

# DS280MB810EVM User's Guide

The DS280MB810 is an 8 Channel Linear Repeater with the ability to extend the reach and robustness of high speed serial links for up to 28 Gbps interfaces. Simplified equalization control, low power consumption, and ultra-low additive jitter make the DS280MB810 ideal for front-port interfaces such as 100G-SR4/LR4/CR4 and backplane applications. The small 8 mm x 13 mm package easily fits behind numerous standard front-port connectors, including SFP28, QSFP28, CFP2/CFP4, and CDFP, without the need for a heat sink. The optimized package dimensions, high-speed signal escape, and the pin-compatible retimer portfolio make the DS280MB810 well-suited for high-density backplane and front port applications. The DS280MB810 can be configured via the default SMBus slave mode or with an external EEPROM. With this kit, users can quickly evaluate the linear equalizer's performance.



Figure 1. DS280MB810EVM.

#### Contents

| 1 | Features                               | 3  |
|---|----------------------------------------|----|
| 2 | Applications                           | 3  |
| 3 | Ordering Information                   | 3  |
| 4 | Setup                                  | 4  |
| 5 | Example Hardware Test Setup            | 14 |
| 6 | Common Problems and Possible Solutions | 17 |
| 7 | Bill of Materials                      | 18 |
| 8 | EVM Cable Assemblies                   | 21 |

## List of Figures

| 1  | DS280MB810EVM                                                                    | 1  |
|----|----------------------------------------------------------------------------------|----|
| 2  | DS280MB810EVM Block Diagram.                                                     | 4  |
| 3  | Repeater Profile Updater Installers.                                             | 6  |
| 4  | DS280MB810EVM Default Configuration                                              | 7  |
| 5  | SigCon Architect Configuration Page.                                             | 8  |
| 6  | SigCon Architect Low Level Page                                                  | 8  |
| 7  | SigCon Architect High Level Page: Device Status.                                 | 9  |
| 8  | SigCon Architect High Level Page: Block Diagram.                                 | 10 |
| 9  | SigCon Architect High Level Page: Crossspoint Switch.                            | 11 |
| 10 | SigCon Architect High Level Page: Crosspoint Switch                              | 11 |
| 11 | SigCon Architect EEPROM Page                                                     | 13 |
| 12 | Example Test Set Up                                                              | 14 |
| 13 | 25.78125 Gbps CAUI-4 Eye Mask with 5in input channel and minimal output channel  | 15 |
| 14 | 10.3125 Gbps nPPI Eye Mask with 5in Input Channel and Minimal Output Channel     | 15 |
| 15 | 25.78125 Gbps CAUI-4 Eye Mask with 10in Input Channel and Minimal Output Channel | 16 |
| 16 | 10.3125 Gbps nPPI Eye Mask with 10in Input Channel and Minimal Output Channel    | 16 |

## List of Tables

| 1 | DS280MB810 Ordering Information                                                                           | 3  |
|---|-----------------------------------------------------------------------------------------------------------|----|
| 2 | Description of SMBus and EEPROM Connections                                                               | 5  |
| 3 | Test Point Connections (Output Voltage)                                                                   | 5  |
| 4 | Settings and Measurements for CAUI-4 and nPPI with 5in Input Channel and Minimal Output Channel           | 15 |
| 5 | Settings and Measurements for CAUI-4 and nPPI with 10in Input Channel and Minimal Output Channel $\ldots$ | 16 |
| - |                                                                                                           |    |

# **Trademarks**

2

All trademarks are the property of their respective owners.



#### 1 Features

- 8-Channel Unidirectional Repeater operating at rates up to 28 Gbps; 4 channels available for EVM testing
- Linear Equalization that allows for support of link training protocols
- Programmed by external EEPROM or SMBus interfaces
- Single supply operation:  $2.5V \pm 5\%$  or  $3.3 V \pm 5\%$

# 2 Applications

- Front-Port Eye Opener for Optical (28G-VSR and CAUI-4) and Copper Cables (100G-CR4)
- Backplane Reach Extension (100G-KR4)
- SFP28, QSFP28, CFP2/CFP4, CDFP

# **3** Ordering Information

## Table 1. DS280MB810 Ordering Information

| EVM ID        | DEVICE ID  | DEVICE PACKAGE |
|---------------|------------|----------------|
| DS280MB810EVM | DS280MB810 | nfBGA (135)    |

**NOTE:** Huber+Suhner MXP cable assembles are not provided with this EVM. Users are expected to provide cabling to connect to other boards and test equipment. For MXP cabling recommendations please see Section 8.



# 4 Setup

Setup

This section describes the jumpers and connectors on the EVM as well as how to connect, set up, and use the DS280MB810EVM.



Figure 2. DS280MB810EVM Block Diagram.

# 4.1 Modes of Programmable Communication

The DS280MB810EVM can be programmed in one of two modes:

- 1. **SMBus Mode** Provides full access to the DS280MB810 status and control settings via the on-board USB2ANY. ADDR0 and ADDR1 pins are used to set the SMBus slave address.
- External EEPROM Provides access to the DS280MB810's EEPROM programmable control settings via an 8 pin EEPROM. Only a subset of SMBus slave register bits is written to EEPROM. The EEPROM can program up to 16 slave devices.

For convenient use, a USB-to-Mini cable provides a direct connection via J27.



