

μ PD48576109 μ PD48576118

576M-BIT Low Latency DRAM Separate I/O

R10DS0064EJ0300 Rev.3.00 Oct 01, 2012

Description

The μ PD48576109 is a 67,108,864-word by 9 bit and the μ PD48576118 is a 33,554,432 word by 18 bit synchronous double data rate Low Latency RAM fabricated with advanced CMOS technology using one-transistor memory cell.

The μ PD48576109 and μ PD48576118 integrate unique synchronous peripheral circuitry and a burst counter. All input registers controlled by an input clock pair (CK and CK#) are latched on the positive edge of CK and CK#. These products are suitable for application which require synchronous operation, high speed, low voltage, high density and wide bit configuration.

Specification

• Density: 576M bit

• Organization

Separate I/O: 8M words x 9 bits x 8 banks
 4M words x 18 bits x 8 banks

• Operating frequency: 533 / 400 / 300 MHz

• Interface: HSTL I/O

• Package: 144-pin TAPE FBGA

Package size: 18.5 x 11
 Leaded and Lead free

• Power supply

- 2.5 V VEXT

- 1.8 V V_{DD}

- 1.5 V or 1.8 V V_{DD}Q

· Refresh command

Auto Refresh

- 16K cycle / 32 ms for each bank

- 128K cycle / 32 ms for total

• Operating case temperature : Tc = 0 to $95^{\circ}C$

Features

- SRAM-type interface
- Double-data-rate architecture
- PLL circuitry

• Cycle time: 1.875 ns (a) trc = 15 ns

2.5 ns @ $t_{RC} = 15$ ns 2.5 ns @ $t_{RC} = 20$ ns 3.3 ns @ $t_{RC} = 20$ ns

- Non-multiplexed addresses
- Multiplexing option is available.
- Data mask for WRITE commands
- Differential input clocks (CK and CK#)
- Differential input data clocks (DK and DK#)
- Data valid signal (QVLD)
- \bullet Programmable burst length: 2/4/8 (x9/x18)
- User programmable impedance output (25 Ω 60 Ω)
- JTAG boundary scan

Ordering Information

Part number	Cycle Time	Clock Frequency	Random Cycle	Organization (word x bit)	Core Supply Voltage (V _{EXT})	Core Supply Voltage (V _{DD})	Output Supply Voltage (VDDQ)	Package
	ns	MHz	ns		V	v	v	
μPD48576109FF-E18-DW1-A	1.875	533	15	64 M x 9	2.5 + 0.13	1.8 ± 0.1	1.5 ± 0.1	144-pin
μPD48576109FF-E24-DW1-A	2.5	400	15		2.5 – 0.12		or	TAPE FBGA
μPD48576109FF-E25-DW1-A	2.5	400	20				1.8 ± 0.1	(18.5 x 11)
μPD48576109FF-E33-DW1-A	3.3	300	20					
μPD48576118FF-E18-DW1-A	1.875	533	15	32 M x 18				Lead-free
μPD48576118FF-E24-DW1-A	2.5	400	15					
μPD48576118FF-E25-DW1-A	2.5	400	20					
μPD48576118FF-E33-DW1-A	3.3	300	20					
μPD48576109FF-E18-DW1	1.875	533	15	64 M x 9	2.5 + 0.13	1.8 ± 0.1	1.5 ± 0.1	144-pin
μPD48576109FF-E24-DW1	2.5	400	15		2.5 – 0.12		or	TAPE FBGA
μPD48576109FF-E25-DW1	2.5	400	20				1.8 ± 0.1	(18.5 x 11)
μPD48576109FF-E33-DW1	3.3	300	20					
μPD48576118FF-E18-DW1	1.875	533	15	32 M x 18	1			Lead
μPD48576118FF-E24-DW1	2.5	400	15					
μPD48576118FF-E25-DW1	2.5	400	20					
μPD48576118FF-E33-DW1	3.3	300	20					

Pin Arrangement

indicates active LOW signal.

144-pin TAPE FBGA (18.5 x 11) (Top View) [Separate I/O x9]

	1	2	3	4	5	6	7	8	9	10	11	12
Α	VREF	Vss	V EXT	Vss					Vss	V EXT	TMS	тск
В	V _{DD}	Note 3 DNU	Note 3 DNU	VssQ					VssQ	Q0	D0	V DD
С	V TT	Note 3 DNU	Note 3 DNU	V _{DD} Q					V _{DD} Q	Q1	D1	V тт
D	Note 1 (A22)	Note 3 DNU	Note 3 DNU	VssQ					VssQ	QK0#	QK0	Vss
E	A21	Note 3 DNU	Note 3 DNU	V _{DD} Q					VDDQ	Q2	D2	A20
F	A 5	Note 3 DNU	Note 3 DNU	VssQ					VssQ	Q3	D3	QVLD
G	A8	A6	A 7	V DD					V _{DD}	A2	A 1	A0
Н	BA2	A 9	Vss	Vss					Vss	Vss	A4	А3
J	Note 2 NF	Note 2 NF	V DD	V DD					V DD	V DD	BA0	СК
K	DK	DK#	V DD	V DD					V DD	V DD	BA1	CK#
L	REF#	CS#	Vss	Vss					Vss	Vss	A14	A13
М	WE#	A16	A17	V DD					V DD	A12	A11	A10
N	A18	Note 3 DNU	Note 3 DNU	VssQ					VssQ	Q4	D4	A19
Р	A15	Note 3 DNU	Note 3 DNU	V _{DD} Q					VDDQ	Q5	D5	DM
R	Vss	Note 3 DNU	Note 3 DNU	VssQ					V ss Q	Q6	D6	Vss
Т	V TT	Note 3 DNU	Note 3 DNU	V _{DD} Q					VDDQ	Q7	D7	V TT
U	V DD	Note 3 DNU	Note 3 DNU	VssQ					VssQ	Q8	D8	V DD
٧	VREF	ZQ	V EXT	Vss					Vss	V EXT	TDO	TDI

- **Notes 1.** Reserved for future use. This signal is internally connected and has parasitic characteristics of an address input signal. This may optionally be connected to Vss, or left open.
 - 2. No function. This signal is internally connected and has parasitic characteristics of a clock input signal. This may optionally be connected to Vss, or left open.
 - $\bf 3.$ Do not use. This signal is internally connected and has parasitic characteristics of a I/O. This may optionally be connected to Vss.

CK, CK#	: Input clock	ZQ	: Output impedance matching
CS#	: Chip select	TMS	: IEEE 1149.1 Test input
WE#	: WRITE command	TDI	: IEEE 1149.1 Test input
REF#	: Refresh command	TCK	: IEEE 1149.1 Clock input
A0-A21	: Address inputs	TDO	: IEEE 1149.1 Test output
A22	: Reserved for the future	$ m V_{REF}$: HSTL input reference input
BA0-BA2	: Bank address input	$V_{ ext{EXT}}$: Power Supply
D0-D8	: Data input	$ m V_{DD}$: Power Supply
Q0–Q8	: Data output	$V_{\mathrm{DD}}Q$: DQ Power Supply
DK, DK#	: Input data clock	V_{SS}	: Ground
DM	: Input data Mask	VssQ	: DQ Ground
QK0, QK0#	: Output data clock	\mathbf{V}_{TT}	: Power Supply
QVLD	: Data Valid	NF	: No function
		DNU	: Do not use

indicates active LOW signal.

144-pin TAPE FBGA (18.5 x 11) (Top View) [Separate I/O x18]

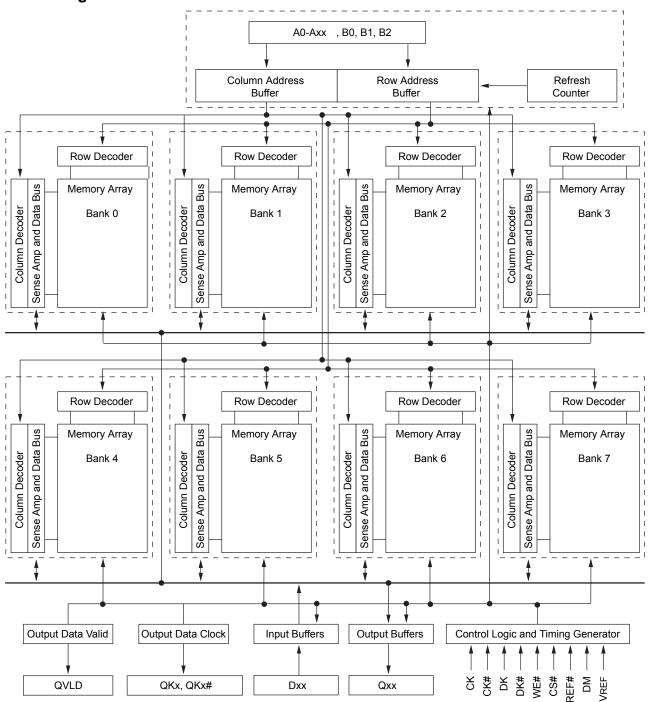
	1	2	3	4	5	6	7	8	9	10	11	12
Α	VREF	V ss	V EXT	V ss					Vss	V EXT	TMS	TCK
В	V _{DD}	D4	Q4	VssQ					VssQ	Q0	D0	V DD
С	V TT	D5	Q5	V _{DD} Q					V _{DD} Q	Q1	D1	V тт
D	Note 1 (A22)	D6	Q6	VssQ					VssQ	QK0#	QK0	Vss
E	Note 1 (A21)	D7	Q7	V _{DD} Q					VDDQ	Q2	D2	A20
F	A 5	D8	Q8	VssQ					VssQ	Q3	D3	QVLD
G	A8	A6	A 7	V DD					V DD	A2	A 1	A0
н	BA2	A9	Vss	Vss					Vss	Vss	A 4	А3
J	Note 2	Note 2	V DD	V DD					V DD	V DD	BA0	СК
K	DK	DK#	V DD	V DD					V DD	V DD	BA1	CK#
L	REF#	CS#	Vss	Vss					Vss	Vss	A14	A13
М	WE#	A16	A17	V DD					V DD	A12	A11	A10
N	A18	D14	Q14	VssQ					VssQ	Q9	D9	A19
Р	A15	D15	Q15	V _{DD} Q					VDDQ	Q10	D10	DM
R	Vss	QK1	QK1#	VssQ					VssQ	Q11	D11	Vss
Т	V TT	D16	Q16	VDDQ					VDDQ	Q12	D12	VTT
U	V DD	D17	Q17	VssQ					VssQ	Q13	D13	V DD
V	VREF	ZQ	V EXT	Vss					V ss	V EXT	TDO	TDI

Notes 1. Reserved for future use. This signal is internally connected and has parasitic characteristics of an address input signal. This may optionally be connected to Vss, or left open.

2. No function. This signal is internally connected and has parasitic characteristics of a clock input signal. This may optionally be connected to Vss, or left open.

CK, CK#	: Input clock	ZQ	: Output impedance matching
CS#	: Chip select	TMS	: IEEE 1149.1 Test input
WE#	: WRITE command	TDI	: IEEE 1149.1 Test input
REF#	: Refresh command	TCK	: IEEE 1149.1 Clock input
A0-A20	: Address inputs	TDO	: IEEE 1149.1 Test output
A21-A22	: Reserved for the future	V_{REF}	: HSTL input reference input
BA0-BA2	: Bank address input	V_{EXT}	: Power Supply
D0-D17	: Data input	$V_{ m DD}$: Power Supply
Q0-Q17	: Data output	$V_{\mathrm{DD}}Q$: DQ Power Supply
DK, DK#	: Input data clock	V_{ss}	: Ground
DM	: Input data Mask	VssQ	: DQ Ground
QK0-QK1,QK0#-QK1#	: Output data clock	V_{TT}	: Power Supply
QVLD	: Data Valid	NF	: No function

Pin Description


(1/2)

Symbol	Туре	Description
CK, CK#	Input	Clock inputs:
		CK and CK# are differential clock inputs. This input clock pair registers address and control inputs on the rising edge of CK. CK# is ideally 180 degrees out of phase with CK.
CS#	Input	Chip select
		CS# enables the commands when CS# is LOW and disables them when CS# is HIGH. When the
		command is disabled, new commands are ignored, but internal operations continue.
WE#, REF#	Input	WRITE command pin, Refresh command pin:
		WE#, REF# are sampled at the positive edge of CK, WE#, and REF# define (together with CS#) the command to be executed.
A0-A21	Input	Address inputs:
		A0–A21 define the row and column addresses for READ and WRITE operations. During a MODE REGISTER SET, the address inputs define the register settings. They are sampled at the rising edge of CK.
		In the x18 configuration, A21 is reserved for address expansion. This expansion address can be treated as address input, but it does not affect the operation of the device.
A22	Input	Reserved for future use:
		These signals should be tied to Vss or leave open.
BA0-BA2	Input	Bank address inputs;
		Select to which internal bank a command is being applied.
D0-Dxx	Input	Data input:
		The D signals form the 18-bit input data bus. During WRITE commands, the data is referenced to both edges of DK.
		x 9 device uses D0 to D8.
		x18 device uses D0 to D17.
Q0–Qxx	Output	Data output:
		The Q signals form the 18-bit output data bus. During READ commands, the data is referenced to both edges of QK.
		x 9 device uses Q0 to Q8.
		x18 device uses Q0 to Q17.
QKx, QKx#	Output	Output data clocks:
		QKx and QKx# are opposite polarity, output data clocks. They are always free running and edge- aligned with data output from the μ PD48576109/18. QKx# is ideally 180 degrees out of phase with QKx.
		For the x18 device, QK0 and QK0# are aligned with Q0–Q8. QK1 and QK1# are aligned with Q9–Q17. For the x9 device, QK0 and QK0# are aligned with Q0–Q8.
DK, DK#	Input	Input data clock;
		DK and DK# are the differential input data clocks. All input data is referenced to both edges of DK. DK# is ideally 180 degrees out of phase with DK.
		In both x9 and x18 configurations, all Ds are referenced to DK and DK#.
DM	Input	Input data mask;
		The DM signal is the input mask signal for WRITE data. Input data is masked when DM is sampled HIGH along with the WRITE input data. DM is sampled on both edges of DK. The signal should be Vss if not used.
QVLD	Output	Data valid;
		The QVLD indicates valid output data. QVLD is edge-aligned with QKx and QKx#.

