

GENLINX™ GS9000C Serial Digital Decoder

DATA SHEET

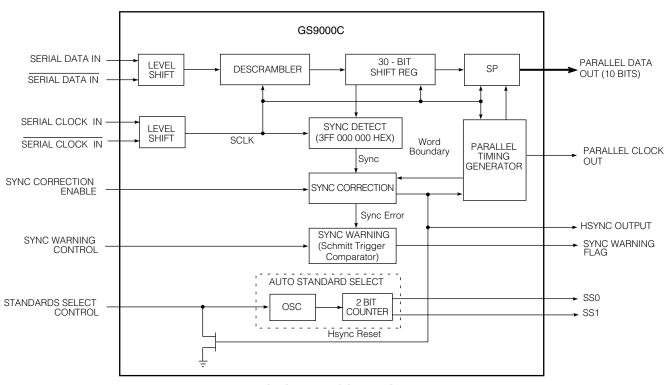
FEATURES

- fully compatible with SMPTE 259M
- decodes 8 and 10 bit serial digital signals for data rates to 370Mb/s
- pin and function compatible with GS9000S, GS9000 and GS9000B
- 325mW power dissipation at 270MHz clock rates
- · incorporates an automatic standards selection
- function with the GS9005A Receiver or GS9015A Reclocker
- · Pb-free and Green
- operates from single +5 or -5 volt supply
- enables an adjustment-free Deserializer system when used with GS9010A and GS9005A or GS9015A
- · 28 pin PLCC packaging

APPLICATIONS

- 4f_{SC}, 4:2:2 and 360Mb/s serial digital interfaces
- Automatic standards select controller for serial routing and distribution applications using GS9005A Receiver or GS9015A Reclocker

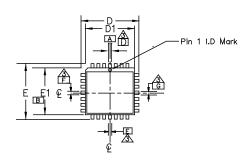
DEVICE DESCRIPTION

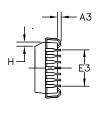

The GS9000C is a CMOS integrated circuit specifically designed to deserialize SMPTE 259M serial digital signals at data rates to 370Mb/s.

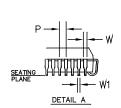
The device incorporates a descrambler, serial to parallel convertor, sync processing unit, sync warning unit and automatic standards select circuitry.

Differential pseudo-ECL inputs for both serial clock and data are internally level shifted to CMOS levels. Digital outputs such as parallel data, parallel clock, HSYNC, Sync Warning and Standard Select are all TTL compatible.

The GS9000C is designed to directly interface with the GS9005A Reclocking Receiver to form a complete SMPTE-serial-in to CMOS level parallel-out deserializer. The GS9000C may also be used with the GS9010A and the GS9005A to form an adjustment-free receiving system which automatically adapts to all serial digital data rates. The GS9015A can replace the GS9005A in GS9000C applications where cable equalization is not required.


The GS9000C is packaged in a 28 pin PLCC and operates from a single 5 volt, $\pm 5\%$ power supply.




FUNCTIONAL BLOCK DIAGRAM

Revision Date: November 2007 Document No. 10326 - 4

PACKAGE OUTLINE DRAWING

SYMBOL.	28 F	PLCC
₹s	MIN	MAX
Α	0.165	0.180
A1	0.090	0.120
АЗ	0.020	0,040
D	0.485	0.495
D1	0.450	0.456
D3	0.30	00 REF
Ε	0.485	0.495
E1	0.450	0.456
E3	0.300	REF
Н	0.042	0.048
Р	0.050	BSC
R	0.025	0.045
W	0.026	0.032
W1	0.013	0.021

NOTE:

- ALL DIMENSIONS AND TOLERANCES CONFORM TO ANSI Y14.5M-1882.

 DATUM PLANE H LOCATED AT TOP OF LEAD AND IS COINCIDENT WITH THE LEAD EXITS THE PLASTIC BODY AT THE TOP OF THE PARTING LINE
- LINE.

 DATUM D-E AND [F-G] TO BE DETERMINED AT DATUM PLANE H.
 DIMENSION DI AND ET DO NOT INCLUDE MOLD PROTRUSION
 ALLOWABLE PROTRUSION IS 0.010 PER SIDE DIMENSION
 DI AND ET DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT
 DATUM PLANE H.
 DETAILS OF PIN NO.1 IDENTIFICATION ARE OPTIONAL BUT LOCATED
 WITHIN THE ZONE INDICATED.
- WITHIN THE ZONE INDICATED.
 6. DATUM A AND B TO BE DETERMINED AT PLANE H.

GS9000C DECODER - DC ELECTRICAL CHARACTERISTICS

 V_{DD} = 5V, T_A = 0°C to 70°C unless otherwise shown

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES	TEST LEVEL
Supply Voltage	V _S	Operating range	4.75	5.00	5.25	V		1
Power Consumption (outputs	P _C	f = 143MHz	-	235	-	mW		7
unloaded)		f = 270MHz	-	325	-	mW		7
		f = 360MHz	-	385	-	mW		1
CMOS Input Voltage	VIH _{MIN}	$T_A = 25$ °C	3.4	-	-	V		1
	VIL _{MAX}		-	-	1.5	V		1
Output Voltage	VOH _{MIN}	I _{OH} = 4mA, 25°C	2.4	4.5	-	V		1
	VOH _{MAX}	I _{OL} = 4mA, 25°C	-	0.2	0.5	V		1
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}$ or V_{SS}	-	-	±10	μΑ		1
Serial Clock and Data Inputs								
Signal Swing	V _{IN}	T _A = 25°C	700	800	1200	mVpp		1
Signal Offset	V _{INOS}	$T_A = 25^{\circ}\text{C},$ $V_{IN} = 700 \text{ to } 1000 \text{mVpp}$	3.0	-	4.05	V	Centre of Swing	1

TEST LEVELS

- 1. Production test at room temperature and nominal supply voltage with guardbands for supply and temperature ranges.
- 2. Production test at room temperature and nominal supply voltage with guardbands for supply and temperature ranges using correlated test.
- 3. Production test at room temperature and nominal supply voltage.
- 4. QA sample test.
- 5. Calculated result based on Level 1,2, or 3.
- 6. Not tested. Guaranteed by design simulations.
- 7. Not tested. Based on characterization of nominal parts.
- 8. Not tested. Based on existing design/characterization data of similar product.

 V_{DD} = 5V, T_A = 0°C to 70°C unless otherwise shown

							ı	
Serial Input Clock Frequency	f_{SCI}		100	-	370	MHz		1
Serial Input Data Rate	DR _{SDI}		100	-	370	Mb/s		1
Serial Data and Clock Inputs:		T _A = 25°C						
Risetime	t _R		-	600	-	ps		7
Setup	t _{SU}		1.0	-	-	ns		7
Hold	t _{HOLD}		1.0	-	-	ns		7
Parallel Clock: Jitter	t _{JCLK}	T _A = 25°	-	1.0	-	ns p-p		7
Parallel Data: Risetime and Falltime	t _{R-PDn}	$T_A = 25$ °C, $C_L = 10$ pF	-	3	-	ns	20% to 80%	7
PDn to PCLK Delay Tolerance	t _D		-	-	±3	ns	Rising edge of PCLK to bit period centre	7

TEST LEVELS

- 1. Production test at room temperature and nominal supply voltage with guardbands for supply and temperature ranges.
- 2. Production test at room temperature and nominal supply voltage with guardbands for supply and temperature ranges using correlated test.
- 3. Production test at room temperature and nominal supply voltage.
- 4. QA sample test.
- 5. Calculated result based on Level 1,2, or 3.
- 6. Not tested. Guaranteed by design simulations.
- 7. Not tested. Based on characterization of nominal parts.
- 8. Not tested. Based on existing design/characterization data of similar product.

	PACKAGE	PACKAGE TEMPERATURE	
GS9000CCPJ	28 Pin PLCC	0°C to 70°C	No
GS9000CCTJ	28 Pin PLCC Tape	0°C to 70°C	No
GS9000CCPJE3	28 Pin PLCC	0°C to 70°C	Yes
GS9000CCTJE3	28 Pin PLCC Tape	0°C to 70°C	Yes

ABSOLUTE MAXIMUM RATINGS

	+ 0.3)
DC Input Current (any one input)	±10μA
Operating Temperature Range	0°C to 70°C
Storage Temperature Range	-65°C to +150C
Lead Temperature (Soldering, 10 seconds)	260°C

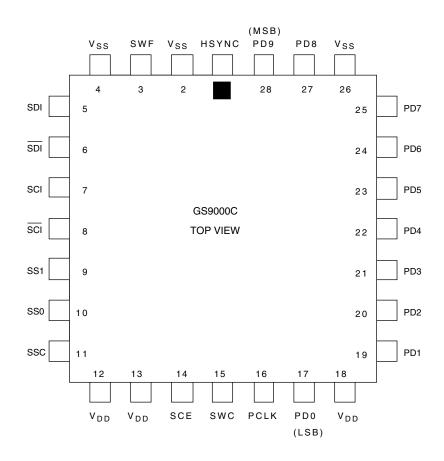
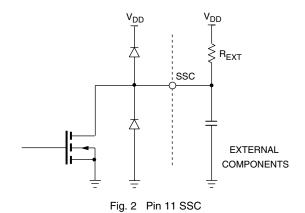



Fig. 1 GS9000C Pin Outs, 28 Pin PLCC Package

PIN NO.	SYMBOL	TYPE	DESCRIPTION
			Horizontal Sync Output.
			Power Supply
			Power Supply
			Differential, pseudo-ECL serial data inputs
			Differential, pseudo-ECL serial clock inputs.
			Standard Select Outputs
			Standards Select Control
			Power Supply
			Power Supply

PIN NO.	PIN NO. SYMBOL TYPE DESCRIPTION				
			Sync Correction Enable not resetting the GS9000Cís internal parallel timing on the first sync error. If the next incoming sync is in error, internal parallel timing will be reset. This is to guard against spurious HSYNC errors. When SCE is low, a valid sync will always reset the GS9000Cís parallel timing generator		
15	SWC	Input	Sync Warning Control		
			Parallel Clock Output.		
			Parallel Data Output - Bit 0 (LSB)		
			Power Supply.		
			Parallel Data Outputs - Bit 1 to Bit 7.		
			Power Supply		
			Parallel Data Output.		
			Parallel Data Output - Bit 9 (MSB)		

INPUT/OUTPUT CIRCUITS

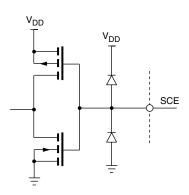


Fig. 3 Pin 14 SCE

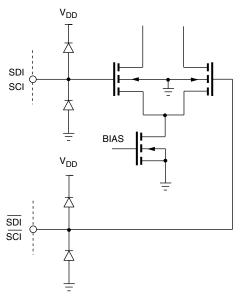


Fig. 4 Pins 5 - 8 SDI - SCI

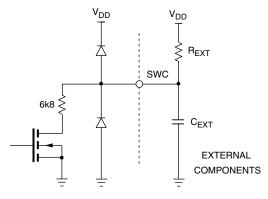


Fig. 5 Pin 15 SWC

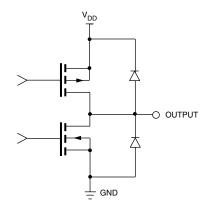
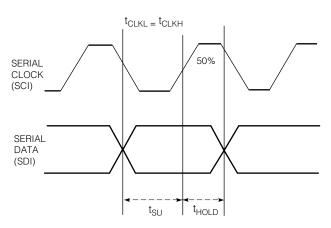



Fig. 6 Pins 3, 16, 17, 19 - 25, 27, 28 SWF, HSYNC, SSI, SSD, PCLK, PD0-9

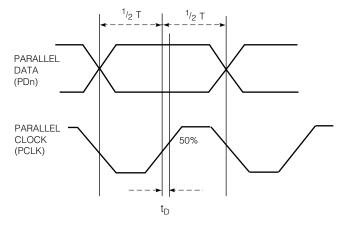
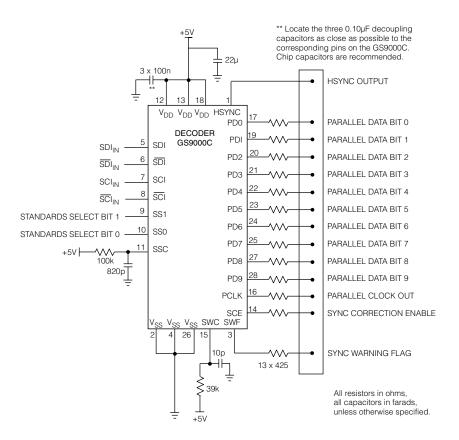


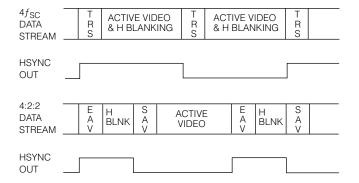
Fig. 7 Waveforms

TEST SET-UP & APPLICATION INFORMATION


Figure 8 shows the test set-up for the GS9000C operating from a V_{DD} supply of +5 volts. The differential pseudo ECL inputs for DATA and CLOCK (pins 5,6,7 and 8) must be biased between +3.0 and +4.0 volts. In the application circuit shown in Figure 11, these inputs can be directly driven from the outputs of the GS9005A Reclocking Receiver with their resistor values set as shown.

In other cases, such as true ECL level driver outputs, two biasing resistors are needed on the DATA and CLOCK inputs and the signals must be AC coupled.

It is critical that the decoupling capacitors connected to pins 12,13 and 18 are chip types and are located as close as possible to the device pins.


The critical high speed inputs, such as Serial Data (pins 5 and 6) and Serial Clock (pins 7 and 8), are located along one side of the device package to maintain very short interconnections when interfacing with the GS9005A Receiver.

If the automatic standard select function is not used, the Standard Select bits (pins 9 and 10) do not need to be connected, however the control input (pin 11) should be grounded.

With synchronized serial data and clock connected to the GS9000C, the HSYNC output (pin 1) will toggle for each HSYNC detected. The Parallel Data bits PD0 through PD9 and the Parallel Clock can be observed on an oscilloscope or fed to a logic analyzer. To directly drive parallel inputs to receiving equipment, such as monitors or digital to analog converters, these outputs can be fed through a suitable TTL to ECL converter.

In operation, the HSYNC output from the GS9000C decoder toggles on each occurrence of the timing reference signal (TRS). The state of the HSYNC output is not significant, but the time at which it toggles is significant.

The HSYNC output toggles to indicate the presence of the TRS on the falling edge of PCLK, one data symbol prior to the output of the first word in the TRS. In the following diagram, data is indicated in 10-bit Hex.

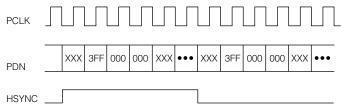
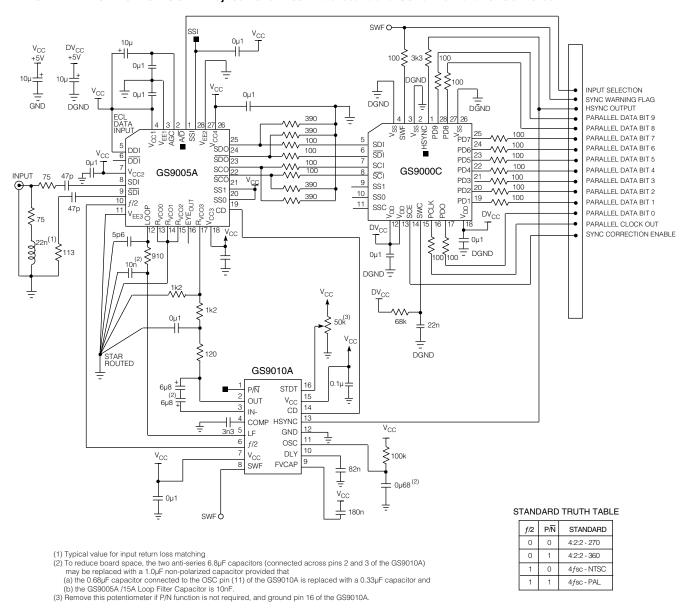
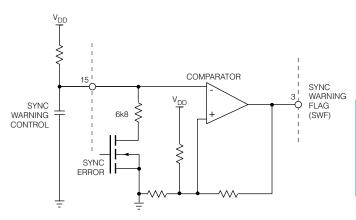




Fig. 10 Operation of HSYNC with Respect to PCLK

TYPICAL APPLICATION CIRCUIT - Adjustment Free Multi-standard Serial To Parallel Convertor

GS9000C, GS9005A and GS9010A INTERCONNECTIONS

Genlinx[™] GS9000 series of devices are Serial Digital Decoders for the SMPTE-259M Standard. They all perform Serial to Parallel Conversion, Sync Detection, Parallel Word Alignment and Parallel Clock Generation. The three devices are in identical packages and are pin for pin compatible.

The table below highlights the small differences in the devices.

TABLE 1: Differences Between Devices

 $_{\rm CC}$ = 5.0V, $T_{\rm A}$ =25°C (unless otherwise shown)

			GS9000SCPJ	GS9000BCPJ	GS9000CCPJ
Power Consumption	P_{D}	D.R. = 270Mb/s	350mW	350mW	325mW
Maximum Serial Input Data Rate	D.R.		300Mb/s	370Mb/s	370Mb/s
Static Output Current of Parallel Outputs* (Maximum)	I _{OUT-MAX}		32mA	32mA	12mA
Static Output Voltage of Parallel Outputs (typical)	(VOH _{MIN} and VOL _{MAX})	$I_{OH} = 4mA$	4.5V and 0.2V	4.5V and 0.2V	4.5V and 0.2V
Static Output Voltage of Parallel Outputs (Worst Case)		$I_{\text{OH}} = I_{\text{OUT-MAX}}$	2.4V and 0.5V	2.4V and 0.5V	2.4V and 0.5V
Slew Rate of Parallel Outputs	S.R.	$C_L = 10pF$	3V/ns	3V/ns	1V/ns

^{*}the lower drive current reduces the noise generated by these outputs.

CAUTION

DO NOT OPEN PACKAGES OR HANDLE EXCEPT AT A STATIC-FREE WORKSTATION

DOCUMENT IDENTIFICATION

The product is in production. Gennum reserves the right to make changes at any time to improve reliability, function or design, in order to provide the best product possible.

GENNUM CORPORATION

MAILING ADDRESS: P.O. Box 489, Stn. A, Burlington, Ontario, Canada L7R 3Y3 Tel. +1 (905) 632-2996 Fax. +1 (905) 632-5946

SHIPPING ADDRESS: 970 Fraser Drive, Burlington, Ontario, Canada L7L 5P5

REVISION NOTES:

NOVEMBER 2007 - VERSION 4 ADDED PACKAGE OUTLINE DRAWING (ECR #148310)

GENNUM JAPAN CORPORATION Shinjuku Green Tower Building 27F 6-14-1, Nishi Shinjuku Shinjuku-ku, Tokyo 160-0023 Japan

Tel: +81 (03) 3349-5501 Fax: +81 (03) 3349-5505

GENNUM UK LIMITED

25 Long Garden Walk, Farnham, Surrey, England GU9 7HX Tel. +44 (0)1252 747 000 Fax +44 (0)1252 726 523

Gennum Corporation assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.

© Copyright May 2000 Gennum Corporation. All rights reserved. Printed in Canada.

9 of 9 10326 - 4