

N-Channel PowerTrench[®] SyncFETTM **30 V, 42 A, 2.4 m**Ω

Features

- Max r_{DS(on)} = 2.4 mΩ at V_{GS} = 10 V, I_D = 25 A
- Max r_{DS(on)} = 2.6 mΩ at V_{GS} = 7 V, I_D = 23 A
- Advanced Package and Silicon combination for low r_{DS(on)} and high efficiency
- SyncFET Schottky Body Diode
- MSL1 robust package design
- 100% UIL tested
- RoHS Compliant

General Description

The FDMS0352S has been designed to minimize losses in power conversion application. Advancements in both silicon and package technologies have been combined to offer the lowest $r_{\text{DS}(\text{on})}$ while maintaining excellent switching performance. This device has the added benefit of an efficient monolithic Schottky body diode.

Applications

- Synchronous Rectifier for DC/DC Converters
- Notebook Vcore/ GPU low side switch
- Networking Point of Load low side switch
- Telecom secondary side rectification

MOSFET Maximum Ratings T_C = 25 °C unless otherwise noted

Symbol	Parameter			Ratings	Units
V _{DS}	Drain to Source Voltage			30	V
V _{GS}	Gate to Source Voltage		(Note 4)	±20	V
	Drain Current -Continuous (Package limited)	T _C = 25 °C		42	
	-Continuous (Silicon limited)	T _C = 25 °C		152	Α
D	-Continuous	T _A = 25 °C	(Note 1a)	26	
	-Pulsed			150	
dv/dt	MOSFET dv/dt			1.7	V/ns
E _{AS}	Single Pulse Avalanche Energy (Note 3)			128	mJ
P _D	Power Dissipation	T _C = 25 °C		83	W
	Power Dissipation	T _A = 25 °C	(Note 1a)	2.5	VV
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C

Thermal Characteristics

FDMS0352S Rev.C1

R _{θJC}	Thermal Resistance, Junction to Case	1.5	°C/W
R _{θJA}	Thermal Resistance, Junction to Ambient (Note	a) 50	0/00

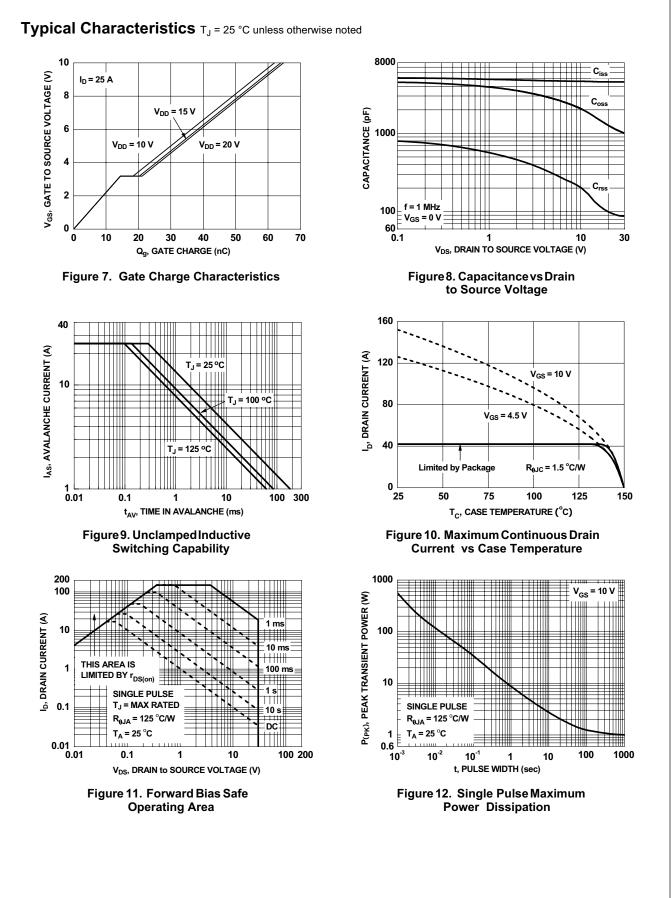
Package Marking and Ordering Information

[Device Marking	Device	Package	Reel Size	Tape Width	Quantity
	FDMS0352S	FDMS0352S	Power 56	13 "	12 mm	3000 units

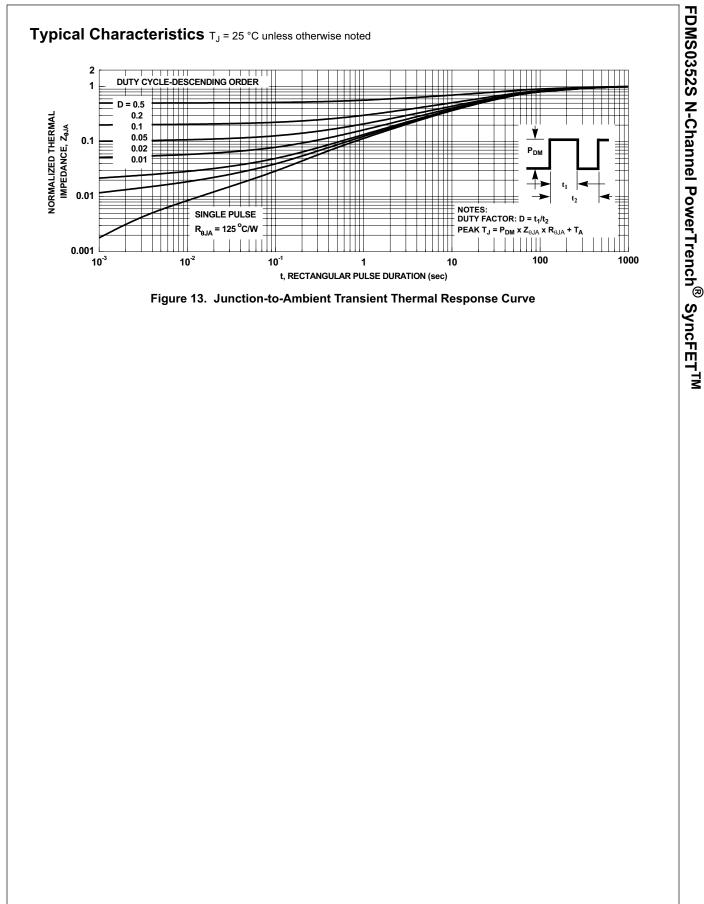
FDMS0
NS0352S N-
N-Channel I
ower
Trench [®]
⁹ SyncFET TM

	Test Conditions	Min	Тур	Max	Units
cteristics					
Drain to Source Breakdown Voltage	I _D = 1 mA, V _{GS} = 0 V	30			V
Breakdown Voltage Temperature		00			
Coefficient	I _D = 10 mA, referenced to 25 °C		14		mV/°C
Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			500	μA
Gate to Source Leakage Current, Forward	d V _{GS} = 20 V, V _{DS} = 0 V			100	nA
cteristics (Note 2)					
	$V_{GS} = V_{DS}, I_{D} = 1 \text{ mA}$	1.2	1.9	3.0	V
Gate to Source Threshold Voltage			_		2400
Temperature Coefficient	$I_D = 10$ mA, referenced to 25 °C		-5		mV/°C
	V _{GS} = 10 V, I _D = 25 A	۹		2.4	
Static Drain to Source On Posistance	V _{GS} = 7 V, I _D = 23 A		2.0	2.6]
Static Drain to Source On Resistance	V _{GS} = 4.5 V, I _D = 21 A		2.5	3.0	mΩ
	V _{GS} = 10 V, I _D = 25 A, T _J = 125 °C		2.4	3.1	
Forward Transconductance	V _{DS} = 5 V, I _D = 25 A		455		S
· · ·	_f = 1 MHz		1550	2065	
Reverse Transfer Capacitance Gate Resistance	- f = 1 MHz		125	190	ρF Ω
Gate Resistance	-f = 1 MHz				· ·
Gate Resistance Characteristics	-f = 1 MHz		125	190	+ ·
Gate Resistance			125 0.8	190 1.7 34	Ω
Gate Resistance Characteristics Turn-On Delay Time Rise Time	V _{DD} = 15 V, I _D = 25 A,		125 0.8 19	190 1.7	Ω
Gate Resistance Characteristics Turn-On Delay Time			125 0.8 19 8	190 1.7 34 15	Ω ns ns
Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	V_{DD} = 15 V, I _D = 25 A, V _{GS} = 10 V, R _{GEN} = 6 Ω		125 0.8 19 8 40	190 1.7 34 15 65	Ω ns ns ns
Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge	$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 25 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$		125 0.8 19 8 40 5	190 1.7 34 15 65 10	Ω ns ns ns ns
Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge	$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 25 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $V_{DD} = 15 \text{ V},$		125 0.8 19 8 40 5 64 29	190 1.7 34 15 65 10 90	Ω ns ns ns ns nc
Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Total Gate Charge Gate to Source Gate Charge	$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 25 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$		125 0.8 19 8 40 5 64	190 1.7 34 15 65 10 90	Ω ns ns ns ns ns ns
Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge	$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 25 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $V_{DD} = 15 \text{ V},$		125 0.8 19 8 40 5 64 29 14.4	190 1.7 34 15 65 10 90	Ω ns ns ns nC nC nC
Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge	$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 25 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $V_{DD} = 15 \text{ V},$ $I_{D} = 25 \text{ A}$		125 0.8 19 8 40 5 64 29 14.4	190 1.7 34 15 65 10 90	Ω ns ns ns nC nC nC
Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge	$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 25 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $V_{DD} = 15 \text{ V},$		125 0.8 19 8 40 5 64 29 14.4 5.9	190 1.7 34 15 65 10 90 42	Ω ns ns ns nC nC nC
Gate Resistance Characteristics Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Gate Charge Gate to Source Gate Charge Gate to Drain "Miller" Charge	$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 25 \text{ A},$ $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$ $V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{DD} = 15 \text{ V},$ $I_{D} = 25 \text{ A}$ $V_{GS} = 0 \text{ V}, \text{ I}_{S} = 2 \text{ A}$ (Note 2)		125 0.8 19 8 40 5 64 29 14.4 5.9 0.41	190 1.7 34 15 65 10 90 42 	Ω ns ns ns nC nC nC
	Zero Gate Voltage Drain Current Gate to Source Leakage Current, Forward Cteristics (Note 2) Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient Static Drain to Source On Resistance	CoefficientPZero Gate Voltage Drain Current $V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$ Gate to Source Leakage Current, Forward $V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ cteristics (Note 2)Gate to Source Threshold VoltageGate to Source Threshold Voltage $V_{GS} = V_{DS}, I_D = 1 \text{ mA}$ Gate to Source Threshold Voltage $I_D = 10 \text{ mA}, \text{ referenced to } 25 \text{ °C}$ Temperature Coefficient $V_{GS} = 10 \text{ V}, I_D = 25 \text{ A}$ Static Drain to Source On Resistance $V_{GS} = 4.5 \text{ V}, I_D = 21 \text{ A}$ $V_{GS} = 10 \text{ V}, I_D = 25 \text{ A}, T_J = 125 \text{ °C}$ Forward Transconductance $V_{DS} = 5 \text{ V}, I_D = 25 \text{ A}$ Characteristics	Coefficient - Zero Gate Voltage Drain Current $V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$ Gate to Source Leakage Current, Forward $V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ cteristics (Note 2) - Gate to Source Threshold Voltage $V_{GS} = V_{DS}, I_D = 1 \text{ mA}$ 1.2 Gate to Source Threshold Voltage $I_D = 10 \text{ mA}, \text{ referenced to } 25 \text{ °C}$ - Gate to Source On Resistance $V_{GS} = 10 \text{ V}, I_D = 25 \text{ A}$ - Static Drain to Source On Resistance $V_{GS} = 10 \text{ V}, I_D = 25 \text{ A}$ - Forward Transconductance $V_{DS} = 5 \text{ V}, I_D = 25 \text{ A}$ - Characteristics Input Capacitance - -	CoefficientPZero Gate Voltage Drain Current $V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$ Gate to Source Leakage Current, Forward $V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ cteristics (Note 2)Gate to Source Threshold VoltageGate to Source Threshold Voltage $I_D = 10 \text{ mA}, \text{ referenced to } 25 ^{\circ}\text{C}$ Gate to Source Threshold Voltage $I_D = 10 \text{ mA}, \text{ referenced to } 25 ^{\circ}\text{C}$ Gate to Source Threshold Voltage $I_D = 10 \text{ mA}, \text{ referenced to } 25 ^{\circ}\text{C}$ Static Drain to Source On Resistance $V_{GS} = 10 \text{ V}, I_D = 25 \text{ A}$ Vos = 10 V, I_D = 25 \text{ A}, T_J = 125 ^{\circ}\text{C}2.4Forward Transconductance $V_{DS} = 5 \text{ V}, I_D = 25 \text{ A}$ CharacteristicsInput Capacitance	CoefficientPSolutionZero Gate Voltage Drain Current $V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$ 500Gate to Source Leakage Current, Forward $V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ 100cteristics (Note 2)Gate to Source Threshold Voltage Temperature Coefficient $V_{GS} = V_{DS}, I_D = 1 \text{ mA}$ 1.21.93.0Gate to Source Threshold Voltage Temperature Coefficient $V_{GS} = 10 \text{ V}, I_D = 25 \text{ A}$ 1.92.4 $V_{GS} = 10 \text{ V}, I_D = 25 \text{ A}$ 1.92.4 $V_{GS} = 7 \text{ V}, I_D = 23 \text{ A}$ 2.02.6V_{GS} = 10 \text{ V}, I_D = 25 \text{ A}2.53.0 $V_{GS} = 10 \text{ V}, I_D = 25 \text{ A}$ 2.53.0Forward Transconductance $V_{DS} = 5 \text{ V}, I_D = 25 \text{ A}$ 4554555CharacteristicsInput CapacitanceInput Capacitance46006120

2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.


2

3. E_{AS} of 128 mJ is based on starting T_J = 25 °C, L = 1 mH, I_{AS} = 16 A, V_{DD} = 27 V, V_{GS} = 10 V. 100% test at L = 0.3 mH, I_{AS} = 25 A. 4. As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied.

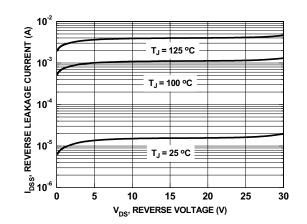

00000

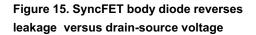
FDMS0352S Rev.C1

FDMS0352S N-Channel PowerTrench[®] SyncFETTM

FDMS0352S N-Channel PowerTrench[®] SyncFETTM

Typical Characteristics (continued)


SyncFET Schottky body diode Characteristics


Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MoSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 14 shows the reverses recovery characteristic of the FDMS0352S.

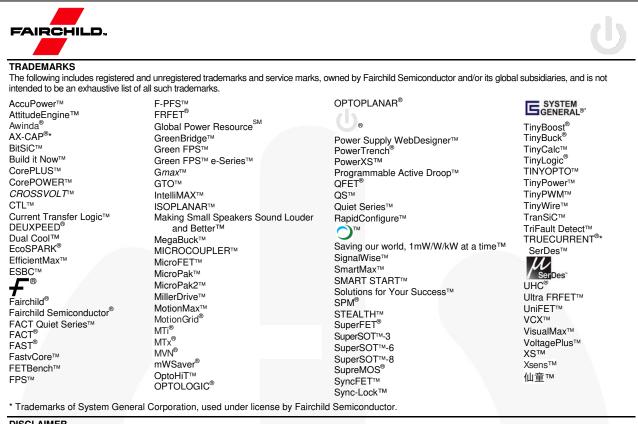

30 25 20 di/dt = 300 A/µs CURRENT (A) 15 10 5 0 -5 0 50 100 150 200 250 TIME (ns)

Figure 14. FDMS0352S SyncFET body diode reverse recovery characteristic

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE HILDSEMI.COM. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.