

High Performance Synchronous Buck EVM Using the TPS51124

User's Guide

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright . 2006, Texas Instruments Incorporated

CONTENTS

1. Description ·····	3
2. Electrical Performance Specifications	4
3. Schematic	5
4. Test Setup and Results	7
5. Configuration	8
6. EVM Assembly Drawing and PCB layout	9
7. List of Materials	12
8. References	13

1. Description

The TPS51124 is a dual, adaptive on-time D-CAP™ mode synchronous buck controller. The part enables system designers to cost effectively complete the suite of notebook power bus regulators with the absolute lowest external component count and lowest standby consumption. The fixed frequency emulated adaptive on-time control supports seamless operation between PWM mode at heavy load condition and reduced frequency operation at light load for high efficiency down to milliampere range. The main control loop for the TPS51124 uses the D-CAP mode that optimized for low ESR output capacitors such as POSCAP or SP-CAP promises fast transient response with no external compensation. Simple and separate power good signals for each channel allow flexibility of power sequencing. The part provides a convenient and efficient operation with supply input voltages (V5IN, V5FILT) ranging from 4.5V to 5.5V, conversion voltages (Drain voltage for the synchronous high-side MOSFET) from 3V to 28V and output voltages from 0.76V to 5.5V.

HPA178 (TPS51124EVM) evaluation module is a high efficiency, dual synchronous buck converter providing 1.05V at 10A and 1.5V at 10A from 5V to 25V input. This user's guide describes the HPA178 performance in medium switching frequency.

2. ELECTRICAL PERFORMANCE

Table1. Electrical Performance

	SPECIFICATIONS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Input voltage range (V5IN)		4.5	5.0	5.5	V
	Input voltage range (VIN)		5	12	25	V
CH1	Output voltage			1.05		V
	Operating frequency	TONSEL : Float		300		kHz
		VIN=12V, lout1=10A				
	Output current			10		Α
	Over current limit	VIN=12V		13		Α
	Output ripple voltage	VIN=12V, lout1=10A		35		mVp-p
CH2	Output voltage			1.5		V
	Operating frequency	TONSEL : Float		360		kHz
		VIN=12V, lout2=10A				
	Output current			10		Α
	Over current limit	VIN=12V		13		Α
	Output ripple voltage	VIN=12V, lout2=10A		35		mVp-p

4

3. Schematic

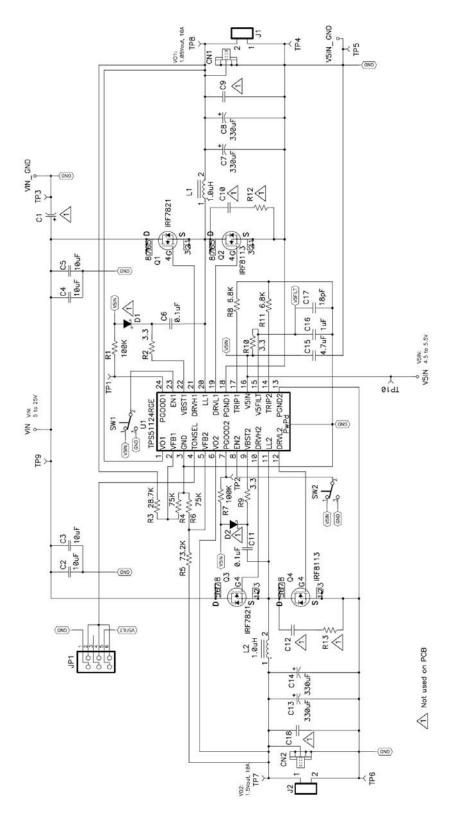


Figure 1. TPS51124 EVM schematic diagram

4. Test Setup and Results

4.1. Test setup

Connect test equipment and HPA178 EVM board as shown in Figure 2.

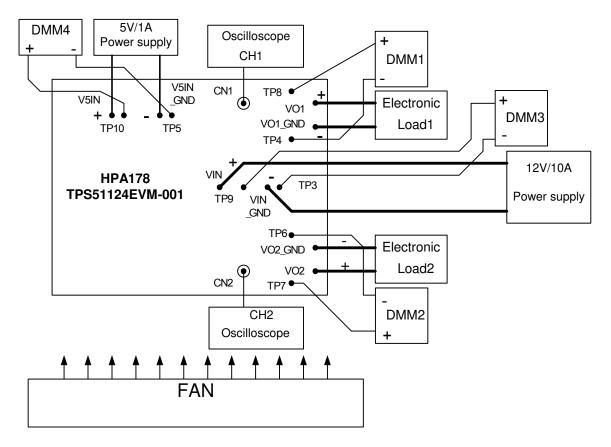


Figure 2. Equipment setup for HPA178 EVM board

4.2 Test procedure

- 1. Make sure the switches SW1 (EN1), SW2 (EN2) are in "OFF" position.
- 2. Make sure the shunt jumper for JP1 is set 3-pin to 4-pin (Med).
- 3. Apply appropriate V5IN voltage to V5IN and V5IN_GND terminals.
- 4. Apply appropriate VIN voltage to VIN and VIN_GND terminals
- 5. Turn on SW1 (EN1), CH1-output will start up.
- 6. Turn on SW2 (EN2), CH2-output will start up.

6

4.3. Start up performance

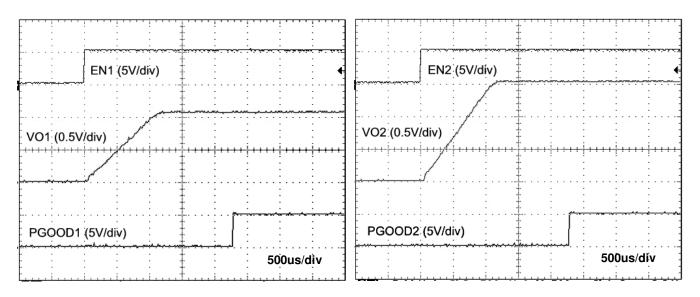


Figure 3. 1.05 V Startup Waveforms

Figure 4. 1.5V Startup Waveforms

4.4. Transient performance

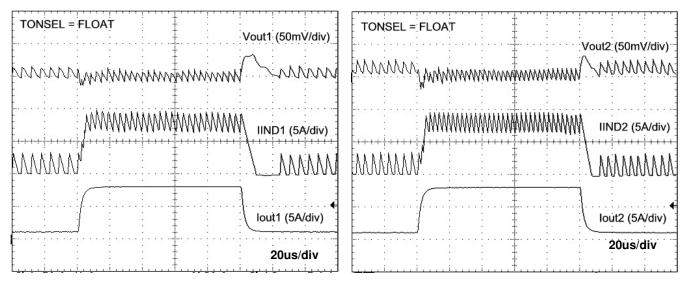


Figure 5. 1.05 V Load Transient Response

Figure 6. 1.5V Load Transient Response

5. Configuration

This EVM could be set as user's desirable configurations. Please refer to the following specific configuration setting sections.

5.1 Switching Frequency selection

Switching frequency can be set by the TONSEL pin using JP1 on the EVM. <u>Default setting is Medium.</u>

Table 2. Switching Frequency selection

Jumper (JP1) set to	TONSEL	Frequency		
	1011022	Тур	CH1	CH2
Top (1-2 pin shorted)	GND	Slow	240kHz	300kHz
CENTER (3-4 pin shorted)	Float	Medium	300kHz	360kHz
Bottom (5-6 pin shorted)	V5FILT	Fast	360kHz	420kHz

(Note; Frequencies are approximate)

5.2 Bootstrap Diode selection

Bootstrap diodes (D1, D2) are not populated on this EVM since TPS51124 has built-in them. External Schottky diodes can be added in order to further improve the efficiency.

8

6. EVM Assembly Drawing and PCB layout

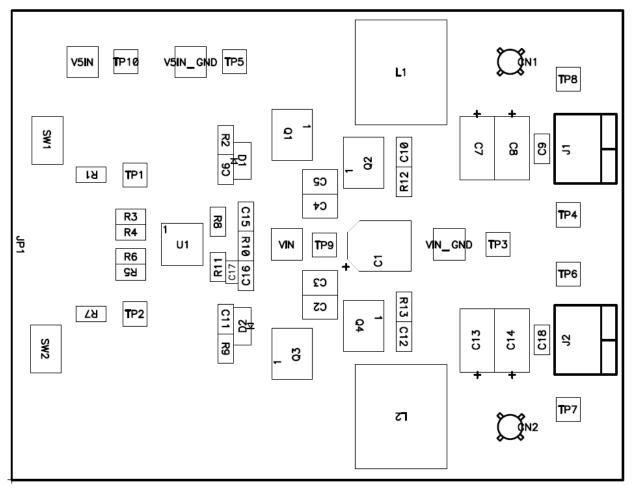


Figure 7. Top Assembly

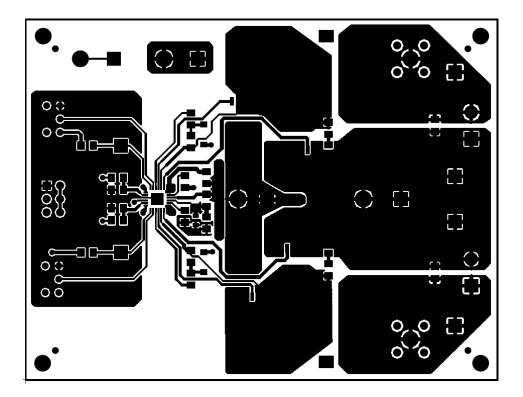


Figure 8. Top Layer

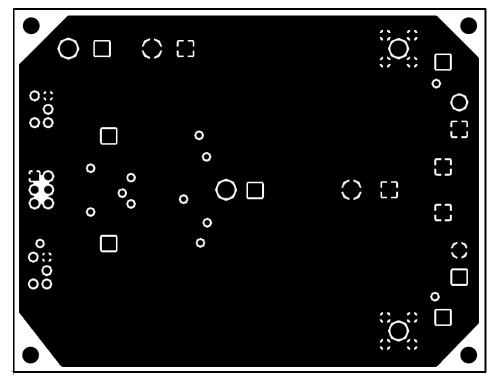


Figure 9. Inner Layer 1

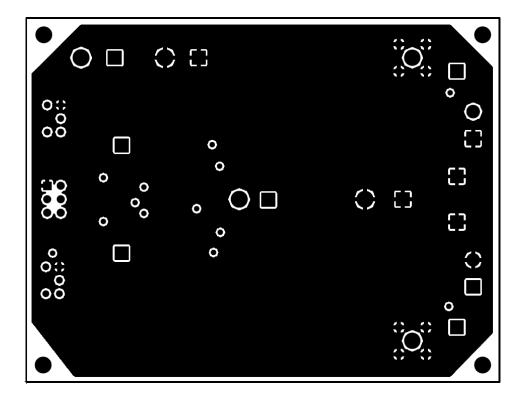


Figure 10. Inner Layer 2

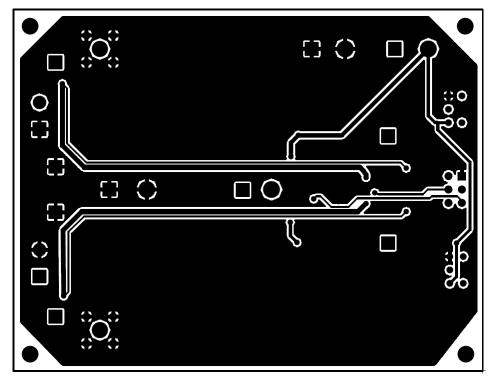


Figure 11. Bottom Layer

7. List of Materials

Table 3-1. List of Materials

Reference Designator	QTY	Description	Size	Mfr	Part Number	
	1	Shunt, 100-mil, Black	0.100	3M	929950-00	
C1	0	Capacitor, Aluminum	0.26 x 0.26 inch	Any	Any	
C13, C14	2	Capacitor, POSCAP, 330 μ F, 2.5-V 18-m Ω (or 15-m Ω), 20%	7343	SANYO	2R5TPE330MI or 2R5TPE330MF	
C15	1	Capacitor, Ceramic, 4.7µF, 6.3V, BJ, 20%	0805	TDK	C2012X5R0J475K	
C16	1	Capacitor, Ceramic, 1µF, 6.3V, BJ, 20%	0805	TDK	C2012X5R0J105K	
C17	1	Capacitor, Ceramic, 18pF, 50V, BJ, 20%	0805	Std	Std	
C2, C3, C4, C5	4	Capacitor, Ceramic, 10μF, 25V, BJ , 20%	1210	TDK / Taiyo Yuden	C3225JB1E106 / TMK325BJ106MM	
C6, C11	2	Capacitor, Ceramic, 0.1μF, 50V, BJ, 20%	0805	Std	Std	
C7, C8	2	Capacitor, POSCAP, 330μF, 2.5-V 15-mΩ (or 18-mΩ), 20%	7343	SANYO	2R5TPE330MFor 2R5TPE330MI	
C9, C10, C12, C18	0	Capacitor, Ceramic	0805	Any	Any	
CN1, CN2	2	Adaptor, 3.5-mm probe clip (or 131-5031-00)	0.2	Tektronix	131-4244-00	
D1, D2	0	Diode, Schottky, 0.5A, 30V	SOD-123	Any	Any	
J1, J2	2	Terminal Block, 2-pin, 15-A, 5.1mm	0.40 x 0.35 inch	OST	ED1609	
JP1	1	Header, 2x3-pin, 100mil spacing (36-pin strip)	0.20 inch x 0.30	Sullins	PTC36DAAN	
L1, L2	2	Inductor, 1.0uH, 20.5A, 2-mΩ	0.496 x 0.532 inch	токо	FDA1254-1R0M	
Q1, Q3	2	MOSFET, N-ch, 30-V, 11-A, 12.5-mΩ	SO8	IR	IRF7821	
Q2, Q4	2	MOSFET, N-ch, 30-V, 13.8-A, 6.8-mΩ	SO8	IR	IRF8113	
R1, R7	2	Resistor, Chip, 100kΩ, 1/10W, 1%	0805	Std	Std	
R12, R13	0	Resistor, Chip	0805	Std	Std	
R2, R9, R10	3	Resistor, Chip, 3.3Ω, 1/10W, 1%	0805	Std	Std	
R3	1	Resistor, Chip, 28.7kΩ, 1/10W, 1%	0805	Std	Std	
R4, R6	2	Resistor, Chip, 75kΩ, 1/10W, 1%	0805	Std	Std	
R5	1	Resistor, Chip, 73.2kΩ, 1/10W, 1%	0805	Std	Std	
R8, R11	2	Resistor, Chip, 6.8kΩ, 1/10W, 1%	0805	Std	Std	
SW1, SW2	2	Switch, ON-ON Mini Toggle	0.28 x 0.18""	Nikkai	G12AP	
TP1, TP2	2	Test point, White, Thru hole	0.125 x 0.125 inch	Keystone	5012	
TP10	1	Test point, Orange, Thru hole	0.125 x 0.125 inch	Keystone	5013	
TP3, TP4, TP5, TP6	4	Test point, Black, Thru hole	0.125 x 0.125 inch	Keystone	5011	
TP7, TP8	2	Test point, Yellow, Thru hole	0.125 x 0.125 inch	Keystone	5014	

Table 3-2. List of Materials

Reference Designator	QTY	Description	Size	Mfr	Part Number
TP9	1	Test point, Red, Thru hole	0.125 x 0.125 inch	Keystone	5010
U1	1	IC, Dual Synchronous Step-Down Controller for Low Voltage Power Rails	QFN32	TI	TPS51124RHB
VIN_GND, VIN, V5IN, V5IN GND	4	Pin, Wiring Terminal	0.09(D) X 0.31 inch	Mill Max	3183-2-00-15-00- 00-080

8. References

1. TPS51124 Datasheet, Dual Synchronous Step-Down Controller for Low Voltage Power Rails (SLVS616)