# 4.2 Configuration Overview

The following tables provide a description of the connectors on the DS280MB810EVM.

| Component                                                 | Name                                              | Description                                                                  |
|-----------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------|
| J18.1, J18.2, J18.3, J18.4, J18.5,<br>J18.6, J18.7, J18.8 | RXN3, RXP3, RXN2, RXP2, RXN1, RXP1,<br>RXN0, RXP0 | High-speed differential input pairs                                          |
| J19.1, J19.2, J19.3, J19.4, J19.5,<br>J19.6, J19.7, J19.8 | TXP0, TXN0, TXP1, TXN1, TXP2, TXN2,<br>TXP3, TXN3 | High-speed differential output pairs                                         |
| J14.1, J14.3                                              | SDA, SCL                                          | SMBus Access (OPTIONAL)                                                      |
| J6                                                        | ADDR0                                             | 4-level strap pins used to set                                               |
| J11                                                       | ADDR1                                             | the SMBus address                                                            |
| J209                                                      | EN_SMB                                            | 4-level input to select between SMBus<br>master (float) or slave mode (high) |
| J211                                                      | READ_EN_N                                         | Weak pull up for SMBus Master or Slave<br>Mode                               |
| U2                                                        | EEPROM                                            | 8-pin DIP Socket for EEPROM                                                  |
| J1                                                        | CAL_CLK_IN                                        | External 25MHz Calibration Clock Input                                       |
| J2                                                        | CAL_CLK_OUT                                       | External 25MHz Calibration Clock Output                                      |
| J208                                                      | PWR                                               | 2.5 V for DC Power                                                           |
| J14                                                       | PWR                                               | 3.3 V for DC Power                                                           |
| J19                                                       | GND                                               | Ground                                                                       |
| J27                                                       | USB2ANY                                           | USB connection for EVM software control                                      |

| Table 2. Description of SMBu | is and EEPROM Connections |
|------------------------------|---------------------------|
|------------------------------|---------------------------|

## Table 3. Test Point Connections (Output Voltage)

| Component | Name | Description   |
|-----------|------|---------------|
| TP4       | GND  | Common Ground |
| TP5       | VDD  | +2.5 V Input  |
| TP6       | GND  | Common Ground |
| TP7       | VDD  | +3.3 V Input  |

# 4.3 Software Setup with SigCon Architect

The general procedure for setting up and testing with the DS280MB810EVM is as follows. For hardware setup and connections in the steps below, reference the illustrations in Figure 2 and Figure 4 to implement the appropriate setup.

- 1. **(One-time step)** Choose one of the TI SigCon Architect installers to download from the SigCon Architect Tools Folder on TI.com. Follow the prompts to install software.
  - SNLC055: With LabVIEW RTE embedded. Download this folder to install SigCon Architect on a computer without Internet access.
  - SNLC054: Without LabVIEW RTE embedded. Download this folder to install SigCon Architect on a computer with Internet access.
- 2. (One-time step)Download the relevant zip folder for the desired profile. For this evaluation module, select the zip folder for all available repeater profiles.
  - **SNLC056:** Repeater profile updaters.

5

Setup



| lame                     | Date modified     | Туре        | Size     |
|--------------------------|-------------------|-------------|----------|
| DS64BR111 Updater.exe    | 5/22/2015 2:00 PM | Application | 2,558 KB |
| 🝓 DS80PCI102 Updater.exe | 5/22/2015 2:00 PM | Application | 2,489 KB |
| 🝓 DS80PCI800 Updater.exe | 5/22/2015 2:00 PM | Application | 2,541 KB |
| DS80PCI810 Updater.exe   | 5/22/2015 2:01 PM | Application | 2,492 KB |
| DS100BR111 Updater.exe   | 5/22/2015 2:01 PM | Application | 2,568 KB |
| DS100BR111A Updater.exe  | 5/22/2015 2:02 PM | Application | 2,562 KB |
| DS100BR210 Updater.exe   | 5/22/2015 2:03 PM | Application | 2,568 KB |
| DS100KR800 Updater.exe   | 5/22/2015 2:03 PM | Application | 2,492 KB |
| DS125BR111 Updater.exe   | 5/22/2015 1:36 PM | Application | 2,493 KB |
| DS125BR401 Updater.exe   | 5/22/2015 1:58 PM | Application | 2,505 KB |
| DS125BR401A Updater.exe  | 5/22/2015 1:58 PM | Application | 2,530 KB |
| DS125BR800 Updater.exe   | 5/22/2015 1:58 PM | Application | 2,501 KB |
| DS125BR800A Updater.exe  | 5/22/2015 1:58 PM | Application | 2,508 KB |
| DS125BR820 Updater.exe   | 5/22/2015 1:59 PM | Application | 2,489 KB |
| DS125MB203 Updater.exe   | 5/22/2015 1:59 PM | Application | 2,777 KB |
| SDS280BR810 Updater.exe  | 10/6/2015 9:37 PM | Application | 3,464 KB |

#### Figure 3. Repeater Profile Updater Installers.

Choose the Updater.exe profile for the relevant device. In this case, install "DS280MB810 Updater.exe." Follow the prompts to install.

Once SigCon Architect and the correct updater profiles are installed, close any existing instance of SigCon Architect again.

- Connect 2.5 V power via banana plugs to VIN on J208 and GND to GND on J13, or connect 3.3 V power via banana plugs to VIN on J14 and GND to GND on J13.
  - For VDD = 2.5 V: Tie J198 jumper pins 1-2.
  - For VDD = 3.3 V: Remove jumper shunt between pins 1 and 2 on J198. Tie J207 jumper pins 10-9, 8-7, 6-5, 4-3, and 2-1.
- 4. Install the appropriate jumper shunt to operate with an internal or external calibration clock.

NOTE: The Reference Clock is not required for DS280MB810 operation.

- Install the appropriate jumper shunts to operate in default configuration with VDD = 2.5 V in SMBus Slave Mode or EEPROM Master Mode. The default configuration for the DS280MB810EVM operates in SMBus Slave Mode, as shown below in Figure 4.
  - J6 and J11: Tie jumper pins 10-9 in order to set the device slave address = 0x30. For all other SMBus slave addresses, reference the DS280MB810 data sheet.
  - J25: Tie jumper pins 3-1 and 4-2 in order to connect the SMBUS signals.
  - J10: Tie jumper pins 3-1 and 4-2.
  - J8: Tie jumper pins 2-1 and 4-3.
  - (SMBus Only) J209: Tie jumper pins 6-5 to set ENSMB = 1 (1 k $\Omega$  to VDD).
  - (EEPROM Only) J209: Float the jumper shunt to set ENSMB=F.

Setup





Figure 4. DS280MB810EVM Default Configuration.

- **NOTE:** The jumper on J211 (if present) is connected only to pin 12, which is the pin in the white box in Figure 4 (the top right pin).
- 6. Connect a PC to DS280MB810EVM with a USB-to-Mini cable via J27.
- 7. Open SigCon Architect, and navigate to the "Configuration" page of DS280MB810 via the "Selection" column. Choose "Slave Address" "0x30" from the drop down menu. Verify the "USB2ANY Details" specify "USB2ANY 0," and click "Apply." Successful connection is indicated by the green "CONNECTED" indicator on the bottom of the application, as seen below in Figure 5. Once connection is successfully established, users can read and write various settings to the device in real-time, as described in the following steps.





Figure 5. SigCon Architect Configuration Page.

- 8. In order to read and write to all registers on the DS280MB810, navigate to the "Low Level Page," as shown below in Figure 6. Only in SMBus Slave Mode can the user read and write to all programmable registers. Click "Read All" in order to load the data in each register from the device to the "Register Map."
  - **Read Register:** Type the readable address in the "Current Address" text box. Click "Read Register." The data in this register will appear in the "Data" text box.
  - Write Register: Type the writable address in the "Current Address" text box, and type the data to write to this address in the "Data" text box. Click "Write Register."

|                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                         |                                                                                                                                                                                    | Sig                                                                                        | C                                                                                           | on A                                                                             | ٨rd | chitect                                              | en in Demo Mode, click "Apply" on th                               | e profile Configuratio | Der<br>n Page to enable access to of | no Mod<br>her page |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----|------------------------------------------------------|--------------------------------------------------------------------|------------------------|--------------------------------------|--------------------|
| Selection • • Configuration • • Configuration • • Configuration • • Configuration • • • Configuration • • • • • • • • • • • • • • • • • • • | Block Salect<br>Share Registers Die 0 ■<br>Register Hap<br>Block: Register Rap<br>Block: Register Register Die 0<br>General_1<br>Variant Control_1<br>Channel Control_2<br>General_3<br>General_4<br>RefCiR Crt1<br>SAR_ADC Cht1<br>SAR_ADC Cht3<br>SAR_ADC | Address<br>0x00<br>0x01<br>0x03<br>0x05<br>0x05<br>0x06<br>0x07<br>0x08<br>0x08<br>0x08<br>0x08<br>0x08<br>0x00<br>0x00 | Default<br>0xC00<br>0x000<br>0x000<br>0x000<br>0x000<br>0x000<br>0x000<br>0x000<br>0x000<br>0x000<br>0x000<br>0x000<br>0x000<br>0x000<br>0x000<br>0x000<br>0x000<br>0x001<br>0x000 | Expand Al<br>Node<br>R<br>RAW<br>RAW<br>RAW<br>RAW<br>RAW<br>RAW<br>RAW<br>RAW<br>RAW<br>R | 5 12 10 10 10 10 10 10 10 10 10 10 10 10 10                                                 | Collapse<br>Data<br>0x01<br>0x02<br>0x00<br>0x00<br>0x00<br>0x00<br>0x00<br>0x00 |     | Current Address                                      | Nast Register Data Nast Register Data Field Description Field Name | Access                 | In Registre enable access to on      |                    |
|                                                                                                                                             | General_4<br>RefCir.Rx.Ctil<br>SAR_ADC Ctil<br>SAR_ADC Status 1<br>SAR_ADC Status 2<br>EE Status<br>I2C Ctil<br>B Global Registers<br>Number of dies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0x06<br>0x07<br>0x08<br>0x09<br>0x04<br>0x05<br>0x06<br>0x06<br>0x0C                                                    | 0x00<br>0x00<br>0x00<br>0x00<br>0x00<br>0x00<br>0x00<br>0x91<br>0x0C                                                                                                               | RW<br>RW<br>R<br>R<br>R<br>R<br>R<br>R<br>W<br>RW                                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0x00<br>0x00<br>0x00<br>0x00<br>0x01<br>0x00<br>0x91<br>0x0C                     |     | vitte Load Conny<br>will Overwrite all<br>Registers. |                                                                    |                        |                                      |                    |

Figure 6. SigCon Architect Low Level Page.

- 9. In order to view a high level summary of the device status and control settings, navigate to the "High Level Page," and remain on the "Device Status tab" as shown below in Figure 7. Click "Refresh From Device" to ensure the settings shown are from the device. The settings on this page are not editable.
  - Signal Detect Status: For each channel the device status is displayed as "Signal Not Detected" if there is not a signal present at the RX side of this channel or "Signal Detected" if there is a signal present at the RX side of this channel.
  - **Driver Power:** The Driver Power can be turned on or off and the current status is displayed on the Device Status page. The Driver Power is detected at the TX side of each channel.
  - **Control Settings:** The remaining control settings are programmable through SigCon Architect. The displayed values are the current settings programmed on the device. Step 10 describes how to edit these settings.

|                                                                                                    | S                                                                                                | igCon Architect                   | Demo l "Apply" on the profile Configuration Page to enable access to other |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------|
| ection<br>DS260MB810<br>© Configuration<br>© Low Level Page<br>© EEPRON Page<br>• EFRON Cover Page | Updale Time(in_ms)<br>E000 (a)<br>Channel Select<br>Channel 4 (e)                                | Sefresh From Device               | 🧐 Reset Device 🥞 Load From File 🔒 Save To F                                |
|                                                                                                    | Device Status                                                                                    | Block Diagram                     | Crosspoint Switch                                                          |
|                                                                                                    | Continuous Status Update     Shared Registers Die 0     GAL_CLK Detected     EEPRCM Load Complet | Shared Registers Die 1            | Updating Channel 7                                                         |
|                                                                                                    | Channel 4 Signal Detected 0<br>Driver Power Ot                                                   | EQ Boost 1 0 EQ Boost 2 2 EQ EW L | ow Gain EQ DC Gain 3 Driver VOD                                            |
|                                                                                                    | Channel 5 Signal Detected 0<br>Driver Power ON                                                   | EQ Boost 1 0 EQ Boost 2 2 EQ EW L | .cov Gain EQ DC Gain 3 Driver VOD                                          |
|                                                                                                    | Channel 5 Bignat Not Glakesse Briver Power Ols                                                   | EQ Brost 1 0 EQ Boost 2 2 EQ BW L | ow Gain EQ OC Gain 3 Driver VOD B                                          |
|                                                                                                    | Channel 7 Distal Hol Detected 0                                                                  | EQ Boost 1 0 EQ Boost 2 2 EQ BW   | ow Gain EQ DC Gain 3 Driver VOD                                            |

Figure 7. SigCon Architect High Level Page: Device Status.



10. In order to program high level settings, navigate to the "Block Diagram" tab on the "High Level Page" as shown below in Figure 8. The EQ Settings and Output Configurations are programmable from this page. In order to navigate to specific channels use the "Channel Select" drop down menu. Click "Refresh from Device" to apply the device's current settings to the control setting boxes. Click "Apply to Channel" to program the device from the "Block Diagram" page. After programming the device, the changed settings can be verified on the "Device Status" page, Figure 7. The CAL\_CLK Detected indicator provides a visual representation of whether a calibration clock is active.

#### EQ Settings:

- The Equalizer works as a high pass filter compensating for input channel loss.
- The EQ Boost 1, EQ Boost 2, and EQ Boost BW values respectively apply boost to their respective segments as shown below on the block diagram.
- The EQ DC Gain setting can be either Low or High Gain.
- Driver Output:
  - A linear equalizer does not utilize a limiting amplifier. Linear equalizers are necessary for an application with link training or end to end equalization.
  - Driver VOD and EQ DC Gain settings can be changed on this page. The Approximate DC gain in dB ranges from -4.5 to +5.0 dB.



Figure 8. SigCon Architect High Level Page: Block Diagram.

- 11. In order to program each of the internal 2x2 crosspoints, navigate to the "Crosspoint Switch" tab on the "High Level Page" as shown below in Figure 9. The Crosspoint Switch Status of the entire device is displayed on the right-hand side. The colors help to show the configuration of each channel in the DS280MB810.
  - Crosspoint Configuration:
    - Default: Results in a 1:1 function.
    - Fanout: Results in a 1:2 function
    - Lane Crossing: Swaps the outputs within the 2x2 crosspoint



Figure 9. SigCon Architect High Level Page: Crossspoint Switch.



Figure 10. SigCon Architect High Level Page: Crosspoint Switch.



- 12. In order to create a Hex file programmable to an EEPROM, navigate to the "EEPROM Page," as shown in Figure 11. In order to update the settings from the device click "Update Slot from Device." In order to create the programmable hex file, click "Write to EEPROM Hex." The evaluation module does not include an EEPROM, but an external EEPROM can be used. SigCon Architect cannot directly program the EEPROM. The EEPROM Hex File can be burned on the EEPROM via I2C communication (i.e. AARDVARK or equivalent interface adapter). The EEPROM control settings are described in greater detail below.
  - **Output Configurations:** If this box is checked, all channels receive the same configuration. Different devices can receive different configurations, but within one device, all channels will receive the same configuration. If this box is unchecked, then the EEPROM will store the configurations as unique channel configurations. Each of the four channels can receive a unique configuration.
  - EEPROM > 256:
    - This setting must be enabled if there are more than 4 EEPROM slots.
    - When this box is checked, the "EEPROM Size" drop down menu is automatically populated by 512 Bytes if previously populated by 256 Bytes.
    - When this box is unchecked, the "EEPROM Size" drop down menu is automatically populated by 256 Bytes. Up to 4 EEPROM slots can be programmed.
  - **Enable CRC:** If enabled, each device will have a CRC value specific to the base header, address map header, and data. If disabled, the CRC is not computed.
  - Slot Update Details: The number of slots refers to the total number of unique SMBus register settings to load from the EEPROM. The user can choose to update all slots, or which slot number to update the SigCon Architect EEPROM page from.
  - **EEPROM Size:** The EEPROM size must be set to 256, 512, or 1024 bytes. A single external EEPROM can be used by up to 16 x DS280MB810 devices.
    - The first 3 bytes of EEPROM data is the base header. The base header contains the CRC Enable Bit, Aaddress Map Header Enable Bit, EEPROM > 256 Bytes Enable Bit, device count, and maximum EEPROM burst size settings.
    - If multiple devices are programmed, an address map header is needed for each device. The address map header specifies the CRC value and the Device EEPROM Start Address.
    - If EEPROM Size > 256 Bytes Enable Bit is NOT set:
      - EEPROM Size = 3 Bytes (Base Header) + Number of devices x 8 Bytes/device (Address Header) + Number of slots x 66 Bytes/slot (Data)
    - If EEPROM Size > 256 Bytes Enable Bit is set:
      - EEPROM Size = 3 Bytes (Base Header) + Number of devices x 12 Bytes/device (Address Header) + Number of slots x 66 Bytes/slot (Data)



|                                  |                                       |              | Sig            | Con Arc     | chitect      | Wten in Demo Mode, ( | slick "Apply" on the | profile Configuration | Page to enable acces | Dei<br>us to o |  |
|----------------------------------|---------------------------------------|--------------|----------------|-------------|--------------|----------------------|----------------------|-----------------------|----------------------|----------------|--|
| MB010<br>Aguration<br>Level Page |                                       |              |                |             |              |                      |                      | Load From<br>Hex File | Write<br>EEPRO       | e to<br>M Hez  |  |
| level Page                       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2202         | Slot lindate D | atalis      | Address/Slot | list Selection       | EE                   | EEPROM Data Table     |                      |                |  |
|                                  | No. of Device EE                      | PROMISIZE    | one opoure of  | - Care o    | Device Addr  | ess Slot#            |                      | Address               | EEPROM Data          |                |  |
|                                  |                                       | SO Bytes [m] | Slot#          | 0           | 0130         | 0                    |                      | 0x0                   | 0x50                 | 13             |  |
|                                  | Common Channel Sele                   | act          | -              |             |              |                      |                      | 0x1                   | 00x0                 | 1              |  |
|                                  | Channel 4                             |              | O All Sids     |             |              |                      |                      | 0x2                   | 0x:10                |                |  |
|                                  |                                       | 111          |                |             |              |                      |                      | 0x3                   | 0x00                 |                |  |
|                                  | Common Channel                        |              |                |             |              |                      |                      | 324                   | 0x08                 | -              |  |
|                                  | Vi Address Man Enable                 | et.          | Update Slot    | From Device |              |                      |                      | 0:5                   | 0x00                 | 4              |  |
|                                  |                                       |              |                |             | 5            |                      |                      | 010                   | 0008                 |                |  |
|                                  |                                       |              |                |             | 77           |                      |                      |                       |                      |                |  |
|                                  | Major Channel Settings : Slo          | e0           |                |             |              | 100 Colored #        |                      |                       |                      | _              |  |
|                                  | Parameters                            | Channel 0    | Channel 1      | Channel 2   | Channel 3    | Channel 4            | Channel 5            | Channel 6             | Channel 7            | _              |  |
|                                  | Driver VOD                            | 0x03         | 0x03           | 0x03        | 0x03         | 0x03                 | 0x03                 | 0x03                  | 0x03                 |                |  |
|                                  | EQ Boost 7                            | 0x00         | 0x00           | Dx00        | 0x00         | Bx00                 | 0x00                 | 0x00                  | 0x00                 | -              |  |
|                                  | EQ Boost BW                           | 0x02         | 0x02           | 0x02        | 0x02         | 0x02                 | 0x02                 | 0x02                  | 0x02                 |                |  |
|                                  |                                       |              |                |             |              |                      |                      |                       | -                    | -              |  |
|                                  |                                       | 1            |                |             |              |                      |                      |                       |                      |                |  |
|                                  |                                       |              |                |             |              |                      |                      |                       |                      |                |  |

Figure 11. SigCon Architect EEPROM Page.

**NOTE:** Profile versions 1.0.1.0 and earlier do not support CRC with EEPROM size set to larger 256 bytes. This feature will be available in future releases.



# 5 Example Hardware Test Setup

In order to test the functionality of the DS280MB810EVM, connect TXP0 and TXN0 with MXP cable assemblies to DC blocking capacitors and a Keysight DCA-x Oscilloscope or equivalent (50  $\Omega$  terminated). Connect the data source, high speed BERT or other device with MXP cable assemblies to RXP0 and RXN0. Add input and output channels as desired to emulate a system topology. Use the Jitter/Noise and Eye/Mask functions on the Oscilloscope to view the output. The test set up can be seen below in Figure 12.



Figure 12. Example Test Set Up



Example Hardware Test Setup

#### www.ti.com

# 5.1 Equalizing Moderate Pre-Channel Loss

The following is an example test setup configuration which demonstrates the DS280MB810 equalizing for moderate pre-channel insertion loss introduced by an FR4 channel at 25.78125 Gbps and 10.3125 Gbps.



## Table 4. Settings and Measurements for CAUI-4 and nPPI with 5in Input Channel and Minimal Output Channel

|                                 | 25.78125 Gbps (CAUI-4)                                                               | 10.3125 Gbps (nPPI)                                                               |
|---------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Transmission Line 1             | 5 in 5 mil FR4 + 8in SMA cable                                                       | 5 in 5 mil FR4 + 8 in SMA cable                                                   |
| DS280MB810 Rx Channel Loss      | 14 dB @ 12.9 GHz<br>(includes 4 dB from the EVM and<br>Huber+Suhner cable assembly)  | 6 dB @ 5.2 GHz<br>(includes 2 dB from the EVM and<br>Huber+Suhner cable assembly) |
| DS280MB810 Tx Channel Loss      | 4.5 dB @ 12.9 GHz<br>(includes 4 dB from the EVM and<br>Huber+Suhner cable assembly) | 2 dB @ 5.2 GHz<br>(attributed to the EVM and Huber+Suhner<br>cable assembly)      |
| EQ BST1                         | 3                                                                                    | 3                                                                                 |
| EQ BST2                         | 0                                                                                    | 0                                                                                 |
| EQ BW                           | 3                                                                                    | 3                                                                                 |
| VOD                             | 3                                                                                    | 2                                                                                 |
| EQ DC Gain Mode                 | Low                                                                                  | Low                                                                               |
| Total Jitter @ 1E-15            | 11.9 ps <sub>P-P</sub>                                                               | 13.0 ps <sub>P-P</sub>                                                            |
| Differential Eye Height @ 1E-15 | 338 mV <sub>P-P</sub>                                                                | 544 mV <sub>P-P</sub>                                                             |
| Mask violations                 | 0                                                                                    | 0                                                                                 |



Example Hardware Test Setup

# 5.2 Equalizing High Pre-Channel Loss

The following is an example test setup configuration which demonstrates the DS280MB810 equalizing for high pre-channel insertion loss introduced by an FR4 channel at 25.78125 Gbps and 10.3125 Gbps



## Table 5. Settings and Measurements for CAUI-4 and nPPI with 10in Input Channel and Minimal Output Channel

|                                 | 25.78125 Gbps (CAUI-4)                                                               | 10.3125 Gbps (nPPI)                                                                |
|---------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Transmission Line 1             | 10 in 5 mil FR4 + 8in SMA cable                                                      | 10 in 5 mil FR4 + 8 in SMA cable                                                   |
| DS280MB810 Rx Channel Loss      | 22 dB @ 12.9 GHz<br>(includes 4 dB from the EVM and<br>Huber+Suhner cable assembly)  | 10 dB @ 5.2 GHz<br>(includes 2 dB from the EVM and<br>Huber+Suhner cable assembly) |
| DS280MB810 Tx Channel Loss      | 4.5 dB @ 12.9 GHz<br>(includes 4 dB from the EVM and<br>Huber+Suhner cable assembly) | 2 dB @ 5.2 GHz<br>(attributed to the EVM and Huber+Suhner<br>cable assembly)       |
| EQ BST1                         | 6                                                                                    | 6                                                                                  |
| EQ BST2                         | 1                                                                                    | 1                                                                                  |
| EQ BW                           | 3                                                                                    | 3                                                                                  |
| VOD                             | 3                                                                                    | 2                                                                                  |
| EQ DC Gain Mode                 | Low                                                                                  | Low                                                                                |
| Total Jitter @ 1E-15            | 11.3 ps <sub>P-P</sub>                                                               | 13.5 ps <sub>P-P</sub>                                                             |
| Differential Eye Height @ 1E-15 | 210 mV <sub>P-P</sub>                                                                | 532 mV <sub>P-P</sub>                                                              |
| Mask violations                 | 0                                                                                    | 0                                                                                  |



# 6 Common Problems and Possible Solutions

| PROBLEM                                                            | ADDITIONAL INFORMATION                                                    | POSSIBLE SOLUTIONS                                                                                                                                                                                    |  |
|--------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Cannot power on the EVM.                                           | 2.5 Volt Power.<br>D35 LED is off.                                        | <ul> <li>J198: jumper pins 1-2 tied.</li> <li>J207: jumper pins should be set to float.</li> <li>Verify configuration with Figure 4.</li> </ul>                                                       |  |
|                                                                    | 3.3 Volt Power.<br>D35 LED is off.                                        | <ul> <li>J198: remove jumper shunt, pins 1-2 cannot be tied in order to enable 2.5 V regulator.</li> <li>J207: jumper pins 10-9, 8-7, 6-5, 4-3, and 2-1 tied.</li> </ul>                              |  |
| Cannot program with an                                             |                                                                           | • Verify the jumper settings are correct (Figure 4).                                                                                                                                                  |  |
|                                                                    | SigCon Architect is operating in Demo                                     | <ul> <li>Verify the slave address is set to 0x30 for SMBus Slav<br/>Mode.</li> </ul>                                                                                                                  |  |
|                                                                    | Node.                                                                     | Verify the device is powered on.                                                                                                                                                                      |  |
| SMBus Slave Mode.                                                  |                                                                           | Update Firmware on EVM using "USB2ANY Explorer."                                                                                                                                                      |  |
|                                                                    | Never used SigCon Architect, and cannot establish connection with device. | <ul> <li>Reinstall SigCon Architect. It is essential SigCon<br/>Architect is closed during any portion of the installation<br/>process.</li> </ul>                                                    |  |
| Oscilloscope's Output<br>Eye Diagram is not as<br>expected.        | Dettern dess not lock on socillossens                                     | <ul> <li>Transmit a signal from the BERTScope with a different<br/>PRBS pattern. Once initial pattern lock is established,<br/>re-attempt desired pattern.</li> </ul>                                 |  |
|                                                                    | Pattern does not lock on oscilloscope.                                    | <ul> <li>Transmit a signal from the BERTScope with a lower<br/>frequency. Once initial pattern lock is established, re-<br/>attempt desired frequency.</li> </ul>                                     |  |
|                                                                    | Eye diagram does not pass mask.                                           | Vary EQ Boost Settings as seen in Figure 8.                                                                                                                                                           |  |
| Cannot burn EEPROM<br>Hex File to EEPROM<br>with SigCon Architect. |                                                                           | <ul> <li>SigCon Architect can only be used to generate the Hex<br/>File. Another interface adapter must be used to burn<br/>the Hex File to the EPPROM. (i.e. AARDVARK or<br/>equivalent).</li> </ul> |  |



#### Bill of Materials

# 7 Bill of Materials

| #  | QUANTITY | REFERENCE                                                       | VALUE                                 | PART NUMBER          | DESCRIPTION                      |
|----|----------|-----------------------------------------------------------------|---------------------------------------|----------------------|----------------------------------|
| 1  | 1        | C327                                                            | 1 uF                                  | C0603X5R0J105M030BC  | CAP CER 1UF 6.3V 20% X5R 0201    |
| 2  | 1        | C2                                                              | 0.1uF                                 | C1005X7R1H104K050BB  | CAP CER 0.1UF 50V 10% X7R 0402   |
| 3  | 12       | C68,C69,C70,C71,C329,C330,C<br>333,C334,C335,C336,C337,C33<br>8 | 0.1uF                                 | C0603X5R1E104K030BB  | CAP CER 0.1UF 25V 10% X5R 0201   |
| 4  | 1        | C5                                                              | 10 uF                                 | GRM21BR61E106KA73L   | CAP CER 10UF 25V 10% X5R 0805    |
| 5  | 1        | C6                                                              | 1 uF                                  | GRM188R61E105KA12D   | CAP CER 1UF 25V 10% X5R 0603     |
| 5  | 1        | C7                                                              | 22 uF                                 | T491C226M016ZT       | CAP TANT 22UF 16V 20% 2413       |
| 6  | 1        | C18                                                             | 2.2 nF                                | C0603C222M3RACTU     | CAP CER 2200PF 25V 20% X7R 0603  |
| 7  | 3        | C19,C22,C24                                                     | 0.1 uF                                | GRM155R71C104KA88D   | CAP CER 0.1UF 16V 10% X7R 0402   |
| 8  | 2        | C20,C21                                                         | 30 pF                                 | GRM1885C1H300JA01D   | CAP CER 30PF 50V 5% NP0 0603     |
| 9  | 1        | C23                                                             | 0.47 uF                               | EMK107B7474KA-T      | CAP CER 0.47UF 16V 10% X7R 0603  |
| 10 | 1        | C25                                                             | 0.1 uF                                | C0603C104K4RACTU     | CAP CER 0.1UF 16V 10% X7R 0603   |
| 11 | 2        | C26,C31                                                         | 220 pF                                | C0603C221K5RACTU     | CAP CER 220PF 50V 10% X7R 0603   |
| 12 | 1        | C27                                                             | 22 uF                                 | EEE-1AA220WR         | CAP ALUM 22UF 10V 20% SMD        |
| 13 | 1        | C28                                                             | 1 uF                                  | C2012X7R1C105K125AA  | CAP CER 1UF 16V 10% X7R 0805     |
| 14 | 1        | C29                                                             | 0.01 uF                               | CGJ3E2X7R1C103K080AA | CAP CER 10000PF 16V 10% X7R 0603 |
| 15 | 1        | C30                                                             | 2.2 uF                                | LMK212B7225KG-T      | CAP CER 2.2UF 10V 10% X7R 0805   |
| 16 | 2        | C299,C332                                                       | 1 uF                                  | CC0603ZRY5V6BB105    | CAP CER 1UF 10V Y5V 0603         |
| 17 | 1        | C300                                                            | 47 uF                                 | TAJB476K010RNJ       | CAP TANT 47UF 10V 10% 1210       |
| 18 | 1        | C328                                                            | 10 uF                                 | AMK105CBJ106MV-F     | CAP CER 10UF 4V 20% X5R 0402     |
| 19 | 1        | C331                                                            | 10 uF                                 | TAJP106M010RNJ       | CAP TANT 10UF 10V 20% 0805       |
| 20 | 5        | D1,D2,D4,D36,D38                                                | LED                                   | LTST-C191KGKT        | LED GREEN CLEAR THIN 0603 SMD.   |
| 21 | 3        | D6,D8,D35                                                       | RED-LED                               | LS M67K-J2L1-1-Z     | LED MINI TOPLED RED 630NM SMD    |
| 22 | 1        | D9                                                              | 1SMB5922BTS                           | 1SMB5922BT3G         | DIODE ZENER 7.5V 3W SMB          |
| 23 | 1        | FB1                                                             | BK1608HS600-T                         | BK1608HS600-T        | FERRITE BEAD 60 OHM 0603         |
| 24 | 2        | J1,J2                                                           | SMA                                   | 142-0701-201         | CONN SMA JACK STR 50 OHM PCB     |
| 25 | 2        | J5,J210                                                         | HEADER_3                              | 87224-3              | CONN HEADER VERT .100 3POS 15AU  |
| 26 | 4        | J6,J11,J209,J211                                                | HEADER 6X2                            | 87227-6              | CONN HEADER VERT .100 12POS 15AU |
| 27 | 4        | J8,J10,J21,J25                                                  | HEADER 2X2                            | 87227-2              | CONN HEADER VERT .100 4POS 15AU  |
| 28 | 1        | -U9                                                             | 4 HEADER                              | 901200764            | CONN HEADER 4POS .100" STR GOLD  |
| 29 | 1        | J13                                                             | Binding Post, Keystone<br>7007, Black | 7007                 | POST BINDING ECON NYLON-INS BLK  |
| 30 | 2        | J14,J208                                                        | Binding Post, Keystone<br>7006, Red   | 7006                 | POST BINDING ECON NYLON-INS RED  |

| #  | QUANTITY | REFERENCE                               | VALUE                    | PART NUMBER                          | DESCRIPTION                      |
|----|----------|-----------------------------------------|--------------------------|--------------------------------------|----------------------------------|
| 31 | 4        | J18,J19,J203,J204                       | 1x8A_81_MXP-S50-0-2      | 1x8A_81_MXP-S50-0-2/111_NE           |                                  |
| 32 | 2        | J24,J26                                 | HEADER 2                 | 87224-2                              | CONN HEADER VERT .100 2POS 15AU  |
| 33 | 1        | J27                                     | USB_Conn_1734035-2       | 1734035-2                            | CONN MINI USB RCPT RA TYPE B SMD |
| 34 | 1        | J198                                    | HEADER, 2-PIN            | 87224-2                              | CONN HEADER VERT .100 2POS 15AU  |
| 35 | 1        | J207                                    | HEADER 5x2/SM_1          | 87227-5                              | CONN HEADER VERT .100 10POS 15AU |
| 36 | 1        | Q1                                      | BSS138                   | BSS138                               | MOSFET N-CH 50V 220MA SOT-23     |
| 37 | 3        | R1,R3,R48                               | 4.7K                     | ERJ-2GEJ472X                         | RES 4.7K OHM 1/10W 5% 0402 SMD   |
| 38 | 2        | R2,R4                                   | 100                      | CRCW0402100RFKEDHP                   | RES 100 OHM .125W 1% 0402 SMD    |
| 39 | 6        | R5,R20,R30,R47,R409,R418                | 249                      | RC1005F2490CS                        | RES 249 OHM 1/16W 1% 0402        |
| 40 | 3        | R6,R7,R8                                | 2.7K                     | ERJ-2GEJ272X                         | RES 2.7K OHM 1/10W 5% 0402 SMD   |
| 41 | 2        | R9,R10                                  | 0                        | ERJ-2GE0R00X                         | RES 0.0 OHM 1/10W JUMP 0402 SMD  |
| 42 | 5        | R13,R14,R15,R17,R18                     | 2.7K                     | ERJ-2GEJ272X                         | RES 2.7K OHM 1/10W 5% 0402 SMD   |
| 43 | 2        | R16,R19                                 | 4.7K                     | ERJ-2GEJ472X                         | RES 4.7K OHM 1/10W 5% 0402 SMD   |
| 44 | 8        | R21,R27,R33,R37,R406,R408,R<br>415,R417 | 1K                       | ERJ-2GEJ102X                         | RES 1.0K OHM 1/10W 5% 0402 SMD   |
| 45 | 4        | R26,R36,R407,R416                       | 10K                      | ERJ-2GEJ103X                         | RES SMD 10K OHM 5% 1/10W 0402    |
| 46 | 1        | R43                                     | 750                      | ERJ-3GEYJ751V                        | RES 750 OHM 1/10W 5% 0603 SMD    |
| 47 | 1        | R45                                     | 33k                      | RC0402JR-0733KL                      | RES 33K OHM 1/16W 5% 0402 SMD    |
| 48 | 1        | R46                                     | 200                      | ERJ-3GEYJ201V                        | RES 200 OHM 1/10W 5% 0603 SMD    |
| 49 | 1        | R49                                     | 10.0K                    | ERJ3EKF1002V                         | RES 10K OHM 1/10W 1% 0603 SMD    |
| 50 | 2        | R50,R51                                 | 33                       | CRCW040233R2FKEDHP                   | RES 33.2 OHM .125W 1% 0402 SMD   |
| 51 | 1        | R52                                     | 1.5K                     | CRCW04021K50FKEDHP                   | RES 1.50K OHM .125W 1% 0402 SMD  |
| 52 | 1        | R53                                     | 33K                      | ERJ-2GEJ333X                         | RES 33K OHM 1/10W 5% 0402 SMD    |
| 53 | 1        | R54                                     | 1.2M                     | ERJ-2GEJ125X                         | RES 1.2M OHM 1/10W 5% 0402 SMD   |
| 54 | 2        | R358,R359                               | 10K                      | CRCW040210K0FKEDHP                   | RES 10.0K OHM .125W 1% 0402 SMD  |
| 55 | 1        | R360                                    | 360                      | ERJ-3GEYJ361V                        | RES 360 OHM 1/10W 5% 0603 SMD    |
| 56 | 1        | SW1                                     | SW_DIP_SWITCH            | 76STD01T                             | SWITCH DIP TOGGLE 1POS           |
| 57 | 1        | S1                                      | EVQPSD02K                | EVQ-PSD02K                           | SWITCH TACTILE SPST-NO 0.05A 12V |
| 58 | 1        | TP1                                     | TEST POINT               | 5002                                 | TEST POINT PC MINI .040"D WHITE  |
| 59 | 3        | TP2,TP5,TP7                             | TEST POINT               | 5000                                 | TEST POINT PC MINI .040"D RED    |
| 60 | 2        | TP4,TP6                                 | TEST POINT               | 5001                                 | TEST POINT PC MINI .040"D BLACK  |
| 61 | 1        | U1                                      | Oscillator, 25 MHz, 2.5V | 7C-25.000MCB-T                       | OSC XO 25.000MHZ CMOS SMD        |
| 62 | 1        | U2                                      | PDIP                     | 111-43-308-41-001000                 | IC SOCKET 8PIN .300 SOLDER TAIL  |
| 63 | 1        | U6                                      | MSP430                   | MSP430F5529IPN or<br>MSP430F5529IPNR | IC MCU 16BIT 128KB FLASH 80LQFP  |
| 64 | 1        | U7                                      | TXB0108                  | TXB0108PWR                           | IC 8-BIT TRNSTR 15KV ESD 20TSSOP |



Texas Instruments



DS280MB810EVM User's Guide 19



| #  | QUANTITY | REFERENCE               | VALUE       | PART NUMBER       | DESCRIPTION                |
|----|----------|-------------------------|-------------|-------------------|----------------------------|
| 65 | 1        | U8                      | TPD4E004DRY | TPD4E004DRYR      | TVS DIODE 6SON             |
| 66 | 1        | U9                      | TPS73533DRB | TPS73533DRBT      | IC REG LDO 3.3V 0.5A 8SON  |
| 67 | 1        | U11                     | DS280MB810  |                   |                            |
| 68 | 1        | U16                     | TPS75725    | TPS75725KTTRG3    | IC REG LDO 2.5V 3A DDPAK   |
| 69 | 1        | Y1                      | 24.0 MHz    | ECS-240-20-5PX-TR | CRYSTAL 24.000MHZ 20PF SMD |
| 70 | 1        | SV601167 REVE BOARD PCB |             |                   |                            |



# 8 EVM Cable Assemblies

The DS280MB810EVM uses Huber+Suhner 1x8 MXP cable assemblies. For Huber+Suhner quotes or additional information requests, please contact: Info.us@hubersuhner.com HUBER+SUHNER Inc. 8530 Steele Creek Place Drive, Suite H Charlotte-NC- 28273 +1 704-790-7300

Below are suggested part numbers that can be used with this EVM. Other part numbers and cable lengths have not been tested, but can be considered for use.

- 1. 85014420, MF53/1x8A\_21MXP/21SMA/152: "MXP-18 cable assembly". This is a lower cost cable assembly compared to the MXP-40, but the SI performance is very good and more than adequate for 25Gbps operation.
- 2. 84099607, MF53/1x8A\_21MXP/11SK/305: "MXP-40 cable assembly". This cable assembly is designed specifically for 40+ GHz. It features a male cable end and longer cable length options.
- 3. 84098900, MF53/1x8A\_21MXP/21SK\_ergo/305: "MXP-40 cable assembly". This cable assembly is designed specifically for 40+ GHz. It features a female cable end and longer cable length options.
- 84099634, MF53/1x8A\_21MXP/21/MXP/305: "MXP-50 cable assembly". This cable assembly is designed specifically for 50+ GHz. It features a MXP connections on both ends of the cable for board bridging and longer cable length options.



# **Revision History**

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| Ch | nanges from Original (October 2016) to A Revision | Page | ÷ |
|----|---------------------------------------------------|------|---|
| •  | Initial public release                            | 3    | } |

# IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated