Japan Standard Type Slide Potentiometers Malaysia Type: EWAK/EWAM/EWAN **EWAP/EWAQ** Features • Compact size and wave-soldering available • A large variety: 15.0, 20.0, 30.0, 45.0 and 60.0 mm travel Recommended Applications Audio Equipment Video Equipment Home Electrical Appliances Electronic Musical Instruments Explanation of Part Numbers 2 3 1 4 5 7 10 12 6 8 9 11 W Α Ε Product Code Specifications Lever Trims & Dimensions Taper & Resistance Product Chart Classification **Functions** Standard part Mounting Midpoint Midpoint Travel Single/Dual Metal lever numbers screw hole detent tàp Single EWAKF 0 0 0 Ο 15.0 mm Dual **EWAKA** Ο 0 Ο Ο EWAMF Single 0 0 Ο Ο 20.0 mm EWAMA 0 0 0 0 Dual Single **EWANF** 0 0 0 Ο 30.0 mm Dual EWANA 0 0 0 Ο EWAPF Single Ο Ο Ο Ο 45.0 mm Dual **EWAPA** 0 0 0 Ο Single **EWAQF** Ο 0 0 Ο 60.0 mm Dual EWAQA Ο 0 Ο Ο Notes: Standard part numbers are insulated lever types.

2. O=available

Minimum Quantity/Packing Unit

Minimum Quantity/ Packing Unit	EWAK	100 pcs. (Tray Pack)	
		100 pcs. (Tray Pack)	Lever length < 20.0 mm
		50 pcs. (Tray Pack)	Lever length > 21.0 mm
	EWAN	100 pcs. (Tray Pack)	
	EWAP	50 pcs. (Tray Pack)	
		50 pcs. (Tray Pack)	Lever length < 20.0 mm
	EVVAQ	25 pcs. (Tray Pack)	Lever length > 21.0 mm
Quantity/Carton	EWAK	1000 pcs.	
		1000 pcs.	Lever length < 20.0 mm
		500 pcs.	Lever length > 21.0 mm
	EWAN	1000 pcs.	
	EWAP	500 pcs.	
	EWAO	500 pcs.	Lever length < 20.0 mm
	LIVAQ	250 pcs.	Lever length > 21.0 mm

Specifications

• Electrical Specifications

1. Power Rating

Maximum load which can be continuously applied under 50 °C, is per following chart. For potentiometers operated in ambient temperatures above 50 °C, Power Rating shall be derated in accordance with the figure below.

Туре	15.0 mm		20.0 mm		30.0 mm		45.0 mm		60.0 mm	
	EWAKF EWAKA		EWAMF EWAMA		EWANF EWANA		EWAPF EWAPA		EWAQF EWAQA	
Taper	Power	Max. operating voltage								
В	0.03 W	75 V	0.04 W	150 V	0.06 W	150 V	0.10 W	200 V	0.12 W	200 V
A, C, D, G	0.02 W	75 V	0.02 W	150 V	0.03 W	150 V	0.05 W	150 V	0.06 W	200 V

2. Residual Resistance

The minimum resistance at each end of sliding position is the residual resistance (hop-off) (see Chart 1). The minimum resistance at tap position between tap terminal and contactor is the tap residual resistance (See Chart 2.).

Chart 1. Residual Resistance

\mathbb{Z}		Taper	A, (C, D					В,	G					
Terminal 1 to 2 2 to 3			1 to 2				2 to 3								
Total Resistance		Travel	-	-	15.0 mm	20.0 mm	30.0 mm	45.0 mm	60.0 mm	15.0 mm	20.0 mm	30.0 mm	45.0 mm	60.0 mm	
Gene (For to Standard For volur		$R < 50 k\Omega$	3Ω max.	25 Ω max.	10 Ω max.	10 Ω max.	15 Ω max.	20 Ω max.	25 Ω max.	10 Ω max.	10 Ω max.	15 Ω max.	20 Ω max.	25 Ω max.	
	General (For tone)	R> 50 kΩ R<250 kΩ	25 Ω max.	50 Ω max.	25 Ω max.					25 Ω max.					
		$R>250k\Omega$	100 Ω max.	100 Ω max.	100 Ω max.					100 Ω max.					
		R <50k Ω	3Ω max.	25 Ω max.	3 Ω max.					25 Ω max.					
	For volume	R> 50 kΩ R<250 kΩ	5 Ω max.	50 Ω max.	5 Ω max.					50 Ω max.					
		$R>250k\Omega$	50 Ω max.	100 Ω max.	50 Ω max.					100 Ω max.					
		R <50k Ω	10 Ω max.	60 Ω max.	25 Ω max.		35 Ω max.	50 Ω max.	60 Ω max.	25 Ω max.		35 Ω max.	50 Ω max.	60 Ω max.	
With LED & for dc use	R> 50 kΩ R<250 kΩ	60 Ω max.	100 Ω max.	60 Ω max.					60 Ω max.						
		R>250kΩ	100 Ω max.	100 Ω max.	100 Ω max.					100 Ω max.					

Chart 2. Tap Residual Resistance

Total resistance	Residual resistance
R<50 kΩ	100 Ω max.
50 kΩ <r<500 kω<="" td=""><td>500 Ω max.</td></r<500>	500 Ω max.
R<500 kΩ	1 k Ω max.

3. Tracking

Tracking on dual slide potentiometer is measured by following formula with 2 V to 5 V applied voltage, at 1000 ± 200 Hz between terminal 1 and 3.

Tracking error (dB)=20 log (V₂/V₁)

Where:

 V_1 =output voltage of one side (between terminal 1 and 2) V_2 =output voltage of the other side (between terminal 1 and 2)

Туре	For v	Conorol purposo	
Range	15.0, 20.0 mm	30.0, 45.0, 60.0 mm	General purpose
-40 dB to 0 dB		±3 dB	
-30 dB to 0 dB	±3 dB		
50 % of Sliding Position			±3 dB

Mechanical Specifications

1. Sliding Force

In a room at 5 °C to 35 °C, apply a sliding force to the lever at a point of 5.0 mm from the mounting surface at a rate of 30.0 mm/1 to 2 seconds. The sliding force shall be 0.4 N to 3.5 N.

2. Lever Wobble

When a moment of 25 mN·m is applied perpendicularly on the top of the lever, the wobble of lever tip shall be within $3\times L/10$ mm max. for one side. Where: L=Length of lever

3. Lever Angle

The angle of lever from the mounting surface shall be 90 °±2 ° max.

4. Detent Slip-out Force

In a room at 5 °C to 35 °C, detent slip-out force shall be 0.2 N to 1.5 N greater than the sliding force of lever.

5. Operating Life

15000 cycles min.

Panasonic

Dimensions in mm (not to scale)

• 30.0 mm Travel Series

• 60.0 mm Travel Series

Notes:

Refer to the drawing below for terminal alignment of single slide potentiometers.
Slide Potentiometers with no Midpoint Tap Terminals 3-3' and the next inner terminals are connected together as a common terminal.
Slide Potentiometers with Midpoint Tap

The next inner terminals to Terminal 3-3' shall be used for midpoint taps.

Terminal Numbers of Single, DC Version

Panasonic

Lever Trims and Dimensions in mm

1. Insulated lever (15.0, 20.0, 30.0, 45.0, 60.0)

2. Metal lever (15.0, 20.0, 30.0, 45.0, 60.0)