(2/2)

Symbol	Type	Description
ZQ	Input	External impedance [25 Ω – 60 Ω];
	/Output	This signal is used to tune the device outputs to the system data bus impedance. Q output impedance is set to 0.2 x RQ, where RQ is a resistor from this signal to Vss. Connecting ZQ to Vss invokes the minimum impedance mode. Connecting ZQ to VppQ invokes the maximum impedance mode. Refer to Figure 2-5. Mode Register Bit Map to activate this function.
TMS, TDI	Input	JTAG function pins:
		IEEE 1149.1 test inputs: These balls may be left as no connects if the JTAG function is not used in the circuit
TCK	Input	JTAG function pin;
		IEEE 1149.1 clock input: This ball must be tied to Vss if the JTAG function is not used in the circuit.
TDO	Output	JTAG function pin;
		IEEE 1149.1 test output: JTAG output.
		This ball may be left as no connect if JTAG function is not used.
V _{REF}	Input	Input reference voltage;
		Nominally VDDQ/2. Provides a reference voltage for the input buffers.
VEXT	Supply	Power supply;
		2.5 V nominal. See Recommended DC Operating Conditions for range.
V_{DD}	Supply	Power supply;
		1.8 V nominal. See Recommended DC Operating Conditions for range.
$V_{DD}Q$	Supply	DQ power supply;
		Nominally, 1.5 V or 1.8 V. Isolated on the device for improved noise immunity.
		See Recommended DC Operating Conditions for range.
Vss	Supply	Ground
VssQ	Supply	DQ ground;
		Isolated on the device for improved noise immunity.
VTT	Supply	Power supply;
		Isolated termination supply. Nominally, VDDQ/2. See Recommended DC Operating Conditions for range.
NF		No function;
		These balls may be connected to Vss.
DNU		Do not use;
		These balls may be connected to Vss.

Block Diagram

Contents

1.	Electrica	al Characteristics	9
2.	Operatio	n	16
۷.		ommand Operation	
		escription of Commands	
		•	
		itialization	
		ower-On Sequence	
		ogrammable Impedance Output Buffer	
		L Reset	
		ock Input	
		ode Register Set Command (MRS)	
	2.9 R	ead & Write configuration (Non Multiplexed Address Mode)	21
	2.10 W	rite Operation (WRITE)	22
	2.11 R	ead Operation (READ)	25
	2.12 R	efresh Operation: AUTO REFRESH Command (AREF)	30
	2.13 O	n-Die Termination	31
	2.14 O	peration with Multiplexed Address	33
		ddress Mapping in Multiplexed Mode	
		ead & Write configuration in Multiplexed Address Mode	
		efresh Command in Multiplexed Address Mode	
		put Slew Rate Derating	
3.	JTAG S	pecification	42
4.	Packag	e Dimension	49
5	Recom	mended Soldering Condition	50

1. Electrical Characteristics

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage	V_{EXT}		-0.3 to +2.8	V
Supply voltage	V_{DD}		-0.3 to +2.1	V
Output supply voltage,	$V_{DD}Q$		-0.3 to +2.1	V
Input voltage, Input / Output voltage				
Input / Output voltage	V _{IH} / V _{IL}		-0.3 to +2.1	V
Junction temperature	T _j MAX.		110	°C
Storage temperature	T _{stg}		–55 to +125	°C

Caution Exposing the device to stress above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational section of this specification. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Recommended DC Operating Conditions

 $0^{\circ}C \le T_C \le 95^{\circ}C$; $1.7 \text{ V} \le V_{DD} \le 1.9 \text{ V}$, unless otherwise noted.

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Note
Supply voltage	VEXT		2.38	2.5	2.63	V	1
Supply voltage	V _{DD}		1.7	1.8	1.9	V	1
Output supply voltage	V _{DD} Q		1.4		V _{DD}	V	1, 2, 3
Reference Voltage	VREF		0.49 x V _{DD} Q	0.5 x VddQ	0.51 x V _{DD} Q	V	1, 4, 5
Termination voltage	VTT		0.95 x V _{REF}	VREF	1.05 x VREF	V	1, 6
Input HIGH voltage	VIH (DC)		V _{REF} + 0.1			V	1
Input LOW voltage	VIL (DC)				VREF - 0.1	V	1

Notes 1. All voltage referenced to Vss (GND).

- 2. During normal operation, VDDQ must not exceed VDD.
- 3. V_{DD}Q can be set to a nominal 1.5 V \pm 0.1 V or 1.8 V \pm 0.1 V supply.
- **4.** Typically the value of VREF is expect to be 0.5 x VDDQ of the transmitting device. VREF is expected to track variations in VDDQ.
- **5.** Peak-to-peak AC noise on V_{REF} must not exceed $\pm 2\%$ $V_{REF}(DC)$.
- 6. V_{TT} is expected to be set equal to V_{REF} and must track variations in the DC level of V_{REF}.

DC Characteristics

 $0^{\circ}C \leq T_{C} \leq 95^{\circ}C; \;\; 1.7 \; V \leq V_{DD} \leq 1.9 \; V, \; unless \; otherwise \; noted$

Parameter	Symbol	Test condition	MIN.	MAX.	Unit	Note
Input leakage current	lu		– 5	+5	μΑ	1,2
Output leakage current	ILO		– 5	+5	μΑ	1,2
Reference voltage current	IREF		- 5	+5	μΑ	1,2
Output high current	Іон	$V_{OH} = V_{DD}Q/2$	(V _{DD} Q/2) / (1.15 x RQ/5)	(V _{DD} Q/2) / (0.85 x RQ/5)	mA	3,4
Output low current	Іоь	Vol = VDDQ/2	(V _{DD} Q/2) / (1.15 x RQ/5)	(V _{DD} Q/2) / (0.85 x RQ/5)	mA	3,4

Notes 1. Outputs are impedance-controlled. $| \text{IoH} | = (\text{V}_{\text{DD}}\text{Q}/2)/(\text{RQ}/5)$ for values of $125 \Omega \le \text{RQ} \le 300 \Omega$.

- 2. Outputs are impedance-controlled. IoL = $(V_{DD}Q/2)/(RQ/5)$ for values of 125 $\Omega \le RQ \le 300 \Omega$.
- 3. IoH and IoL are defined as absolute values and are measured at VDDQ/2. IoH flows from the device, IoL flows into the device.
- 4. If MRS bit A8 is 0, use RQ = 250 Ω in the equation in lieu of presence of an external impedance matched resistor.

Capacitance (TA = 25 °C, f = 1MHz)

Parameter	Symbol	Test conditions	MIN.	MAX.	Unit
Address / Control Input capacitance	Cin	V _{IN} = 0 V	1.5	2.5	pF
I/O, Output, Other capacitance	C _{I/O}	V _{1/O} = 0 V	3.5	5.0	pF
(D, Q, DM, QK, QVLD)					
Clock Input capacitance	Cclk	V _{clk} = 0 V	2.0	3.0	pF
JTAG pins	Сл	V _J = 0 V	2.0	5.0	pF

Remark These parameters are periodically sampled and not 100% tested.

Capacitance is not tested on ZQ pin.

Recommended AC Operating Conditions

 $0^{\circ}C \leq TC \leq 95^{\circ}C; ~1.7~V \leq V_{DD} \leq 1.9~V,$ unless otherwise noted

Parameter	Symbol	Conditions	MIN.	MAX.	Unit	Note
Input HIGH voltage	VIH (AC)		V _{REF} + 0.2		٧	1
Input LOW voltage	VIL (AC)			V _{REF} – 0.2	٧	1

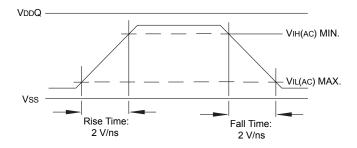
Note 1. Overshoot: $V_{IH(AC)} \le V_{DD}Q + 0.7 \text{ V for } t \le t_{CK}/2$

Undershoot: $V_{\text{IL}(AC)} \ge -0.5 \text{ V for } t \le t_{\text{CK}}/2$

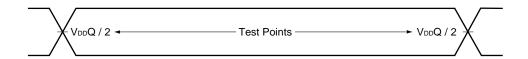
Control input signals may not have pulse widths less than tckh (MIN.) or operate at cycle rates less than tck (MIN.).

DC Characteristics

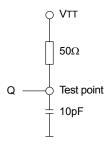
 $I_{\text{DD}}\,/\,I_{\text{SB}}$ Operating Conditions


Parameter	Symbol	Test condition		MA	X.		Unit	
				-E18	-E24	-E25	-E33	
Standby current	I _{SB1}	tck = Idle	V _{DD}	55	55	55	55	mA
		All banks idle, no inputs toggling	VEXT	5	5	5	5	
Active standby	I _{SB2}	CS# = HIGH, No commands, half bank / address /	V _{DD}	250	215	215	190	mA
current		data change once every four clock cycles	VEXT	5	5	5	5	
Operating current	I _{DD1}	BL=2, sequential bank access, bank transitions	V _{DD}	390	331	321	291	mA
		once every tRc, half address transitions once						
		every t _{RC} , read followed by write sequence,	VEXT	10	10	10	10	
		continuous data during WRITE commands.						
Operating current	I _{DD2}	BL=4, sequential bank access, bank transitions	V _{DD}	422	367	357	336	mA
		once every t _{RC} , half address transitions once						
		every t _{RC} , read followed by write sequence,	VEXT	10	10	10	10	
		continuous data during WRITE commands.						
Operating current	I _{DD3}	BL=8, sequential bank access, bank transitions	V _{DD}	439	381	371	350	mA
		once every $t_{\mbox{\scriptsize RC}},$ half address transitions once						
		every t _{RC} , read followed by write sequence,	VEXT	15	15	15	15	
		continuous data during WRITE commands.						
Burst refresh	IREF1	Eight bank cyclic refresh, continuous	V _{DD}	692	540	540	419	mA
current		address/data, command bus remains in refresh	VEXT	45	30	30	25	
		for all banks						
Disturbed	IREF2	Single bank refresh, sequential bank access,	V _{DD}	286	265	260	194	mA
refresh current		half address transitions once every t _{RC} ,	VEXT	10	10	10	10	
		continuous data						
Operating burst	I _{DD2W}	BL=2, cyclic bank access, half of address bits	V _{DD}	1078	872	872	716	mA
write current		change every clock cycle, continuous data,	VEXT	40	35	35	30	
		measurement is taken during continuous WRITE						
Operating burst	IDD4W	BL=4, cyclic bank access, half of address bits	V _{DD}	784	645	645	538	mA
write current		change every two clocks, continuous data,	VEXT	25	20	20	20	
		measurement is taken during continuous WRITE						
Operating burst	IDD8W	BL=8, cyclic bank access, half of address bits	V _{DD}	625	520	520	442	mA
write current		change every four clocks, continuous data,	VEXT	25	20	20	20	
		measurement is taken during continuous WRITE						
Operating burst	IDD2R	BL=2, cyclic bank access, half of address bits	V _{DD}	949	735	735	566	mA
read current		change every clock cycle, measurement is taken	VEXT	40	35	35	30	
		during continuous READ						
Operating burst	I _{DD4R}	BL=4, cyclic bank access, half of address bits	V _{DD}	659	503	503	400	mA
read current		change every two clocks, measurement is taken	VEXT	25	20	20	20	
		during continuous READ						
Operating burst	IDD8R	BL=8, cyclic bank access, half of address bits	V _{DD}	497	389	389	308	mA
read current		change every four clocks, measurement is taken	VEXT	25	20	20	20	
		during continuous READ						

- **Remarks 1.** Idd specifications are tested after the device is properly initialized. $0^{\circ}\text{C} \le \text{Tc} \le 95^{\circ}\text{C}$; $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 1.9 \text{ V}$, $2.38 \text{ V} \le \text{V}_{\text{EXT}} \le 2.63 \text{ V}$, $1.4 \text{ V} \le \text{V}_{\text{DD}} Q \le \text{V}_{\text{DD}}$, $V_{\text{REF}} = V_{\text{DD}} Q/2$
 - **2.** $t_{CK} = t_{DK} = MIN.$, $t_{RC} = MIN.$
 - Input slew rate is specified in Recommended DC Operating Conditions and Recommended AC Operating Conditions.
 - **4.** IDD parameters are specified with ODT disabled.
 - **5.** Continuous data is defined as half the D or Q signals changing between HIGH and LOW every half clock cycles (twice per clock).
 - **6.** Continuous address is defined as half the address signals between HIGH and LOW every clock cycles (once per clock).
 - 7. Sequential bank access is defined as the bank address incrementing by one ever trc.
 - **8.** Cyclic bank access is defined as the bank address incrementing by one for each command access. For BL=4 this is every other clock.
 - **9.** CS# is HIGH unless a READ, WRITE, AREF, or MRS command is registered. CS# never transitions more than per clock cycle.


AC Characteristics

AC Test Conditions


Input waveform

Output waveform

Output load condition

AC Characteristics < Read and Write Cycle>

Parameter	Symbol	-E	18	-E	24	-E	25	-Е	33	Unit	Note
		(533	MHz)	(400 I	MHz)	(400 I	MHz)	(300	MHz)		
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Clock											
Clock cycle time (CK,CK#,DK,DK#)	tck, tok	1.875	5.7	2.5	5.7	2.5	5.7	3.3	5.7	ns	
Clock frequency (CK,CK#,DK,DK#)	tck, tok	175	533	175	400	175	400	175	300	MHz	
Random Cycle time	t RC	15		15		20		20		ns	
Clock Jitter: period	t JIT PER	-100	100	-150	150	-150	150	-200	200	ps	1, 2
Clock Jitter: cycle-to-cycle	t JIT CC		200		300		300		400	ps	
Clock HIGH time (CK,CK#,DK,DK#)	t скн, t дкн	0.45	0.55	0.45	0.55	0.45	0.55	0.45	0.55	Cycle	
Clock LOW time (CK,CK#,DK,DK#)	tckl, tdkl	0.45	0.55	0.45	0.55	0.45	0.55	0.45	0.55	Cycle	
Clock to input data clock	tckdk	-0.3	0.3	-0.45	0.5	-0.45	0.5	-0.45	1.0	ns	
Mode register set cycle time	tmrsc	6		6		6		6		Cycle	
to any command											
PLL Lock time	tCK Lock	15		15		15		15		μs	
Clock static to PLL reset	tCK Reset	30		30		30		30		ns	
Output Times											
Output data clock HIGH time	tqкн	0.9	1.1	0.9	1.1	0.9	1.1	0.9	1.1	tскн	
Output data clock LOW time	t QKL	0.9	1.1	0.9	1.1	0.9	1.1	0.9	1.1	t ckL	
QK edge to clock edge skew	tскак	-0.2	0.2	-0.25	0.25	-0.25	0.25	-0.3	0.3	ns	
QK edge to output data edge	t акао, t ака1	-0.12	0.12	-0.2	0.2	-0.2	0.2	-0.25	0.25	ns	3, 5
QK edge to any output data	t aka	-0.22	0.22	-0.3	0.3	-0.3	0.3	-0.35	0.35	ns	4, 5
QK edge to QVLD	t QKVLD	-0.22	0.22	-0.3	0.3	-0.3	0.3	-0.35	0.35	ns	
Setup Times											
Address/command and input	tas/tcs	0.3		0.4		0.4		0.5		ns	
Data-in and data mask to DK	tos	0.17		0.25		0.25		0.3		ns	
Hold Times											
Address/command and input	taн/tcн	0.3		0.4		0.4		0.5		ns	
Data-in and data mask to DK	tон	0.17		0.25		0.25		0.3		ns	

Notes 1. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge.

- **2.** Frequency drift is not allowed.
- 3. t_{QKQ0} is referenced to Q0–Q8 and t_{QKQ1} is referenced to Q9–Q17 for a x18 device. For a x9 device, Q0–Q8 are referenced to t_{QKQ0} .
- 4. t_{QKQ} takes into account the skew between any QKx and any Q.
- 5. toko, tokox are guaranteed by design.

Remark All timing parameters are measured relative to the crossing point of CK/CK#, DK/DK# and to the crossing point with V_{REF} of the command, address, and data signals.

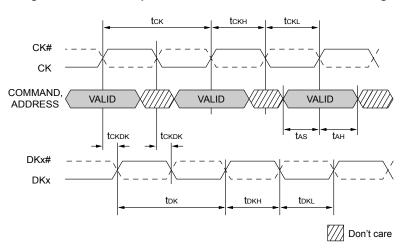


Figure 1-1. Clock / Input Data Clock Command / Address Timings

Temperature and Thermal Impedance

Temperature Limits

Parameter	Symbol	MIN.	MAX.	Unit	Note
Reliability junction temperature	TJ	0	+110	°C	1
Operating junction temperature	TJ	0	+100	°C	2
Operating case temperature	Tc	0	+95	°C	3

- **Notes 1.** Temperatures greater than 110°C may cause permanent damage to the device. This is a stress rating only and functional operation of the device at or above this is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability of the part.
 - 2. Junction temperature depends upon cycle time, loading, ambient temperature, and airflow.
 - **3.** MAX operating case temperature; Tc is measured in the center of the package. Device functionality is not guaranteed if the device exceeds maximum Tc during operation.

Thermal Impedance

Substrate	Ball		θja (°C/ W)		θjb	θјс
		Air Flow = 0 m/s	Air Flow = 1 m/s	Air Flow = 2 m/s	(°C/ W)	(°C/ W)
4 - Layer	Lead	21.49	17.33	16.15	10.29	1.22
4 - Layer	Lead free	21.32	17.18	16.01	10.13	1.22

2. Operation

2.1 Command Operation

According to the functional signal description, the following command sequences are possible. All input states or sequences not shown are illegal or reserved. All command and address inputs must meet setup and hold times around the rising edge of CK.

Table 2-1. Address Widths at Different Burst Lengths

Burst Length	Configuration						
	х9	x18					
BL=2	A0-A21	A0-A20					
BL=4	A0-A20	A0–A19					
BL=8	A0-A19	A0-A18					

Table 2-2. Command Table

Operation	Code	CS#	WE#	REF#	A0–An ^{Note1}	BA0-BA2	Note
Device DESELECT / No Operation	DESEL / NOP	Η	Х	Х	Х	Х	
MRS: Mode Register Set	MRS	L	L	L	OPCODE	Х	2
READ	READ	L	Н	Н	А	ВА	3
WRITE	WRITE	L	L	Н	Α	ВА	3
AUTO REFRESH	AREF	L	Н	L	Х	ВА	

Notes 1. n = 21.

- 2. Only A0-A17 are used for the MRS command.
- 3. See Table 2-1.

Remark X = "Don't Care", H = logic HIGH, L = logic LOW, A = valid address, BA = valid bank address

2.2 Description of Commands

DESEL / NOP Note1

The NOP command is used to perform a no operation to the μ PD48576209/18/36, which essentially deselects the chip. Use the NOP command to prevent unwanted commands from being registered during idle or wait states. Operations already in progress are not affected. Output values depend on command history.

MRS

The mode register is set via the address inputs A0–A17. See **Figure 2-5. Mode Register Bit Map** for further information. The MRS command can only be issued when all banks are idle and no bursts are in progress.

READ

The READ command is used to initiate a burst read access to a bank. The value on the BA0–BA2 inputs selects the bank, and the address provided on inputs A0–A21 selects the data location within the bank.

WRITE

The WRITE command is used to initiate a burst write access to a bank. The value on the BA0–BA2 inputs selects the bank, and the address provided on inputs A0–A21 selects the data location within the bank. Input data appearing on the D is written to the memory array subject to the DM input logic level appearing coincident with the data. If the DM signal is registered LOW, the corresponding data will be written to memory. If the DM signal is registered HIGH, the corresponding data inputs will be ignored (i.e., this part of the data word will not be written).

AREF

The AREF is used during normal operation of the μ PD48576109/18 to refresh the memory content of a bank. The command is non-persistent, so it must be issued each time a refresh is required. The value on the BA0–BA2 inputs selects the bank. The refresh address is generated by an internal refresh controller, effectively making each address bit a "Don't Care" during the AREF command. The μ PD48576109/18 requires 64K cycles at an average periodic interval of 0.244 μ s Note2 (MAX.). To improve efficiency, eight AREF commands (one for each bank) can be posted to μ PD48576109/18 at periodic intervals of 1.95 μ s Note3.

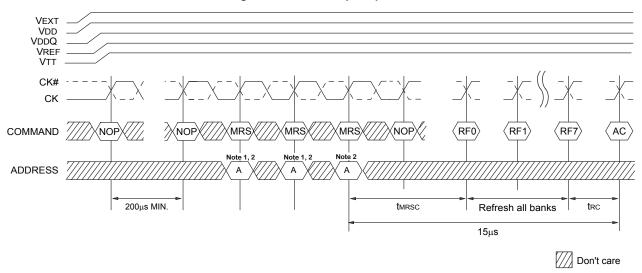
Within a period of 32 ms, the entire memory must be refreshed. The delay between the AREF command and a subsequent command to same bank must be at least tro as continuous refresh. Other refresh strategies, such as burst refresh, are also possible.

Notes 1. When the chip is deselected, internal NOP commands are generated and no commands are accepted.

- **2.** Actual refresh is 32 ms / 16k / $8 = 0.244 \mu s$.
- 3. Actual refresh is 32 ms / $16k = 1.95 \mu s$.

2.3 Initialization

The μ PD48576109/18 must be powered up and initialized in a predefined manner. Operational procedures other than those specified may result in undefined operations or permanent damage to the device. The following sequence is used for Power-Up:


1. Apply power (Vext, Vdd, Vdd, Vref, Vtt) and start clock as soon as the supply voltages are stable. Apply Vdd and Vext before or at the same time as Vdd. Apply Vdd before or at the same time as Vref and Vtt. Although there is no timing relation between Vext and Vdd, the chip starts the power-up sequence only after both voltages are at their nominal levels. Vdd supply must not be applied before Vdd supply. CK/CK# must meet Vdd(DC) prior to being applied. Maintain all remaining balls in NOP conditions.

Note No rule of apply power sequence is the design target.

- 2. Maintain stable conditions for 200 μ s (MIN.).
- **3.** Issue at least three or more consecutive MRS commands: two dummies or more plus one valid MRS. It is recommended that all address pins are held LOW during the dummy MRS commands.
- **4.** tmrsc after valid MRS, an AUTO REFRESH command to all 8 banks must be issued and wait for 15 μs with CK/CK# toggling in order to lock the PLL prior to normal operation.
- **5.** After tRC, the chip is ready for normal operation.

2.4 Power-On Sequence

Figure 2-1. Power-Up Sequence

Notes 1. Recommended all address pins held LOW during dummy MRS commands.

2. A10-A17 must be LOW.

Remark MRS: MRS command

RFp: REFRESH bank p

AC : Any command

2.5 Programmable Impedance Output Buffer

The μ PD48576109/18 is equipped with programmable impedance output buffers. This allows a user to match the driver impedance to the system. To adjust the impedance, an external precision resistor (RQ) is connected between the ZQ ball and Vss. The value of the resistor must be five times the desired impedance. For example, a 300 Ω resistor is required for an output impedance of 60 Ω . To ensure that output impedance is one fifth the value of RQ (within 15 percent), the range of RQ is 125 Ω to 300 Ω . Output impedance updates may be required because, over time, variations may occur in supply voltage and temperature. The device samples the value of RQ. An impedance update is transparent to the system and does not affect device operation. All data sheet timing and current specifications are met during an update.

2.6 PLL Reset

The μ PD48576109/18 utilizes internal Phase-locked loops for maximum output, data valid windows. It can be placed into a stopped-clock state to minimize power with a modest restart time of 15 μ s. The clock (CK/CK#) must be toggled for 15 μ s in order to stabilize PLL circuits for next READ operation.

2.7 Clock Input

Table 2-3. Clock Input Operation Conditions

Parameter	Symbol	Conditions	MIN.	MAX.	Unit	Note
Clock Input Voltage Level	VIN (DC)	CK and CK#	-0.3	V _{DD} Q + 0.3	V	
Clock Input Differential Voltage Level	VID (DC)	CK and CK#	0.2	V _{DD} Q + 0.6	٧	8
Clock Input Differential Voltage Level	VID (AC)	CK and CK#	0.4	V _{DD} Q + 0.6	V	8
Clock Input Crossing Point Voltage Level	VIX (AC)	CK and CK#	V _{DD} Q/2 - 0.15	V _{DD} Q/2 + 0.15	V	9

VIN(DC) MAX.

CK#

VDDQ/2 + 0.15

VDDQ/2 - 0.15

VIX(AC) MAX.

Note 10

VIX(AC) MIN.

VIX(AC) MIN.

Note 10

VIX(AC) MIN.

