Power MOSFET -12V, 69mΩ, -3.5A, Single P-Channel

This Power MOSFET is produced using ON Semiconductor's trench technology, which is specifically designed to minimize gate charge and low on resistance. This device is suitable for applications with low gate charge driving or low on resistance requirements.

Features

- Low On-Resistance
- 0.9V drive
- ESD Diode-Protected Gate
- Pb-Free, Halogen Free and RoHS compliance

Typical Applications

- LED Current Balance SW
- Load Switch

SPECIFICATIONS

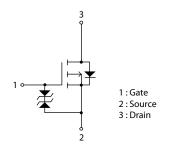
ABSOLUTE MAXIMUM RATING at Ta = 25°C (Note 1)

Parameter	Symbol	Value	Unit
Drain to Source Voltage	VDSS	-12	V
Gate to Source Voltage	VGSS	±5	V
Drain Current (DC)	ID	-3.5	Α
Drain Current (Pulse) PW ≤ 10µs, duty cycle ≤ 1%	IDP	-14	Α
Power Dissipation When mounted on ceramic substrate (900mm² × 0.8mm)	PD	1.0	W
Junction Temperature	Tj	150	°C
Operating Temperature	Topr	−5 to +150	°C
Storage Temperature	Tstg	-55 to +150	ç

Note 1: Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Value	Unit		
Junction to Ambient					
When mounted on ceramic substrate	$R_{\theta JA}$	125	°C/W		
$(900 \text{mm}^2 \times 0.8 \text{mm})$					



ON Semiconductor®

www.onsemi.com

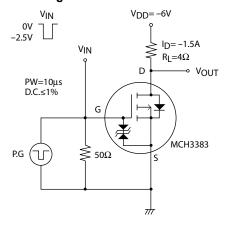
VDSS	R _{DS} (on) Max	ID Max	
-12V	69mΩ@ −2.5V		
	98mΩ@ –1.8V	2.54	
	173mΩ@ –1.2V	–3.5A	
	500mΩ@ –0.9V		

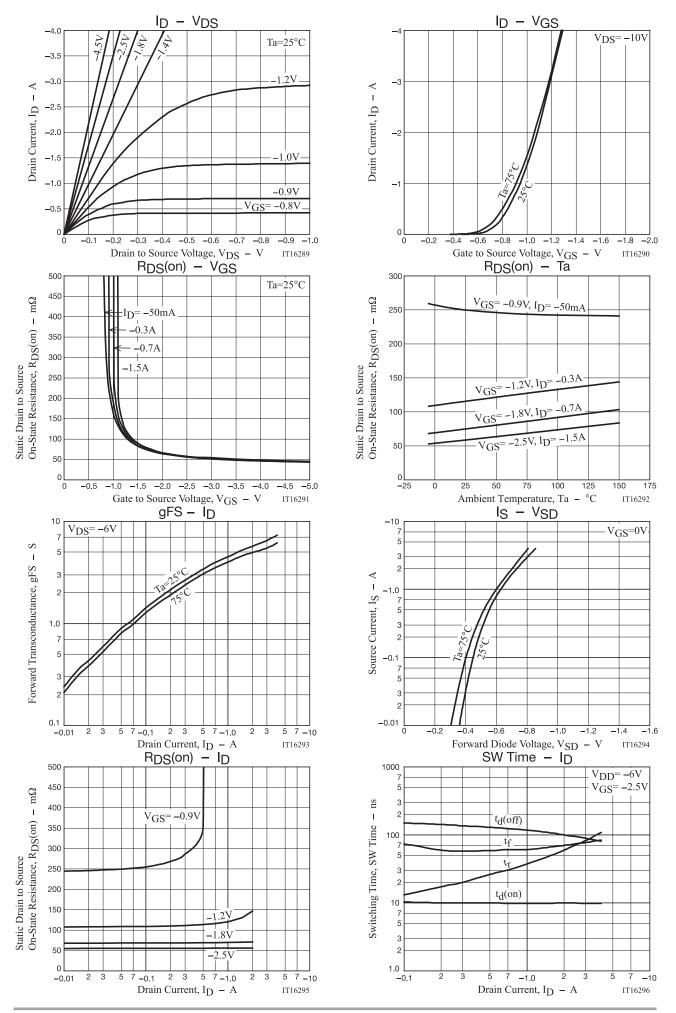
ELECTRICAL CONNECTION P-Channel

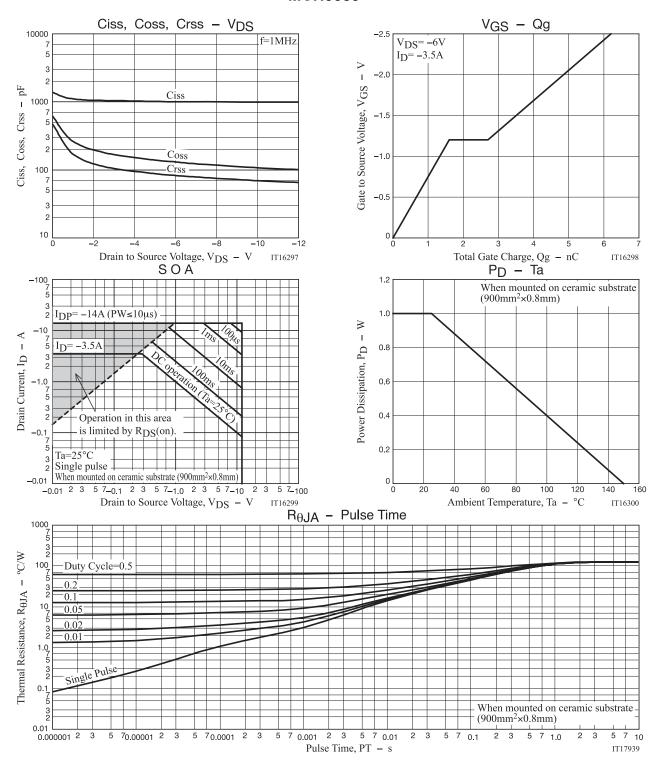
PACKING TYPE: TL

MARKING

ORDERING INFORMATION

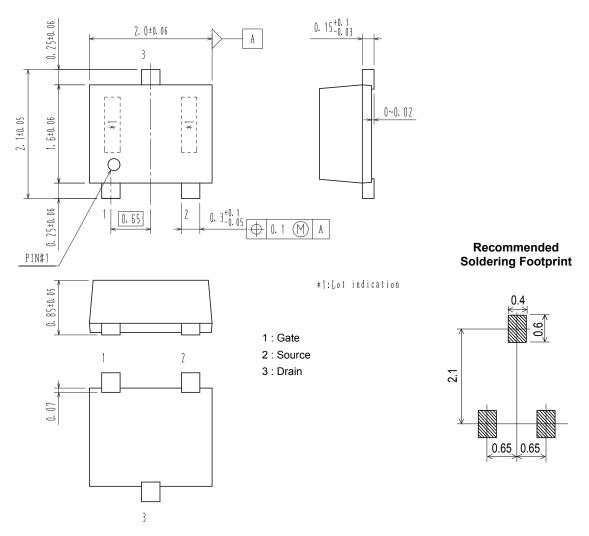

See detailed ordering and shipping information on page 5 of this data sheet.


ELECTRICAL CHARACTERISTICS at Ta = 25°C (Note 2)


Parameter	Symbol	Conditions	Value			Unit
Farameter	Symbol	Conditions	min	typ	max	Offic
Drain to Source Breakdown Voltage	V(BR)DSS	ID=-1mA, VGS=0V	-12			V
Zero-Gate Voltage Drain Current	IDSS	V _{DS} =-12V, V _{GS} =0V			-10	μΑ
Gate to Source Leakage Current	IGSS	V _{GS} =±4V, V _{DS} =0V			±10	μΑ
Gate Threshold Voltage	V _{GS} (th)	V _{DS} =-6V, I _D =-1mA	-0.3		-0.8	V
Forward Transconductance	gFS .	V _{DS} =-6V, I _D =-1.5A		5.3		S
Static Drain to Source On-State Resistance	R _{DS} (on)1	I _D =-1.5A, V _{GS} =-2.5V		57	69	mΩ
	R _{DS} (on)2	I _D =-0.7A, V _{GS} =-1.8V		75	98	mΩ
	R _{DS} (on)3	I _D =-0.3A, V _{GS} =-1.2V		115	173	$m\Omega$
	R _{DS} (on)4	ID=-50mA, VGS=-0.9V		250	500	mΩ
Input Capacitance	Ciss			1010		pF
Output Capacitance	Coss	V _{DS} =–6V, f=1MHz		130		pF
Reverse Transfer Capacitance	Crss			85		pF
Turn-ON Delay Time	t _d (on)			9.9		ns
Rise Time	t _r			49		ns
Turn-OFF Delay Time	t _d (off)	See specified Test Circuit		109		ns
Fall Time	tf			65		ns
Total Gate Charge	Qg			6.2		nC
Gate to Source Charge	Qgs	V _{DS} =-6V, V _{GS} =-2.5V, I _D =-3.5A		1.6		nC
Gate to Drain "Miller" Charge	Qgd			1.1		nC
Forward Diode Voltage	V _{SD}	I _S =-3.5A, V _{GS} =0V		-0.83	-1.2	٧

Note 2 : Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Switching Time Test Circuit



PACKAGE DIMENSIONS

unit: mm SC-70FL / MCPH3 CASE 419AQ ISSUE O

ORDERING INFORMATION

Device	Marking	Package	Shipping (Qty / Packing)	
MCH3383-TL-H	00	SC-70FL / MCPH3	3,000 / Tape & Reel	
MCH3383-TL-W	QQ	(Pb-Free / Halogen Free)		

[†] For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://www.onsemi.com/pub_link/Collateral/BRD8011-D.PDF

Note on usage: Since the MCH3383 is a MOSFET product, please avoid using this device in the vicinity of highly charged objects.

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent re