteristics

Device Marking FDPC8014AS

Symbol

V	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \ \mu A$	Q1	0.8	1.3	2.5	V
V _{GS(th)}		$V_{GS} = V_{DS}, I_D = 1 \text{ mA}$	Q2	1.0	1.5	3.0	v
$\frac{\Delta V_{GS(th)}}{\Delta T_{,l}}$	Gate to Source Threshold Voltage	I _D = 250 μA, referenced to 25 °C	Q1		-4		mV/°C
ΔT_J	Temperature Coefficient	I _D = 10 mA, referenced to 25 °C	Q2		-3		
	Drain to Source On Resistance	V _{GS} = 10V, I _D = 20 A			2.9	3.8	
		V _{GS} = 4.5 V, I _D = 18 A	Q1		3.6	4.7	
r		V _{GS} = 10 V, I _D = 20 A,T _J =125 °C			3.9	5.3	mΩ
r _{DS(on)}		V _{GS} = 10V, I _D = 40 A			0.75	1.0	1115.2
		$V_{GS} = 4.5 \text{ V}, I_D = 37 \text{ A}$	Q2		0.9	1.2	
		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 40 \text{ A}, \text{T}_{J} = 125 \text{ °C}$			1.0	1.5	
-	Forward Transconductance	$V_{DS} = 5 V, I_{D} = 20 A$	Q1		182		S
9fs		$V_{DS} = 5 V, I_{D} = 40 A$	Q2		296		3

Dynamic Character

C _{iss}	Input Capacitance		Q1 Q2		1695 6985	2375 9780	pF
C _{oss}	Output Capacitance	V _{DS} = 13 V, V _{GS} = 0 V, f = 1 MHZ Q2:	Q1 Q2		495 2170	710 3040	pF
C _{rss}	Reverse Transfer Capacitance	V _{DS} = 13 V, V _{GS} = 0 V, f = 1 MHZ	Q1 Q2		54 172	100 245	pF
R _g	Gate Resistance		Q1 Q2	0.1 0.1	0.4 0.4	1.2 1.2	Ω

Switching Characte

t_{d(on)}

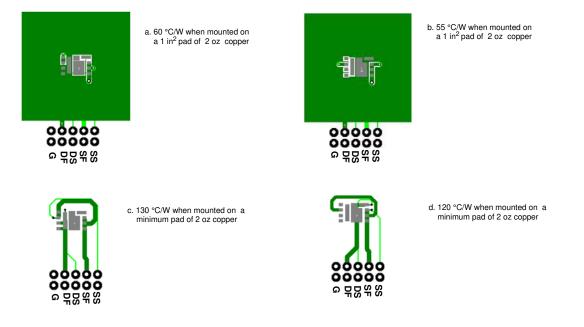
t_{d(off)}

t_r

t_f

 Q_g

 Q_g


 Q_{gs}

Q_{gd}

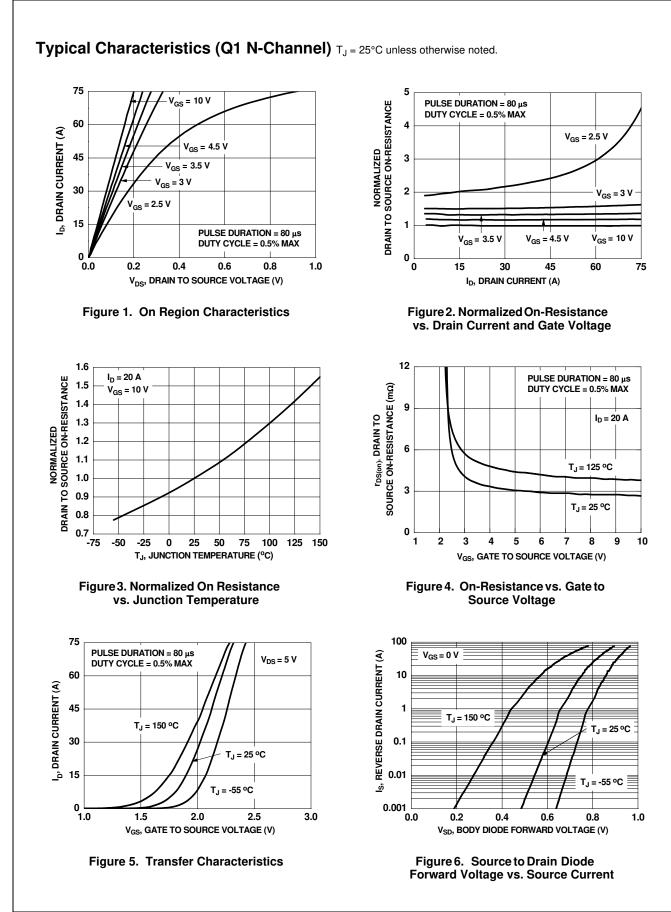
Symbol	Parameter	Test Conditions	Туре	Min.	Тур.	Max.	Units
Drain-Sou	urce Diode Characteristics						
V	Source to Drain Diode Forward Voltage		Q1		0.8	1.2	V
V _{SD}	Source to Drain Diode i of ward voltage	$V_{GS} = 0 V, I_S = 40 A$ (Note 2)	Q2		0.8	1.2	v
1	Diode continuous forward current		Q1		59		А
I _S	Didde continuous forward current	−T _C = 25 °C	Q2		159		
	Diada autos sument	$1_{\rm C} = 25$ C	Q1		266		•
IS,Pulse	Diode pulse current		Q2		1116		A
+		Q1 Q1	Q1		25	40	
t _{rr}	Reverse Recovery Time	I _F = 20 A, di/dt = 100 A/μs	Q2		44	70	ns
•	Deveree Deservery Change	Q2	Q1		10	20	-0
Q _{rr}	Reverse Recovery Charge	I _F = 40 A, di/dt = 300 A/µs	Q2		78	125	nC

Notes:

1. R_{0,A} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0,JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

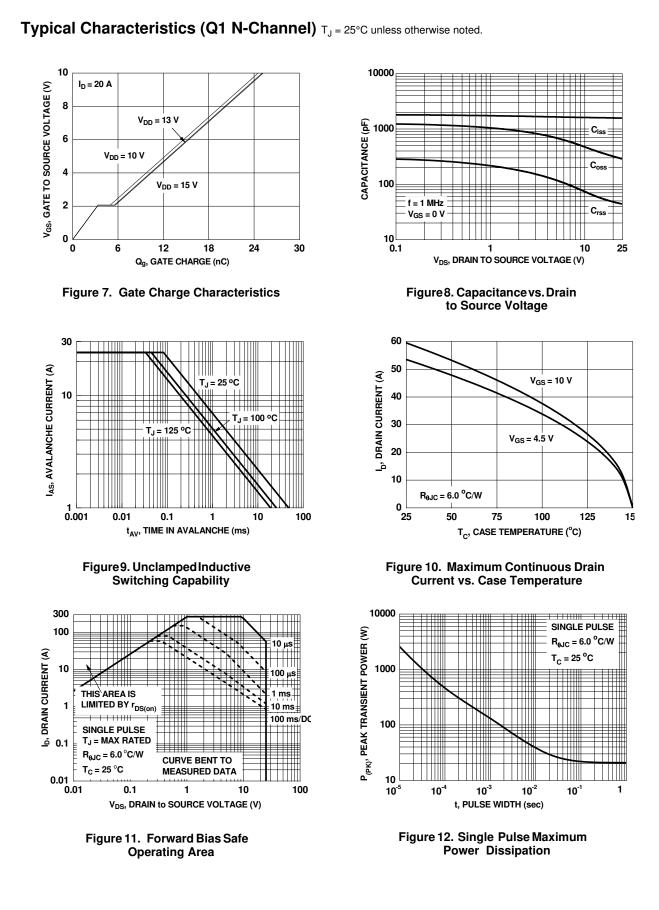
2 Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.

3. Q1 :E_{AS} of 73 mJ is based on starting T_J = 25 $^{\circ}$ C; N-ch: L = 3 mH, I_{AS} = 7 A, V_{DD} = 30 V, V_{GS} = 10 V. 100% test at L= 0.1 mH, I_{AS} = 24 A.

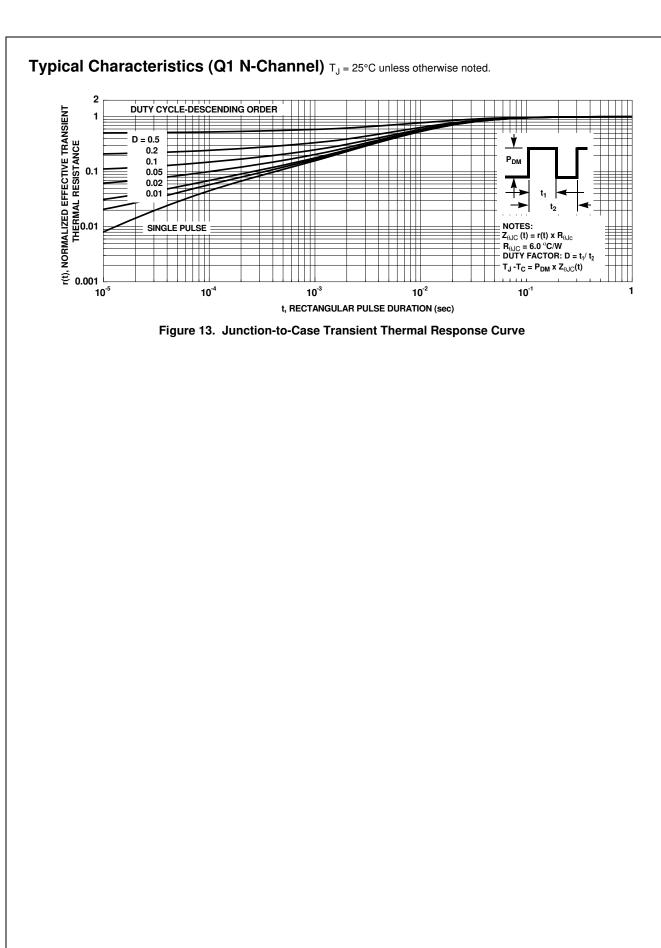

Q2: E_{AS} of 294 mJ is based on starting T_J = 25 °C; N-ch: L = 3 mH, I_{AS} = 14 A, V_{DD} = 25 V, V_{GS} = 10 V. 100% test at L= 0.1 mH, I_{AS} = 46 A.

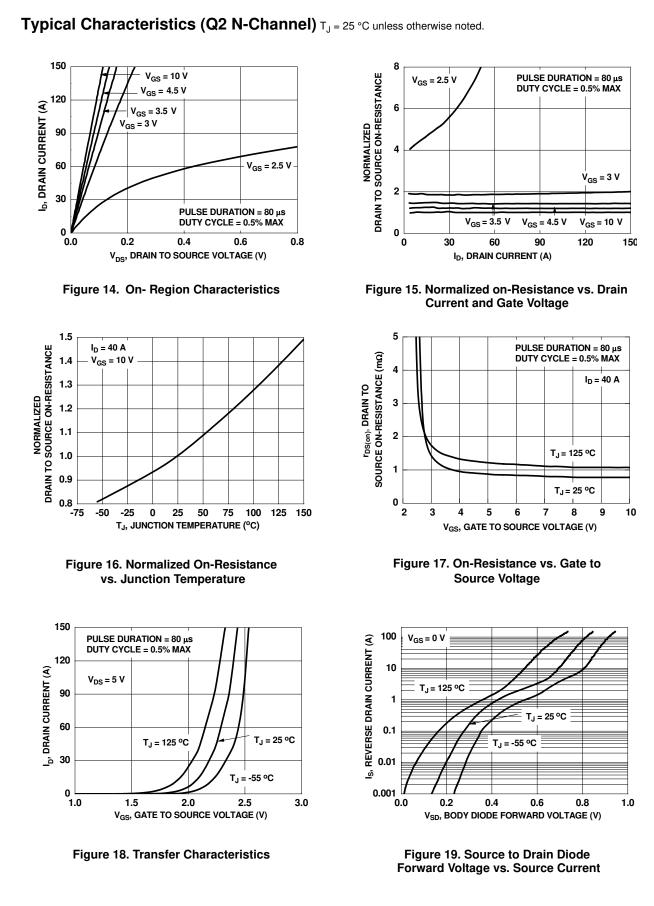
4. Pulsed Id please refer to Fig 11 and Fig 24 SOA graph for more details.