Minimum Clock Level

Figure 2-2. Clock Input

- **Notes 1.** DKx and DKx# have the same requirements as CK and CK#.
 - 2. All voltages referenced to Vss.
 - 3. Tests for AC timing, IDD and electrical AC and DC characteristics may be conducted at normal reference/supply voltage levels; but the related specifications and device operations are tested for the full voltage range specified.
 - 4. AC timing and IDD tests may use a VIL to VIH swing of up to 1.5 V in the test environment, but input timing is still referenced to VREF (or the crossing point for CK/CK#), and parameters specifications are tested for the specified AC input levels under normal use conditions. The minimum slew rate for the input signals used to test the device is 2V/ns in the range between VIL(AC) and VIH(AC).
 - 5. The AC and DC input level specifications are as defined in the HSTL Standard (i.e. the receiver will effectively switch as a result of the signal crossing the AC input level, and will remain in that state as long as the signal does not ring back above[below] the DC input LOW[HIGH] level).
 - 6. The CK/CK# input reference level (for timing referenced to CK/CK#) is the point at which CK and CK# cross. The input reference level for signal other than CK/CK# is VREF.
 - 7. CK and CK# input slew rate must be $\geq 2V/ns$ ($\geq 4V/ns$ if measured differentially).
 - 8. V_{ID} is the magnitude of the difference between the input level on CK and input level on CK#.
 - 9. The value of V_{IX} is expected to equal V_{DD}Q/2 of the transmitting device and must track variations in the DC level of the same.
 - **10.** CK and CK# must cross within the region.
 - 11. CK and CK# must meet at least ViD(DC) (MIN.) when static and centered around VDDQ/2.
 - 12. Minimum peak-to-peak swing.

2.8 Mode Register Set Command (MRS)

The mode register stores the data for controlling the operating modes of the memory. It programs the μ PD48576109/18 configuration, burst length, and I/O options. During a MRS command, the address inputs A0–A17 are sampled and stored in the mode register. tmrsc must be met before any command can be issued to the μ PD48576109/18. The mode register may be set at any time during device operation. However, any pending operations are not guaranteed to successfully complete, and all memory cell data are not guaranteed.

Since MRS is used for internal test mode entry, bits A10–A17 must be set to all "0" at the MRS setting.

Figure 2-3. Mode Register Set Timing

Remark MRS : MRS command

AC : any command

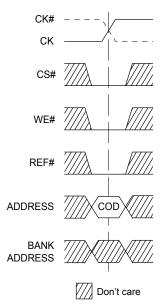


Figure 2-4. Mode Register Set

Remark COD: code to be loaded into the register.

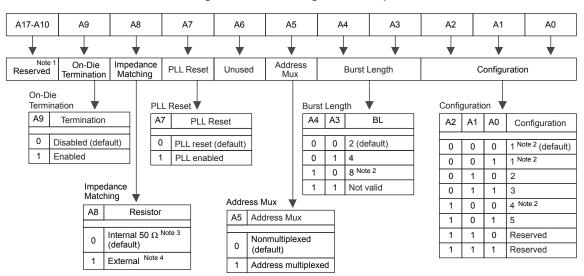


Figure 2-5. Mode Register Bit Map

Notes 1. Bits A10–A17 must be set to all '0'. A18-An are "Don't Care".

- **2.** BL=8 is not available for configuration 1 and 4.
- 3. $\pm 30\%$ temperature variation.
- 4. Within 15%.

2.9 Read & Write configuration (Non Multiplexed Address Mode)

Table 2-4 shows, for different operating frequencies, the different μ PD48576109/18 configurations that can be programmed into the mode register. The READ and WRITE latency (t_{RL} and t_{WL}) values along with the row cycle times (t_{RC}) are shown in clock cycles as well as in nanoseconds.

Parameter		Configuration									
	Note2	2	3	Note2, 3 4	5						
t RC	4	6	8	3	5	tск					
t rl	4	6	8	3	5	t cĸ					
tw∟	5	7	9	4	6	t cĸ					
Valid frequency range	266-175	400-175	533-175	200-175	333-175	MHz					

Table 2-4. Configuration Table

Notes 1. Apply to the entire table. trc < 20 ns in any configuration only available with -E24 and -E18 speed grades.

- 2. BL = 8 is not available.
- 3. The minimum trc is typically 3 cycles, except in the case of a WRITE followed by a READ to the same bank. In this instance the minimum trc is 4 cycles.

2.10 Write Operation (WRITE)

Write accesses are initiated with a WRITE command, as shown in Figure 2-6. Row and bank addresses are provided together with the WRITE command. During WRITE commands, data will be registered at both edges of DK according to the programmed burst length (BL). A WRITE latency (WL) one cycle longer than the programmed READ latency (RL + 1) is present, with the first valid data registered at the first rising DK edge WL cycles after the WRITE command.

Any WRITE burst may be followed by a subsequent READ command. Figure 2-10. WRITE Followed By READ: BL=2, RL=4, WL=5, Configuration 1 and Figure 2-11. WRITE Followed By READ: BL=4, RL=4, WL=5, Configuration 1 illustrate the timing requirements for a WRITE followed by a READ for bursts of two and four, respectively.

Setup and hold times for incoming input data relative to the DK edges are specified as tos and toh. The input data is masked if the corresponding DM signal is HIGH. The setup and hold times for data mask are also tos and toh.

Figure 2-6. WRITE Command

ADDRESS

Don't care

BANK ADDRESS

Remark A: Address BA: Bank address

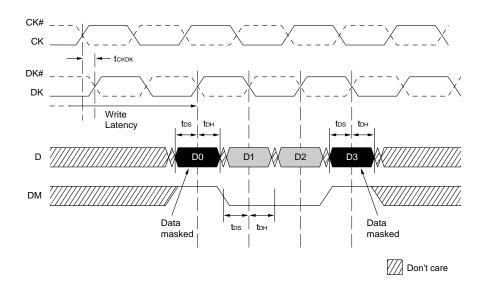


Figure 2-7. Basic WRITE Burst / DM Timing

Figure 2-8. WRITE Burst Basic Sequence: BL=2, RL=4, WL=5, Configuration 1

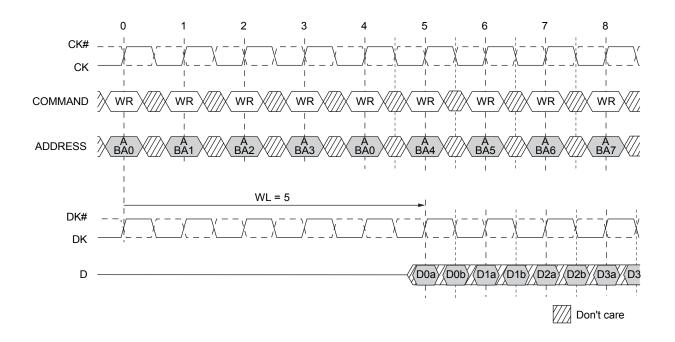
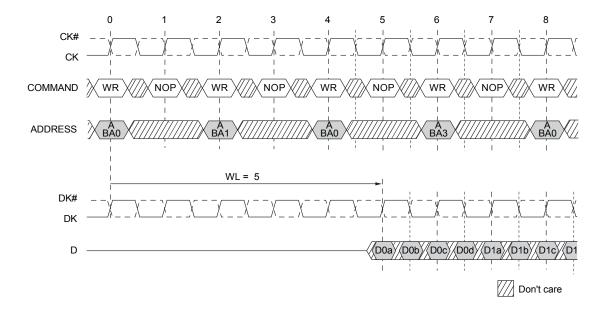



Figure 2-9. WRITE Burst Basic Sequence: BL=4, RL=4, WL=5, Configuration 1

Remarks 1. WR : WRITE command

A/Bap : Address A of bank p WL : WRITE latency Dpq : Data q to bank p

2. Any free bank may be used in any given command. The sequence shown is only one example of a bank sequence.

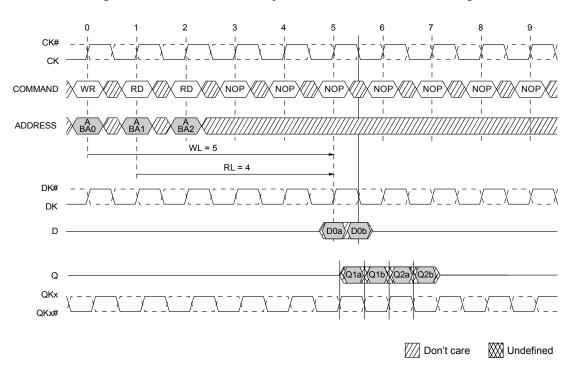
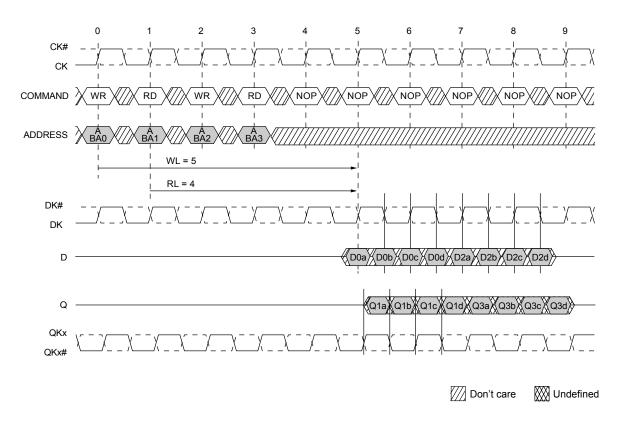



Figure 2-10. WRITE Followed By READ: BL=2, RL=4, WL=5, Configuration 1

Remark WR : WRITE command

RD : READ command
A/BAp : Address A of bank p
WL : WRITE latency
RL : READ latency
Dpq : Data q to bank p
Qpq : Data q from bank p

2.11 Read Operation (READ)

Read accesses are initiated with a READ command, as shown in **Figure 2-12**. Row and bank addresses are provided with the READ command.

During READ bursts, the memory device drives the read data edge-aligned with the QK signal. After a programmable READ latency, data is available at the outputs. The data valid signal indicates that valid data will be present in the next half clock cycle.

The skew between QK and the crossing point of CK is specified as t_{CKQK} . t_{QKQ0} is the skew between QK0 and the last valid data edge considered the data generated at the Q0–Q8. t_{QKQ1} is the skew between QK1 and the last valid data edge considered the data generated at the Q9–Q17. t_{QKQx} is derived at each QKx clock edge and is not cumulative over time.

After completion of a burst, assuming no other commands have been initiated, Q will go High-Z. Back-to-back READ commands are possible, producing a continuous flow of output data.

Minimum READ data valid window can be expressed as MIN.(tokh, tokh) – 2 x MAX.(tokox)

Any READ burst may be followed by a subsequent WRITE command. Figure 2-16. READ followed by WRITE, BL=2, RL=4, WL=5, Configuration 1 and Figure 2-17. READ followed by WRITE, BL=4, RL=4, WL=5, Configuration 1 illustrate the timing requirements for a READ followed by a WRITE.

CK# ---CK

CS#

WE#

ADDRESS

BANK
ADDRESS

Don't care

Figure 2-12. READ Command

Remark A : Address

BA: Bank address

Figure 2-13. Basic READ Burst Timing

Note 1

Note 1. Minimum READ data valid window can be expressed as MIN.(t_{QKH} , t_{QKL}) – 2 x MAX.(t_{QKQx}) t_{CKH} and t_{CKL} are recommended to have 50% / 50% duty.

- **Remarks** 1. t_{QKQ0} is referenced to Q0–Q8. t_{QKQ1} is referenced to Q9–Q17.
 - 2. toko takes into account the skew between any QKx and any Q.
 - 3. tckok is specified as CK rising edge to QK rising edge.

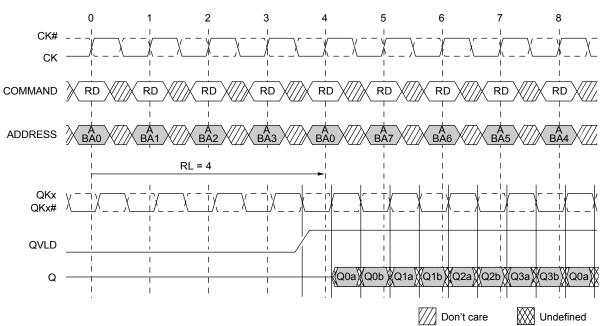
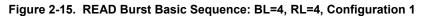
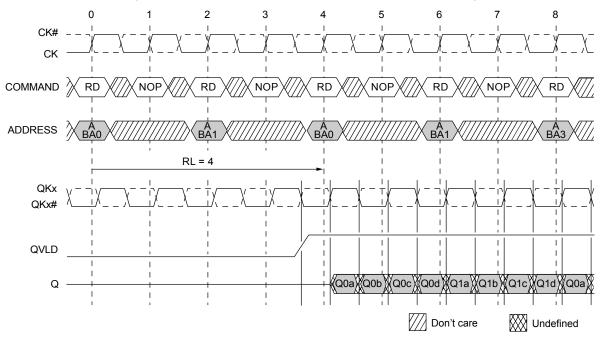
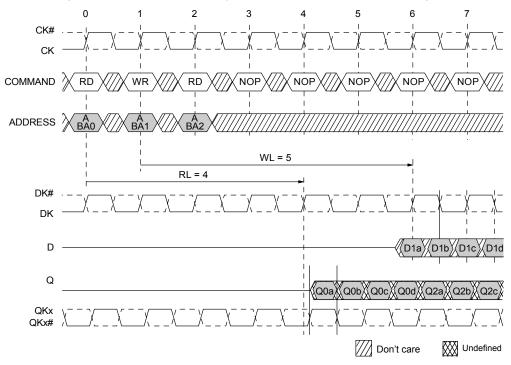




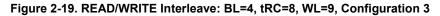
Figure 2-14. READ Burst Basic Sequence: BL=2, RL=4, Configuration 1


Remark RD : READ command

A/BAp : Address A of bank p RL : READ latency

Qpq : Data q from bank p

Figure 2-16. READ followed by WRITE, BL=2, RL=4, WL=5, Configuration 1



Remark WR : WRITE command

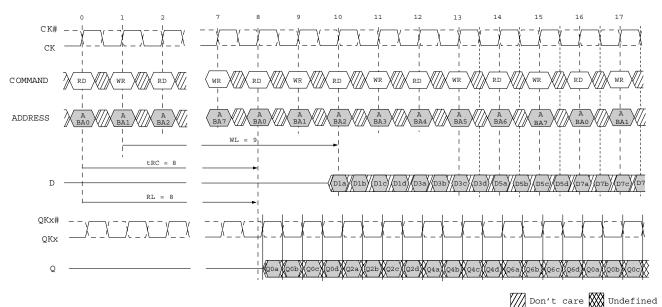

RD : READ command
A/BAp : Address A of bank p
WL : WRITE latency
RL : READ latency
Dpq : Data q to bank p
Qpq : Data q from bank p

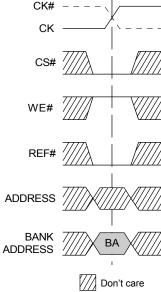
Figure 2-18. READ/WRITE Interleave: BL=4, trc=6, WL=7, Configuration 2

Don't care

Undefined

Remark WR : WRITE command

RD : READ command
A/BAp : Address A of bank p
WL : WRITE latency
RL : READ latency
Dpq : Data q to bank p
Qpq : Data q from bank p


2.12 Refresh Operation: AUTO REFRESH Command (AREF)

AREF is used to perform a REFRESH cycle on one row in a specific bank. The row addresses are generated by an internal refresh counter; external address balls are "Don't Care." The delay between the AREF command and a subsequent command to the same bank must be at least tro.

Within a period of 32 ms (treef), the entire memory must be refreshed. **Figure 2-21** illustrates an example of a continuous refresh sequence. Other refresh strategies, such as burst refresh, are also possible.

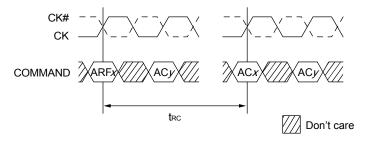

.

Figure 2-20. AUTO REFRESH Command

Remark BA: Bank address

Figure 2-21. AUTO REFRESH Cycle

Remarks 1. ACx : Any command on bank x

ARFx : Auto refresh bank x

ACy : Any command on different bank.

2. trc is configuration-dependent. Refer to Table 2-4. Configuration Table.

2.13 On-Die Termination

On-die termination (ODT) is enabled by setting A9 to "1" during an MRS command. With ODT on, all the Ds and DM are terminated to V_{TT} with a resistance R_{TT} . The command, address, and clock signals are not terminated. **Figure 2-22**. below shows the equivalent circuit of a D receiver with ODT. ODTs are dynamically switched off during READ commands and are designed to be off prior to the μ PD48576109/18 driving the bus. Similarly, ODTs are designed to switch on after the μ PD48576109/18 has issued the last piece of data. ODT at the D inputs and DM are always on.

Table 2-5. On-Die Termination DC Parameters

Description	Symbol	MIN.	MAX.	Units	Note
Termination voltage	VTT	0.95 x VREF	1.05 x VREF	V	1, 2
On-Die termination	RTT	125	185	Ω	3

Notes 1. All voltages referenced to Vss (GND).

- 2. Vtt is expected to be set equal to VREF and must track variations in the DC level of VREF.
- **3.** The R_{TT} value is measured at 95°C Tc.

Figure 2-22. On- Die Termination-Equivalent Circuit

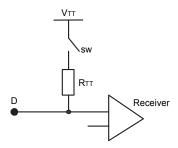
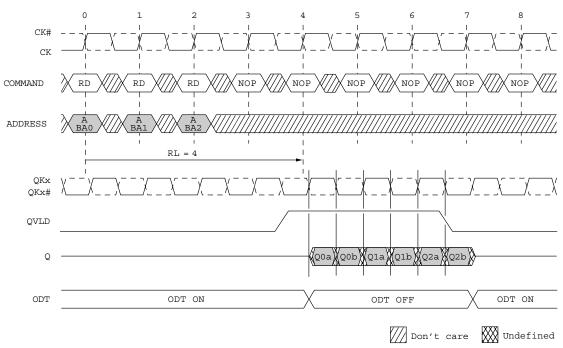



Figure 2-23. READ Burst with ODT: BL=2, Configuration 1

Remark RD : READ command

A/BAp : Address A of bank p
RL : READ latency
Qpq : Data q from bank p

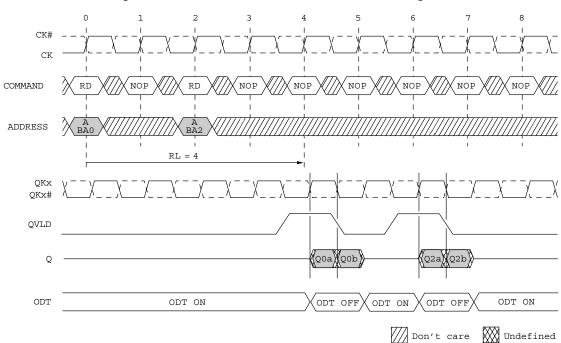
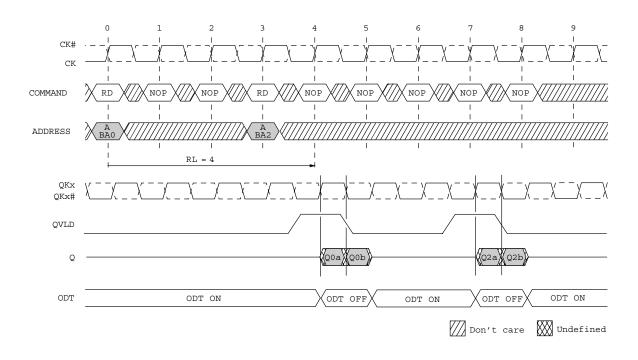



Figure 2-24. READ NOP READ with ODT: BL=2, Configuration 1

Figure 2-25. READ NOP NOP READ with ODT: BL=2, Configuration 1

Remark RD : READ command

A/BAp : Address A of bank p
RL : READ latency
Qpq : Data q from bank p

2.14 Operation with Multiplexed Address

In multiplexed address mode, the address can be provided to the μ PD48576109/18 in two parts that are latched into the memory with two consecutive rising clock edges. This provides the advantage that a maximum of 11 address balls are required to control the μ PD48576109/18, reducing the number of balls on the controller side. The data bus efficiency in continuous burst mode is not affected for BL=4 and BL=8 since at least two clocks are required to read the data out of the memory. The bank addresses are delivered to the μ PD48576109/18 at the same time as the WRITE command and the first address part, Ax.

This option is available by setting bit A5 to "1" in the mode register. Once this bit is set, the READ, WRITE, and MRS commands follow the format described in **Figure 2-26**. See **Figure 2-28**. **Power-Up Sequence in Multiplexed Address Mode** for the power-up sequence.

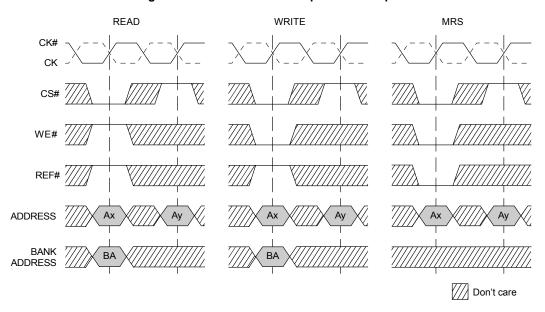


Figure 2-26. Command Description in Multiplexed

Remarks 1. Ax, Ay : Address

BA : Bank Address

2. The minimum setup and hold times of the two address parts are defined tas and tah.

A17 •••• A10 Ax Α9 Α8 Α5 A4 АЗ A0 Ау A17 •••• A10 Α8 On-Die Impedance Matching Address Mux Burst Length PLL Reset Unused Configuration Reserved Termination On-Die Termina Configuration PLI Reset Burst Length A9x Termination A4x A3x А9у PLL Reset A4y A3y A0x Configuration 0 Disabled (default) 0 0 2 (default) 0 PLL reset (default) 1 Note 2 (default) 0 Enabled PLL enabled 1 1 Note 2 0 1 4 0 0 1 0 8 Note 2 0 1 0 2 1 1 Not valid Impedance 0 1 Matching 4 Note 2 1 0 0 A8x Resistor A5x Address Mux 1 0 1 5 Internal 50 Ω Note 3 0 Reserved 0 Nonmultiplexed (default) (default) Reserved 1 External Note Address multiplexed

Figure 2-27. Mode Register Set Command in Multiplexed Address Mode

- **Notes 1.** Bits A10–A17 must be set to all '0'.
 - 2. BL=8 is not available for configuration 1 and 4.
 - 3. $\pm 30\%$ temperature variation.
 - 4. Within 15%.

Remark The address A0, A3, A4, A5, A8, and A9 must be set as follows in order to activate the mode register in the multiplexed address mode.

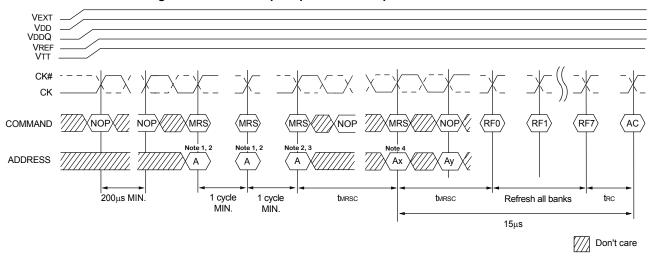


Figure 2-28. Power-Up Sequence in Multiplexed Address Mode

Notes 1. Recommended all address pins held LOW during dummy MRS command.

- 2. A10-A17 must be LOW.
- 3. Address A5 must be set HIGH (muxed address mode setting when μ PD48576209/18/36 is in normal mode of operation).
- 4. Address A5 must be set HIGH (muxed address mode setting when μ PD48576209/18/36 is already in muxed address mode).

Remark MRS: MRS command RFp: REFRESH Bank p
AC: any command

2.15 Address Mapping in Multiplexed Mode

The address mapping is described in **Table 2-6** as a function of data width and burst length.

Table 2-6. Address Mapping in Multiplexed Address Mode

Data	Burst	Ball					į	Address	5				
Width	Length		A0	А3	A4	A5	A 8	A9	A10	A13	A14	A17	A18
x18	BL=2	Ax	A0	A3	A4	A5	A8	A9	A10	A13	A14	A17	A18
		Ау	A20	A1	A2	X	A6	A7	A19	A11	A12	A16	A15
	BL=4	Ax	A0	A3	A4	A5	A8	A9	A10	A13	A14	A17	A18
		Ау	Χ	A1	A2	X	A6	A7	A19	A11	A12	A16	A15
	BL=8	Ax	A0	A3	A4	A5	A8	A9	A10	A13	A14	A17	A18
		Ay	Х	A1	A2	Х	A6	A7	Х	A11	A12	A16	A15
x9	BL=2	Ax	A0	A3	A4	A5	A8	A9	A10	A13	A14	A17	A18
		Ау	A20	A1	A2	A21	A6	A7	A19	A11	A12	A16	A15
	BL=4	Ax	A0	A3	A4	A5	A8	A9	A10	A13	A14	A17	A18
		Ay	A20	A1	A2	Х	A6	A7	A19	A11	A12	A16	A15
	BL=8	Ax	A0	A3	A4	A5	A8	A9	A10	A13	A14	A17	A18
		Ау	Х	A1	A2	Х	A6	A7	A19	A11	A12	A16	A15

Remark X means "Don't care".

2.16 Read & Write configuration in Multiplexed Address Mode

6

266-175

In multiplexed address mode, the READ and WRITE latencies are increased by one clock cycle. The μ PD48576109/18 cycle time remains the same, as described in **Table 2-7**.

Parameter	Configuration								
	Note2 1	2	3	Note2, 3 4	5				
trc	4	6	8	3	5	t cĸ			
t _{RL}	5	7	9	4	6	t cĸ			

Table 2-7. Configuration in Multiplexed Address Mode

400-175

2. BL = 8 is not available.

tw∟

Valid frequency range

3. The minimum trc is typically 3 cycles, except in the case of a WRITE followed by a READ to the same bank. In this instance the minimum trc is 4 cycles.

10

533-175

200-175

2.17 Refresh Command in Multiplexed Address Mode

Similar to other commands, the refresh command is executed on the next rising clock edge when in the multiplexed address mode. However, since only bank address is required for AREF, the next command can be applied on the following clock. The operation of the AREF command and any other command is represented in **Figure 2-29**.

Figure 2-29. Burst REFRESH Operation

Remark AREF: AUTO REFRESH

AC : Any command

Ax : First part Ax of address Ay : Second part Ay of address

BAp: Bank p is chosen so that tree is met.

tck

MHz

333-175

Notes 1. Apply to the entire table. trc < 20 ns in any configuration is only available with -E24 and -E18 speed grades.

DK#

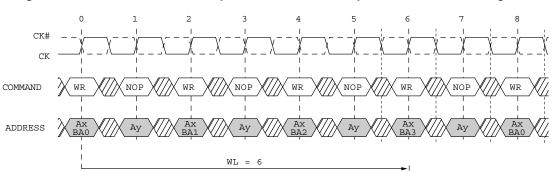
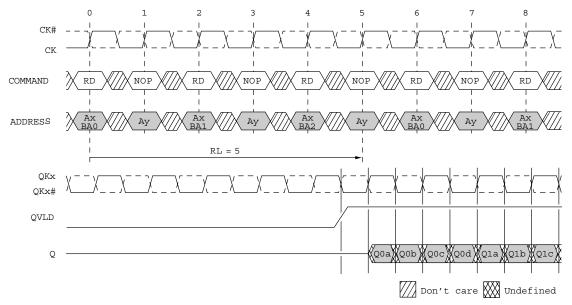



Figure 2-30. WRITE Burst Basic Sequence: BL=4, with Multiplexed Addresses, Configuration 1

D0a D0b D0c D0d D1a D1

Remark WR : WRITE command

RD : READ command

Ax/BAp : Address Ax of bank p

Ay : Address Ay of bank p

Dpq : Data q to bank p

Qpq : Data q from bank p

WL : WRITE latency

RL : READ latency

2.18 Input Slew Rate Derating

Table 2-8 on page 39 and **Table 2-9** on page 40 define the address, command, and data setup and hold derating values. These values are added to the default tAS/tCS/tDS and tAH/tCH/tDH specifications when the slew rate of any of these input signals is less than the 2 V/ns the nominal setup and hold specifications are based upon.

To determine the setup and hold time needed for a given slew rate, add the tAS/tCS default specification to the "tAS/tCS VREF to CK/CK# Crossing" and the tAH/tCH default specification to the "tAH/tCH CK/CK# Crossing to VREF" derated values on **Table 2-8**. The derated data setup and hold values can be determined in a like manner using the "tDS VREF to CK/CK# Crossing" and "tDH to CK/CK# Crossing to VREF" values on **Table 2-9**.

The derating values on **Table 2-8** and **Table 2-9** apply to all speed grades.

The setup times on **Table 2-8** and **Table 2-9** represent a rising signal. In this case, the time from which the rising signal crosses $V_{IH(AC)}$ MIN to the CK/CK# cross point is static and must be maintained across all slew rates. The derated setup timing represents the point at which the rising signal crosses $V_{REF(DC)}$ to the CK/CK# cross point. This derated value is calculated by determining the time needed to maintain the given slew rate and the delta between $V_{IH(AC)}$ MIN and the CK/CK# cross point. The setup values in **Table 2-8** and **Table 2-9** are also valid for falling signals (with respect to $V_{IL[AC]}$ MAX and the CK/CK# cross point).

The hold times in **Table 2-8** and **Table 2-9** represent falling signals. In this case, the time from the CK/CK# cross point to when the signal crosses V_{IH(DC)} MIN is static and must be maintained across all slew rates. The derated hold timing represents the delta between the CK/CK# cross point to when the falling signal crosses V_{REF(DC)}. This derated value is calculated by determining the time needed to maintain the given slew rate and the delta between the CK/CK# cross point and V_{IH(DC)}. The hold values in **Table 2-8** and **Table 2-9** are also valid for rising signals (with respect to V_{IL[DC]} MAX and the CK and CK# cross point).

Note: The above descriptions also pertain to data setup and hold derating when CK/CK# are replaced with DK/DK#.

Table 2-8. Address and Command Setup and Hold Derating Values

Command/ Address Slew Rate (V/ns)	tAS/tCS VREF to CK/CK# Crossing	tAS/tCS VIH(AC) MIN to CK/CK# Crossing	tAH/tCH CK/CK# Crossing to VREF	tAH/tCH CK/CK# Crossing to VIH(DC) MIN	Unit
	(CK, CK# Differential S	lew Rate: 2.0 V/ns		
2.0	0	-100	0	-50	ps
1.9	5	-100	3	-50	ps
1.8	11	-100	6	-50	ps
1.7	18	-100	9	-50	ps
1.6	25	-100	13	-50	ps
1.5	33	-100	17	-50	ps
1.4	43	-100	22	-50	ps
1.3	54	-100	27	-50	ps
1.2	67	-100	34	-50	ps
1.1	82	-100	41	-50	ps
1.0	100	-100	50	-50	ps
	(CK, CK# Differential S	lew Rate: 1.5 V/ns		
2.0	30	-70	30	-20	ps
1.9	35	-70	33	-20	ps
1.8	41	-70	36	-20	ps
1.7	48	-70	39	-20	ps
1.6	55	-70	43	-20	ps
1.5	63	-70	47	-20	ps
1.4	73	-70	52	-20	ps
1.3	84	-70	57	-20	ps
1.2	97	-70	64	-20	ps
1.1	112	-70	71	-20	ps
1.0	130	-70	80	-20	ps
	(CK, CK# Differential S	lew Rate: 1.0 V/ns		
2.0	60	-40	60	10	ps
1.9	65	-40	63	10	ps
1.8	71	-40	66	10	ps
1.7	78	-40	69	10	ps
1.6	85	-40	73	10	ps
1.5	93	-40	77	10	ps
1.4	103	-40	82	10	ps
1.3	114	-40	87	10	ps
1.2	127	-40	94	10	ps
1.1	142	-40	101	10	ps
1.0	160	-40	110	10	ps

Table 2-9. Data Setup and Hold Derating Values

Data Slew Rate (V/ns)	tDS VREF to DK/DK# Crossing	tDS VIH(AC) MIN to DK/DK# Crossing	tDH DK/DK# Crossing to VREF	tDH DK/DK# Crossing to VIH(DC) MIN	Unit
	Crossing	DK, DK# Differential		VIH(DC) WIIIV	
2.0	0	-100	0	-50	ps
1.9	5	-100	3	-50	ps
1.8	11	-100	6	-50	ps
1.7	18	-100	9	-50	ps
1.6	25	-100	13	-50	ps
1.5	33	-100	17	-50	ps
1.4	43	-100	22	-50	ps
1.3	54	-100	27	-50	ps
1.2	67	-100	34	-50	ps
1.1	82	-100	41	-50	ps
1.0	100	-100	50	-50	ps
		DK, DK# Differential	Slew Rate: 1.5 V/ns		
2.0	30	-70	30	-20	ps
1.9	35	-70	33	-20	ps
1.8	41	-70	36	-20	ps
1.7	48	-70	39	-20	ps
1.6	55	-70	43	-20	ps
1.5	63	-70	47	-20	ps
1.4	73	-70	52	-20	ps
1.3	84	-70	57	-20	ps
1.2	97	-70	64	-20	ps
1.1	112	-70	71	-20	ps
1.0	130	-70	80	-20	ps
		DK, DK# Differential	Slew Rate: 1.0 V/ns		
2.0	60	-40	60	10	ps
1.9	65	-40	63	10	ps
1.8	71	-40	66	10	ps
1.7	78	-40	69	10	ps
1.6	85	-40	73	10	ps
1.5	93	-40	77	10	ps
1.4	103	-40	82	10	ps
1.3	114	-40	87	10	ps
1.2	127	-40	94	10	ps
1.1	142	-40	101	10	ps
1.0	160	-40	110	10	ps

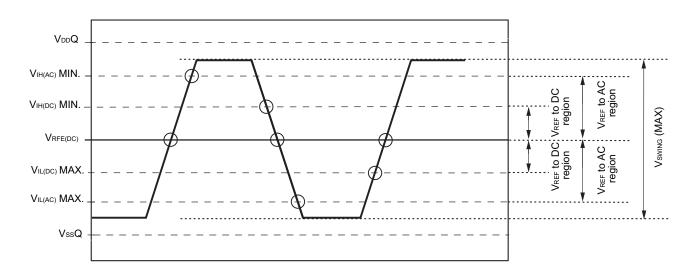


Figure 2-32. Nominal tAS/tCS/tDS and tAH/tCH/tDH Slew Rate

3. JTAG Specification

These products support a limited set of JTAG functions as in IEEE standard 1149.1.

Table 3-1. Test Access Port (TAP) Pins

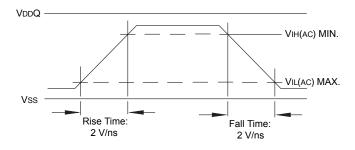
Pin name	Pin assignments	Description
TCK	12A	Test Clock Input. All input are captured on the rising edge of TCK and all outputs propagate from the falling edge of TCK.
TMS	11A	Test Mode Select. This is the command input for the TAP controller state
TDI	12V	Test Data Input. This is the input side of the serial registers placed between TDI and TDO. The register placed between TDI and TDO is determined by the state of the TAP controller state machine and the instruction that is currently
TDO	11V	Test Data Output. This is the output side of the serial registers placed between TDI and TDO. Output changes in response to the falling edge of TCK.

Remark The device does not have TRST (TAP reset). The Test-Logic Reset state is entered while TMS is held HIGH for five rising edges of TCK. The TAP controller state is also reset on the POWER-UP.

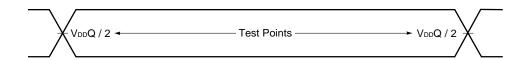
Table 3-2. JTAG DC Characteristics (0°C ≤ Tc ≤ 95°C, 1.7 V ≤ VDD ≤ 1.9 V, unless otherwise noted)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit	Notes
JTAG Input leakage current	ILI	$0 \text{ V} \leq V_{IN} \leq V_{DD}$	-5.0	+5.0	μΑ	
JTAG I/O leakage current	I_{LO}	$0\ V \le V_{IN} \le V_{DD}\ Q\ ,$	-5.0	+5.0	μΑ	
		Outputs disabled				
JTAG input HIGH voltage	V_{IH}		V _{REF} + 0.15	V _{DD} + 0.3	V	1, 2
JTAG input LOW voltage	V_{IL}		V _{SS} Q - 0.3	V _{REF} – 0.15	V	1, 2
JTAG output HIGH voltage	V _{OH1}	I _{OHC} = 100 μA	$V_{DD}Q - 0.2$		V	
	V_{OH2}	I _{OHT} = 2 mA	$V_{DD}Q - 0.4$		V	
JTAG output LOW voltage	V _{OL1}	I _{OLC} = 100 μA		0.2	V	1
	V_{OL2}	I _{OLT} = 2 mA		0.4	V	1

Note


- 1. All voltages referenced to Vss (GND).
- 2. Overshoot: $V_{IH(AC)} \le V_{DD} + 0.7 \text{ V for } t \le t_{CK}/2$.

Undershoot: $V_{\text{IL (AC)}} \ge -0.5 \text{ V for } t \le \text{ tck/2}.$


During normal operation, VDDQ must not exceed VDD.

JTAG AC Test Conditions

Input waveform

Output waveform

Output load condition

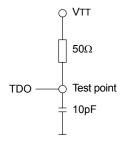


Table 3-3. JTAG AC Characteristics (0°C \leq Tc \leq 95°C)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit	Note
Clock						
Clock cycle time	t _{THTH}		20		ns	
Clock frequency	f _{TF}			50	MHz	
Clock HIGH time	t _{THTL}		10		ns	
Clock LOW time	t _{TLTH}		10		ns	
Output time]					
TCK LOW to TDO	t _{TLOX}		0		ns	
TCK LOW to TDO valid	t _{TLOV}			10	ns	
Setup time	1					
TMS setup time	t _{MVTH}		5		ns	
TDI valid to TCK HIGH	t _{DVTH}		5		ns	
Capture setup time	t _{CSJ}		5		ns	1
Hold time]					
TMS hold time	t _{THMX}		5		ns	
TCK HIGH to TDI invalid	t _{THDX}		5		ns	
Capture hold time	t _{CHJ}		5		ns	1

Note 1. tcsi and tchi refer to the setup and hold time requirements of latching data from the boundary scan register.

JTAG Timing Diagram

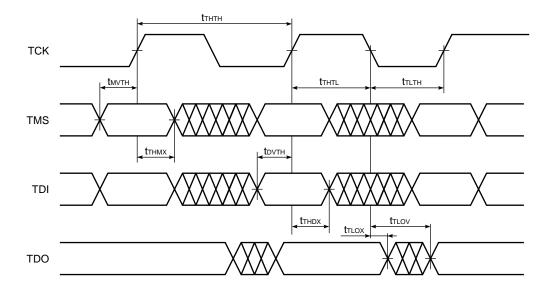


Table 3-4. Scan Register Definition (1)

Register name	Description
Instruction register	The 8 bit instruction registers hold the instructions that are executed by the TAP controller. The register can be loaded when it is placed between the TDI and TDO pins. The instruction register is automatically preloaded with the IDCODE instruction at power-up whenever the controller is placed in test-logic-reset state.
Bypass register	The bypass register is a single bit register that can be placed between TDI and TDO. It allows serial test data to be passed through the RAMs TAP to another device in the scan chain with as little delay as possible. The bypass register is set LOW (VSS) when the bypass instruction is executed.
ID register	The ID Register is a 32 bit register that is loaded with a device and vendor specific 32 bit code when the controller is put in capture-DR state with the IDCODE command loaded in the instruction register. The register is then placed between the TDI and TDO pins when the controller is moved into shift-DR state.
Boundary register	The boundary register, under the control of the TAP controller, is loaded with the contents of the RAMs I/O ring when the controller is in capture-DR state and then is placed between the TDI and TDO pins when the controller is moved to shift-DR state. Several TAP instructions can be used to activate the boundary register. The Scan Exit Order tables describe which device bump connects to each boundary register location. The first column defines the bit's position in the boundary register. The second column is the name of the input or I/O at the bump and the third column is the bump number.

Table 3-5. Scan Register Definition (2)

Register name	Bit size	Unit
Instruction register	8	bit
Bypass register	1	bit
ID register	32	bit
Boundary register	113	bit

Table 3-6. ID Register Definition

Part number	Organization	ID [31:28] vendor revision no.	ID [27:12] part no.	ID [11:1] vendor ID no.	ID [0] fix bit
μPD48576109-A	64M x 9	0000	0001 1001 1010 0111	00000010000	1
μPD48576118-A	32M x 18	0001	0001 1001 1010 0111	0000010000	1

Table 3-7. SCAN Exit Order

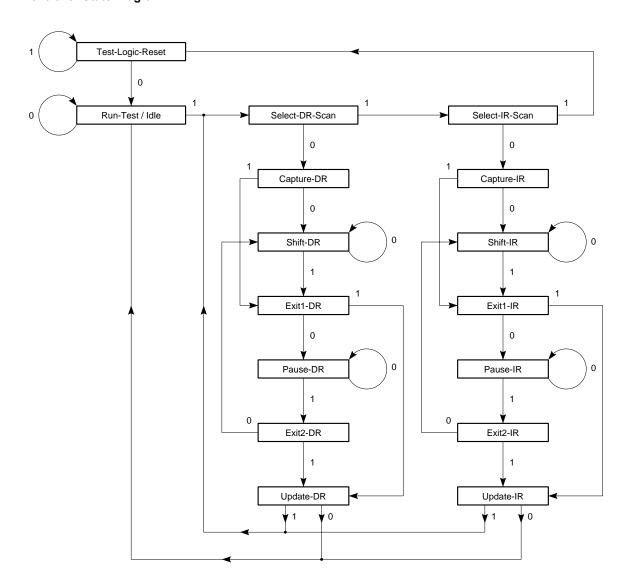
Bit	Signal	name	Bump
no.	x9	x18	ID
1	DK	DK	K1
2	DK#	DK#	K2
3	CS#	CS#	L2
4	REF#	REF#	L1
5	WE#	WE#	M1
6	A17	A17	М3
7	A16	A16	M2
8	A18	A18	N1
9	A15	A15	P1
10	DNU	Q14	N3
11	DNU	Q14	N3
12	DNU	D14	N2
13	DNU	D14	N2
14	DNU	Q15	P3
15	DNU	Q15	P3
16	DNU	D15	P2
17	DNU	D15	P2
18	DNU	QK1	R2
19	DNU	QK1#	R3
20	DNU	D16	T2
21	DNU	D16	T2
22	DNU	Q16	Т3
23	DNU	Q16	Т3
24	DNU	D17	U2
25	DNU	D17	U2
26	DNU	Q17	U3
27	DNU	Q17	U3
28	ZQ	ZQ	V2
29	Q8	Q13	U10
30	Q8	Q13	U10
31	D8	D13	U11
32	D8	D13	U11
33	Q7	Q12	T10
34	Q7	Q12	T10
35	D7	D12	T11
36	D7	D12	T11
37	Q6	Q11	R10
38	Q6	Q11	R10

Bit	Signal name		Bump
no.	x9	x18	ID
39	D6	D11	R11
40	D6	D11	R11
41	D5	D10	P11
42	D5	D10	P11
43	Q5	Q10	P10
44	Q5	Q10	P10
45	D4	D9	N11
46	D4	D9	N11
47	Q4	Q9	N10
48	Q4	Q9	N10
49	DM	DM	P12
50	A19	A19	N12
51	A11	A11	M11
52	A12	A12	M10
53	A10	A10	M12
54	A13	A13	L12
55	A14	A14	L11
56	BA1	BA1	K11
57	CK#	CK#	K12
58	СК	СК	J12
59	BA0	BA0	J11
60	A4	A4	H11
61	A3	A3	H12
62	A0	A0	G12
63	A2	A2	G10
64	A1	A1	G11
65	A20	A20	E12
66	QVLD	QVLD	F12
67	Q3	Q3	F10
68	Q3	Q3	F10
69	D3	D3	F11
70	D3	D3	F11
71	Q2	Q2	E10
72	Q2	Q2	E10
73	D2	D2	E11
74	D2	D2	E11
75	QK0	QK0	D11
76	QK0#	QK0#	D10

no. x9 x18 ID 77 D1 D1 C11 78 D1 D1 C10 79 Q1 Q1 C10 80 Q1 Q1 C10 81 D0 D0 B11 82 D0 D0 B10 84 Q0 Q0 B10 84 Q0 Q0 B10 85 DNU Q4 B3 86 DNU Q4 B3 87 DNU Q4 B2 89 DNU Q5 C3 90 DNU Q5 C3 91 DNU Q5 C3 91 DNU Q5 C3 92 DNU D5 C2 93 DNU Q6 D3 94 DNU Q6 D3 95 DNU D6 D2 99 DN	Bit	Signal	name	Bump
78 D1 D1 C11 79 Q1 Q1 C10 80 Q1 Q1 C10 81 D0 D0 B11 82 D0 D0 B10 84 Q0 Q0 B10 85 DNU Q4 B3 86 DNU Q4 B3 87 DNU D4 B2 89 DNU Q5 C3 90 DNU Q5 C3 91 DNU D5 C2 92 DNU D5 C2 93 DNU Q6 D3 94 DNU Q6 D3 95 DNU D6 D2 97 DNU D7 E2 98 DNU D7 E2 99 DNU Q7 E3 100 DNU Q7 E3 101 D	no.	x9	x18	ID
79 Q1 Q1 C10 80 Q1 Q1 C10 81 D0 D0 B11 82 D0 D0 B10 84 Q0 Q0 B10 84 Q0 Q0 B10 85 DNU Q4 B3 86 DNU Q4 B3 87 DNU D4 B2 89 DNU Q5 C3 90 DNU Q5 C3 91 DNU D5 C2 92 DNU D5 C2 93 DNU Q6 D3 94 DNU Q6 D3 95 DNU D6 D2 97 DNU D7 E2 98 DNU D7 E2 99 DNU Q7 E3 100 DNU Q7 E3 101 D	77	D1	D1	C11
80 Q1 Q1 C10 81 D0 D0 B11 82 D0 D0 B10 83 Q0 Q0 B10 84 Q0 Q0 B10 85 DNU Q4 B3 86 DNU Q4 B3 87 DNU D4 B2 88 DNU D4 B2 89 DNU Q5 C3 90 DNU Q5 C3 91 DNU D5 C2 93 DNU D5 C2 93 DNU Q6 D3 94 DNU Q6 D3 95 DNU D6 D2 97 DNU D7 E2 98 DNU D7 E2 99 DNU Q7 E3 100 DNU Q7 E3 102 D	78	D1	D1	C11
81 DO DO B11 82 DO DO B11 83 QO QO B10 84 QO QO B10 85 DNU Q4 B3 86 DNU D4 B2 88 DNU D4 B2 89 DNU Q5 C3 90 DNU Q5 C3 91 DNU D5 C2 92 DNU D5 C2 93 DNU Q6 D3 94 DNU Q6 D3 95 DNU D6 D2 96 DNU D7 E2 98 DNU D7 E2 99 DNU Q7 E3 100 DNU Q7 E3 101 DNU D8 F2 102 DNU D8 F2 103 <td< td=""><td>79</td><td>Q1</td><td>Q1</td><td>C10</td></td<>	79	Q1	Q1	C10
82 DO DO B11 83 QO QO B10 84 QO QO B10 85 DNU Q4 B3 86 DNU Q4 B3 87 DNU D4 B2 88 DNU D4 B2 89 DNU Q5 C3 90 DNU Q5 C3 91 DNU D5 C2 92 DNU D5 C2 93 DNU Q6 D3 94 DNU Q6 D3 95 DNU D6 D2 96 DNU D7 E2 98 DNU D7 E2 99 DNU Q7 E3 100 DNU Q7 E3 101 DNU D8 F2 102 DNU D8 F2 103 <td< td=""><td>80</td><td>Q1</td><td>Q1</td><td>C10</td></td<>	80	Q1	Q1	C10
83 Q0 Q0 B10 84 Q0 Q0 B10 85 DNU Q4 B3 86 DNU D4 B2 88 DNU D4 B2 89 DNU Q5 C3 90 DNU Q5 C3 91 DNU D5 C2 92 DNU D5 C2 93 DNU Q6 D3 94 DNU Q6 D3 95 DNU D6 D2 96 DNU D7 E2 98 DNU D7 E2 99 DNU Q7 E3 100 DNU Q7 E3 101 DNU D8 F2 102 DNU D8 F2 103 DNU Q8 F3 104 DNU Q8 F3 105 <	81	D0	D0	B11
84 Q0 Q0 B10 85 DNU Q4 B3 86 DNU D4 B2 88 DNU D4 B2 89 DNU D4 B2 89 DNU D4 B2 89 DNU D5 C3 90 DNU Q5 C3 91 DNU D5 C2 92 DNU D5 C2 93 DNU Q6 D3 94 DNU Q6 D3 95 DNU D6 D2 97 DNU D7 E2 98 DNU D7 E2 99 DNU Q7 E3 100 DNU Q7 E3 101 DNU D8 F2 102 DNU D8 F2 103 DNU Q8 F3 104 <t< td=""><td>82</td><td>D0</td><td>D0</td><td>B11</td></t<>	82	D0	D0	B11
85 DNU Q4 B3 86 DNU Q4 B3 87 DNU D4 B2 88 DNU D4 B2 89 DNU Q5 C3 90 DNU Q5 C3 91 DNU D5 C2 92 DNU D5 C2 93 DNU Q6 D3 94 DNU Q6 D3 95 DNU D6 D2 96 DNU D7 E2 98 DNU D7 E2 99 DNU Q7 E3 100 DNU Q7 E3 101 DNU D8 F2 102 DNU D8 F2 103 DNU Q8 F3 104 DNU Q8 F3 105 A21 A21 E1 106	83	Q0	Q0	B10
86 DNU Q4 B3 87 DNU D4 B2 88 DNU D4 B2 89 DNU Q5 C3 90 DNU Q5 C3 91 DNU D5 C2 92 DNU D5 C2 93 DNU Q6 D3 94 DNU Q6 D3 95 DNU D6 D2 96 DNU D6 D2 97 DNU D7 E2 98 DNU D7 E2 99 DNU Q7 E3 100 DNU Q7 E3 101 DNU D8 F2 102 DNU D8 F2 103 DNU Q8 F3 104 DNU Q8 F3 105 A21 A21 E1 106	84	Q0	Q0	B10
87 DNU D4 B2 88 DNU D4 B2 89 DNU Q5 C3 90 DNU Q5 C3 91 DNU D5 C2 92 DNU D5 C2 93 DNU Q6 D3 94 DNU Q6 D3 95 DNU D6 D2 96 DNU D7 E2 98 DNU D7 E2 99 DNU Q7 E3 100 DNU Q7 E3 101 DNU D8 F2 102 DNU D8 F2 103 DNU Q8 F3 104 DNU Q8 F3 105 A21 A21 E1 106 A5 A5 F1 106 A5 A5 F1 107	85	DNU	Q4	В3
88 DNU D4 B2 89 DNU Q5 C3 90 DNU Q5 C3 91 DNU D5 C2 92 DNU D5 C2 93 DNU Q6 D3 94 DNU Q6 D3 95 DNU D6 D2 96 DNU D6 D2 97 DNU D7 E2 98 DNU D7 E2 99 DNU Q7 E3 100 DNU Q7 E3 101 DNU D8 F2 102 DNU D8 F2 103 DNU Q8 F3 104 DNU Q8 F3 105 A21 A21 E1 106 A5 A5 F1 106 A5 A5 F1 107	86	DNU	Q4	В3
89 DNU Q5 C3 90 DNU Q5 C3 91 DNU D5 C2 92 DNU D5 C2 93 DNU Q6 D3 94 DNU Q6 D3 95 DNU D6 D2 96 DNU D7 E2 98 DNU D7 E2 99 DNU Q7 E3 100 DNU Q7 E3 101 DNU D8 F2 102 DNU D8 F2 103 DNU Q8 F3 104 DNU Q8 F3 105 A21 A21 E1 106 A5 A5 F1 106 A5 A5 F1 107 A6 A6 G2 108 A7 A7 G3 109	87	DNU	D4	B2
90 DNU Q5 C3 91 DNU D5 C2 92 DNU D5 C2 93 DNU Q6 D3 94 DNU Q6 D3 95 DNU D6 D2 96 DNU D6 D2 97 DNU D7 E2 98 DNU D7 E2 99 DNU Q7 E3 100 DNU Q7 E3 101 DNU D8 F2 102 DNU D8 F2 103 DNU Q8 F3 104 DNU Q8 F3 105 A21 A21 E1 106 A5 A5 F1 107 A6 A6 G2 108 A7 A7 G3 109 A8 A8 G1 111 BA2 BA2 H1 111 A9 A9 H2 112 NF NF J2	88	DNU	D4	B2
91 DNU D5 C2 92 DNU D5 C2 93 DNU Q6 D3 94 DNU Q6 D3 95 DNU D6 D2 96 DNU D7 E2 98 DNU D7 E2 99 DNU Q7 E3 100 DNU Q7 E3 101 DNU D8 F2 102 DNU D8 F2 103 DNU Q8 F3 104 DNU Q8 F3 105 A21 A21 E1 106 A5 A5 F1 107 A6 A6 G2 108 A7 A7 G3 109 A8 A8 G1 110 BA2 BA2 H1 111 A9 A9 H2 112	89	DNU	Q5	С3
92 DNU D5 C2 93 DNU Q6 D3 94 DNU Q6 D3 95 DNU D6 D2 96 DNU D7 E2 97 DNU D7 E2 98 DNU D7 E2 99 DNU Q7 E3 100 DNU Q7 E3 101 DNU D8 F2 102 DNU D8 F2 103 DNU Q8 F3 104 DNU Q8 F3 104 DNU Q8 F3 105 A21 A21 E1 106 A5 A5 F1 107 A6 A6 G2 108 A7 A7 G3 109 A8 A8 G1 110 BA2 BA2 H1 111	90	DNU	Q5	C3
93 DNU Q6 D3 94 DNU Q6 D3 95 DNU D6 D2 96 DNU D7 E2 98 DNU D7 E2 99 DNU Q7 E3 100 DNU Q7 E3 101 DNU D8 F2 102 DNU D8 F2 103 DNU Q8 F3 104 DNU Q8 F3 105 A21 A21 E1 106 A5 A5 F1 107 A6 A6 G2 108 A7 A7 G3 109 A8 A8 G1 110 BA2 BA2 H1 111 A9 A9 H2 112 NF NF J2	91	DNU	D5	C2
94 DNU Q6 D3 95 DNU D6 D2 96 DNU D6 D2 97 DNU D7 E2 98 DNU D7 E2 99 DNU Q7 E3 100 DNU Q7 E3 101 DNU D8 F2 102 DNU D8 F2 103 DNU Q8 F3 104 DNU Q8 F3 105 A21 A21 E1 106 A5 A5 F1 107 A6 A6 G2 108 A7 A7 G3 109 A8 A8 G1 110 BA2 BA2 H1 111 A9 A9 H2 112 NF NF J2	92	DNU	D5	C2
95 DNU D6 D2 96 DNU D6 D2 97 DNU D7 E2 98 DNU D7 E2 99 DNU Q7 E3 100 DNU Q7 E3 101 DNU D8 F2 102 DNU D8 F2 103 DNU Q8 F3 104 DNU Q8 F3 105 A21 A21 E1 106 A5 A5 F1 107 A6 A6 G2 108 A7 A7 G3 109 A8 A8 G1 110 BA2 BA2 H1 111 A9 A9 H2 112 NF NF J2	93	DNU	Q6	D3
96 DNU D6 D2 97 DNU D7 E2 98 DNU D7 E2 99 DNU Q7 E3 100 DNU Q7 E3 101 DNU D8 F2 102 DNU D8 F2 103 DNU Q8 F3 104 DNU Q8 F3 105 A21 A21 E1 106 A5 A5 F1 107 A6 A6 G2 108 A7 A7 G3 109 A8 A8 G1 110 BA2 BA2 H1 111 A9 A9 H2 112 NF NF J2	94	DNU	Q6	D3
97 DNU D7 E2 98 DNU D7 E2 99 DNU Q7 E3 100 DNU Q7 E3 101 DNU D8 F2 102 DNU D8 F2 103 DNU Q8 F3 104 DNU Q8 F3 105 A21 A21 E1 106 A5 A5 F1 107 A6 A6 G2 108 A7 A7 G3 109 A8 A8 G1 110 BA2 BA2 H1 111 A9 A9 H2 112 NF NF J2	95	DNU	D6	D2
98 DNU D7 E2 99 DNU Q7 E3 100 DNU Q7 E3 101 DNU D8 F2 102 DNU D8 F2 103 DNU Q8 F3 104 DNU Q8 F3 105 A21 A21 E1 106 A5 A5 F1 107 A6 A6 G2 108 A7 A7 G3 109 A8 A8 G1 110 BA2 BA2 H1 111 A9 A9 H2 112 NF NF J2	96	DNU	D6	D2
99 DNU Q7 E3 100 DNU Q7 E3 101 DNU D8 F2 102 DNU D8 F2 103 DNU Q8 F3 104 DNU Q8 F3 105 A21 A21 E1 106 A5 A5 F1 107 A6 A6 G2 108 A7 A7 G3 109 A8 A8 G1 110 BA2 BA2 H1 111 A9 A9 H2 112 NF NF J2	97	DNU	D7	E2
100 DNU Q7 E3 101 DNU D8 F2 102 DNU D8 F2 103 DNU Q8 F3 104 DNU Q8 F3 105 A21 A21 E1 106 A5 A5 F1 107 A6 A6 G2 108 A7 A7 G3 109 A8 A8 G1 110 BA2 BA2 H1 111 A9 A9 H2 112 NF NF J2	98	DNU	D7	E2
101 DNU D8 F2 102 DNU D8 F2 103 DNU Q8 F3 104 DNU Q8 F3 105 A21 A21 E1 106 A5 A5 F1 107 A6 A6 G2 108 A7 A7 G3 109 A8 A8 G1 110 BA2 BA2 H1 111 A9 A9 H2 112 NF NF J2	99	DNU	Q7	E3
102 DNU D8 F2 103 DNU Q8 F3 104 DNU Q8 F3 105 A21 A21 E1 106 A5 A5 F1 107 A6 A6 G2 108 A7 A7 G3 109 A8 A8 G1 110 BA2 BA2 H1 111 A9 A9 H2 112 NF NF J2	100	DNU	Q7	E3
103 DNU Q8 F3 104 DNU Q8 F3 105 A21 A21 E1 106 A5 A5 F1 107 A6 A6 G2 108 A7 A7 G3 109 A8 A8 G1 110 BA2 BA2 H1 111 A9 A9 H2 112 NF NF J2	101	DNU	D8	F2
104 DNU Q8 F3 105 A21 A21 E1 106 A5 A5 F1 107 A6 A6 G2 108 A7 A7 G3 109 A8 A8 G1 110 BA2 BA2 H1 111 A9 A9 H2 112 NF NF J2	102	DNU	D8	F2
105 A21 A21 E1 106 A5 A5 F1 107 A6 A6 G2 108 A7 A7 G3 109 A8 A8 G1 110 BA2 BA2 H1 111 A9 A9 H2 112 NF NF J2	103	DNU	Q8	F3
106 A5 A5 F1 107 A6 A6 G2 108 A7 A7 G3 109 A8 A8 G1 110 BA2 BA2 H1 111 A9 A9 H2 112 NF NF J2	104	DNU	Q8	F3
107 A6 A6 G2 108 A7 A7 G3 109 A8 A8 G1 110 BA2 BA2 H1 111 A9 A9 H2 112 NF NF J2	105	A21	A21	E1
108 A7 A7 G3 109 A8 A8 G1 110 BA2 BA2 H1 111 A9 A9 H2 112 NF NF J2	106	A5	A5	F1
109 A8 A8 G1 110 BA2 BA2 H1 111 A9 A9 H2 112 NF NF J2	107	A6	A6	G2
110 BA2 BA2 H1 111 A9 A9 H2 112 NF NF J2	108	A7	A7	G3
111 A9 A9 H2 112 NF NF J2	109	A8	A8	G1
112 NF NF J2	110	BA2	BA2	H1
	111	A9	A9	H2
113 NE NE 14	112	NF	NF	J2
III INF JI	113	NF	NF	J1

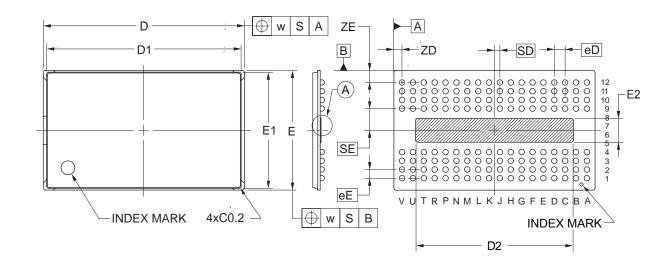
Note Any unused balls that are in the order will read as a logic "0".

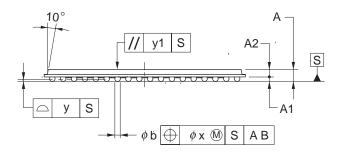
JTAG Instructions

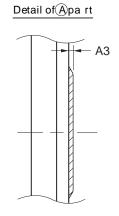

Many different instructions (2⁸) are possible with the 8-bit instruction register. All used combinations are listed in **Table 3-8**, Instruction Codes. These six instructions are described in detail below. The remaining instructions are reserved and should not be used.

The TAP controller used in this RAM is fully compliant to the 1149.1 convention. Instructions are loaded into the TAP controller during the Shift-IR state when the instruction register is placed between TDI and TDO. During this state, instructions are shifted through the instruction register through the TDI and TDO balls. To execute the instruction once it is shifted in, the TAP controller needs to be moved into the Update-IR state.

Table 3-8


Instructions	Instruction Code [7:0]	Description
EXTEST	0000 0000	The EXTEST instruction allows circuitry external to the component package to be tested. Boundary-scan register cells at output pins are used to apply test vectors, while those at input pins capture test results. Typically, the first test vector to be applied using the EXTEST instruction will be shifted into the boundary scan register using the PRELOAD instruction. Thus, during the update-IR state of EXTEST, the output drive is turned on and the PRELOAD data is driven onto the output pins.
IDCODE	0010 0001	The IDCODE instruction causes the ID ROM to be loaded into the ID register when the controller is in capture-DR mode and places the ID register between the TDI and TDO pins in shift-DR mode. The IDCODE instruction is the default instruction loaded in at power up and any time the controller is placed in the test-logic-reset state.
SAMPLE / PRELOAD	0000 0101	SAMPLE / PRELOAD is a Standard 1149.1 mandatory public instruction. When the SAMPLE / PRELOAD instruction is loaded in the instruction register, moving the TAP controller into the capture-DR state loads the data in the RAMs input and Q pins into the boundary scan register. Because the RAM clock(s) are independent from the TAP clock (TCK) it is possible for the TAP to attempt to capture the I/O ring contents while the input buffers are in transition (i.e., in a metastable state). Although allowing the TAP to sample metastable input will not harm the device, repeatable results cannot be expected. RAM input signals must be stabilized for long enough to meet the TAPs input data capture setup plus hold time (tcs plus tch). The RAMs clock inputs need not be paused for any other TAP operation except capturing the I/O ring contents into the boundary scan register. Moving the controller to shift-DR state then places the boundary scan register between the TDI and TDO pins.
CLAMP	0000 0111	When the CLAMP instruction is loaded into the instruction register, the data driven by the output balls are determined from the values held in the boundary scan register. Selects the bypass register to be connected between TDI and TDO. Data driven by output balls are determined from values held in the boundary scan register.
High-Z	0000 0011	The High-z instruction causes the boundary scan register to be connected between the TDI and TDO. This places all RAMs outputs into a High-Z state. Selects the bypass register to be connected between TDI and TDO. All outputs are forced into high impedance state.
BYPASS	1111 1111	When the BYPASS instruction is loaded in the instruction register, the bypass register is placed between TDI and TDO. This occurs when the TAP controller is moved to the shift-DR state. This allows the board level scan path to be shortened to facilitate testing of other devices in the scan path.
Reserved for Future Use	-	The remaining instructions are not implemented but are reserved for future use. Do not use these instructions.


TAP Controller State Diagram



4. Package Dimension

144-PIN TAPE FBGA (μBGA) (18.5x11)

	(UNIT:mm)
ITEM	DIMENSIONS
D	18.50±0.10
D1	17.90
D2	14.52
Е	11.00±0.10
E1	10.70
E2	2.184
W	0.20
Α	1.07±0.10
Α1	0.39±0.05
A2	0.68
А3	0.08 MAX.
eD	1.00
eЕ	0.80
SD	0.50
SE	2.00
b	0.51±0.05
х	0.15
У	0.10
y1	0.20
ZD	0.75
ZE	1.10
	P144FF-80-DW1

5. Recommended Soldering Condition

Please consult with our sales offices for soldering conditions of these products.

Types of Surface Mount Devices

 μ PD48576109FF-DW1 : 144-pin TAPE FBGA (18.5 x 11) μ PD48576118FF-DW1 : 144-pin TAPE FBGA (18.5 x 11)

Quality Grade

- A quality grade of the products is "Standard".
- Anti-radioactive design is not implemented in the products.
- Semiconductor devices have the possibility of unexpected defects by affection of cosmic ray that reach to the ground and so forth.

Revision History

μ PD48576109, μ PD48576118

Rev.	Date	Description	
		Page	Summary
Rev.0.01	'10.11.08	-	New Preliminary Data Sheet
Rev.1.00	'11.09.27	-	New Data Sheet
		P3	Add Lead device
		P11	Update DC Characteristics
		P15	Update Thermal Impedance
Rev.2.00	'12.05.10	P38, P39	Update Input Slew Rate Derating
		P40, P41	
Rev.3.00	'12.10.01	P17,P18	Update Power-On Sequence
		P34	

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electron The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical "Specific": implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +444-1628-585-100, Fax: +444-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-2353-1155, Fax: +86-10-8235-7679

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 161F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2868-9318, Fax: +852-2886-9022/9044

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei, Taiv Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied' or Bidg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: 482-2-558-3737, Fax: 482-2-558-5141

© 2012 Renesas Electronics Corporation. All rights reserved.