5. The continuous V_{DS} rating is 25 V; However, a pulse of 30 V peak voltage for no longer than 100 ns duration at 600 KHz frequency can be applied.

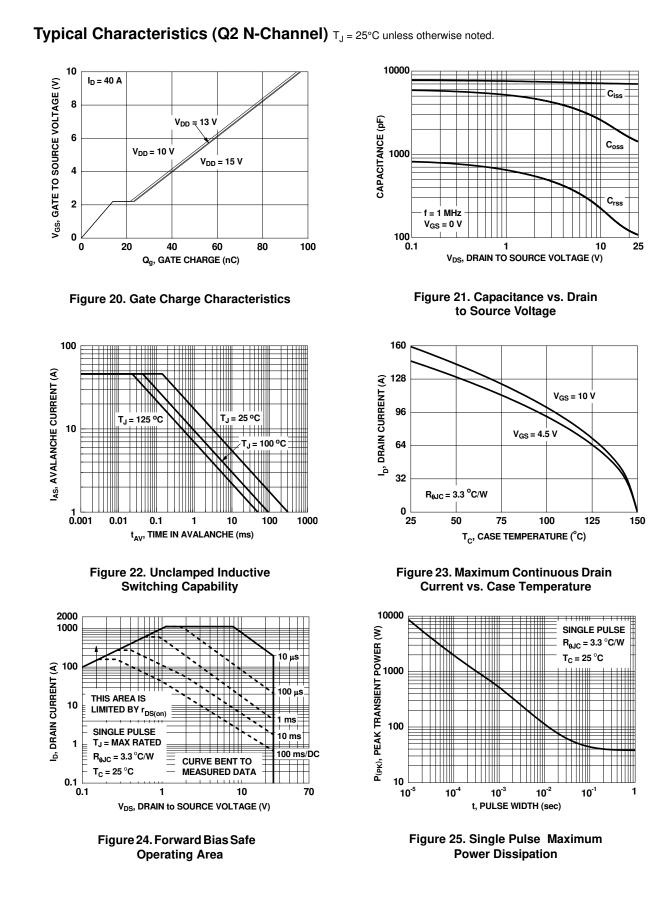

6. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

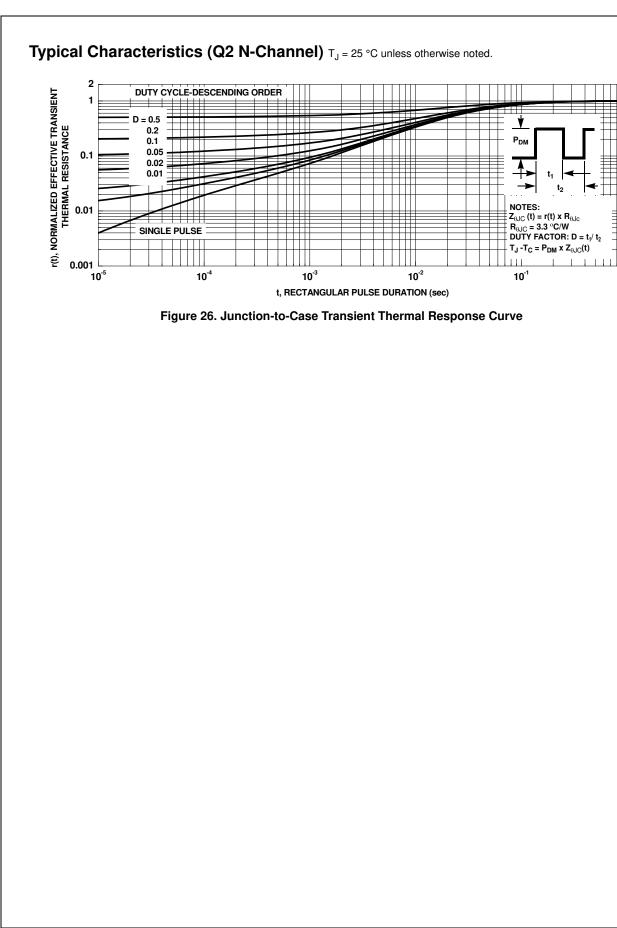
FDPC8014AS PowerTrench[®] Power Clip




©2015 Fairchild Semiconductor Corporation FDPC8014AS Rev.1.0

FDPC8014AS PowerTrench[®] Power Clip





FDPC8014AS PowerTrench[®] Power Clip

1

Typical Characteristics (continued)

SyncFET[™] Schottky body diode Characteristics

Fairchild's SyncFETTM process embeds a Schottky diode in parallel with PowerTrench[®] MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 27 shows the reverses recovery characteristic of the FDPC8014AS.

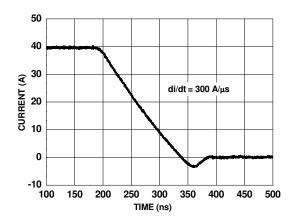


Figure 27. FDPC8014AS SyncFET[™] Body Diode Reverse Recovery Characteristic

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

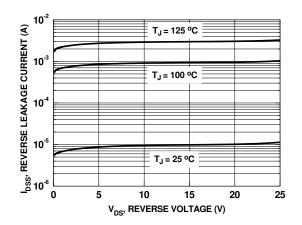
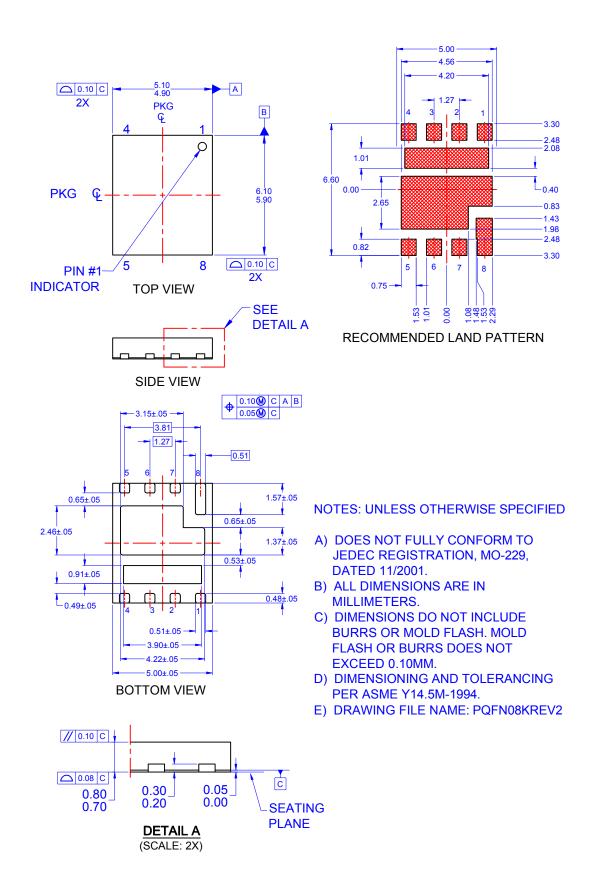



Figure 28. SyncFET[™] Body Diode Reverse Leakage vs. Drain-source Voltage

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative