

DDR Phase Lock Loop Clock Driver (60MHz - 220MHz)

Recommended Application:

1:2 DDRI Clock Driver

Product Description/Features:

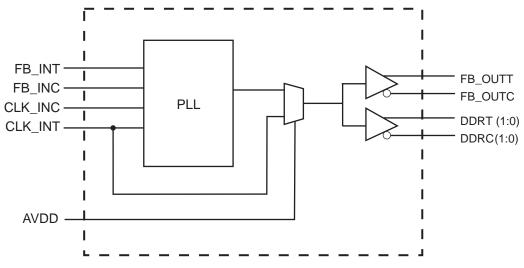
- Low skew, low jitter PLL clock driver
- Feedback pins for input to output synchronization
- Spread Spectrum tolerant inputs
- With bypass mode mux
- Operating frequency 60 to 220 MHz

Switching Characteristics:

CYCLE - CYCLE jitter: <75psOUTPUT - OUTPUT skew: <60ps

Period jitter: ±75psHalf-Period jitter: ±75ps

Functionality


	INPUTS			(PLL State			
AVDD	CLK_INT	CLK_INC	CLKT	CLKC	FB_OUTT	FB_OUTC	PLL State	
GND	L	Н	L	Н	L	Н	Bypassed/Off	
GND	Н	L	Н	L	Н	L	Bypassed/Off	
2.5V (nom)	L	Н	L	Н	┙	Н	On	
2.5V (nom)	Н	L	Н	L	Н	L	On	

Pin Configuration

VDD2.5	1		16	GND
DDRT0	2	7	15	DDRC1
DDRC0	3	84	14	DDRT1
GND	4	5V842	13	VDD2.5
CLK_INT	5	Ŏ	12	FB_INC
CLK_INC	6	S	11	FB_INT
AVDD	7	_	10	FB_OUTT
AGND	8		9	FB_OUTC

16 pin SSOP

Block Diagram

0830B—11/24/08

Pin Descriptions

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
1	VDD2.5	PWR	Power supply, nominal 2.5V
2	DDRT0	OUT	"True" Clock of differential pair output.
3	DDRC0	OUT	"Complementary" Clock of differential pair output.
4	GND	PWR	Ground pin.
5	CLK_INT	IN	"True" reference clock input.
6	CLK_INC	IN	"Complementary" reference clock input.
7	AVDD	PWR	3.3V Analog Power pin for Core PLL
8	AGND	PWR	Analog Ground pin for Core PLL
9	FB_OUTC	OUT	Complement single-ended feedback output, dedicated external feedback. It switches at the same frequency as other DDR outputs, This output must be connect to FB_INC.
10	FB_OUTT	OUT	True single-ended feedback output, dedicated external feedback. It switches at the same frequency as other DDR outputs, This output must be connect to FB_INT.
11	FB_INT	IN	True single-ended feedback input, provides feedback signal to internal PLL for synchronization with CLK_INT to eliminate phase error.
12	FB_INC	IN	Complement single-ended feedback input, provides feedback signal to internal PLL for synchronization with CLK_INT to eliminate phase error.
13	VDD2.5	PWR	Power supply, nominal 2.5V
14	DDRT1	OUT	"True" Clock of differential pair output.
15	DDRC1	OUT	"Complementary" Clock of differential pair output.
16	GND	PWR	Ground pin.

Absolute Maximum Ratings

Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics - Input/Supply/Common Output Parameters

TA = 0°C to +85°C; Supply Voltage AVDD, VDD = 2.5 V +/- 0.2V (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input High Current	I _{IH}	$V_I = V_{DD}$ or GND	5			μA
Input Low Current	urrent I_{IL} $V_I = V_{DD}$ or GND				5	μA
Operating Supply	I _{DD2.5}	$C_L = 0$ pF, $R_L = \infty \Omega$			160	mA
Current	I _{DDPD}	$C_L = 0pF, R_L = \infty\Omega$			100	μΑ
Output High Current	I _{OH}	$V_{DD} = 2.3V, V_{OUT} = 1V$	-18			mA
Output Low Current	I _{OL}	$V_{DD} = 2.3V, V_{OUT} = 1.2V$	26			mA
High Impedance Output Current	I _{OZ}	V _{DD} =2.7V, Vout=V _{DD} or GND			±10	∝A
Input Clamp Voltage	V_{IK}	lin = -18mA			-1.2	V
	\/	V_{DD} = min to max, I_{OH} = -1 mA	V _{DD} - 0.1			V
High-level output voltage	V _{OH}	$V_{DD} = 2.3V$, $I_{OH} = -12 \text{ mA}$	1.7	1.7		V
Low lovel output voltage	V	V_{DD} = min to max I_{OL} =1 mA			0.1	
Low-level output voltage	V_{OL}	$V_{DD} = 2.3V$ $I_{OH} = 12 \text{ mA}$			0.6	V
Input Capacitance ¹	C_{IN}	VI = V _{DD} or GND		3		pF
Output Capacitance ¹	C _{OUT}	$VI = V_{DD}$ or GND		3		pF

¹Guaranteed by design and characterization, not 100% tested in production.

DC Electrical Characteristics

TA = 0° C to +85°C; Supply Voltage AVDD, VDD = 2.5 V +/- 0.2V (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	V_{DDQ}, A_{VDD}		2.3	2.5	2.7	V
Low level input voltage	V _{IL}	CLK_INT, CLK_INC, FB_INC, FB_INT		0.4	V _{DD} /2 - 0.18	٧
High level input voltage	V _{IH}	CLK_INT, CLK_INC, FB_INC, FB_INT	V _{DD} /2 + 0.18	2.1		٧
DC input signal voltage (note 1,2)	V _{IN}		-0.3		V _{DD} + 0.3	V
Differential input signal voltage (note 3)	V _{ID}	CLK_INT, CLK_INC, FB_INC, FB_INT	0.36		V _{DD} + 0.6	٧
Differential output voltage (note 3)	V _{OD}	CLK_INT, CLK_INC, FB_INC, FB_INT	0.7		V _{DD} + 0.6	٧
Output differential cross- voltage (note 4)	V _{OX}		V _{DD} /2 - 0.15		$V_{DD}/2 + 0.15$	٧
Input differential cross- voltage (note 4)	V _{IX}		V _{DD} /2 - 0.2	V _{DD} /2	$V_{DD}/2 + 0.2$	٧
Operating free-air temperature	T _A		0		85	°C

Notes:

- 1 Unused inputs must be held high or low to prevent them from floating.
- 2 DC input signal voltage specifies the allowable DC excursion of differential input.
- 3 Differential input signal voltage specifies the differential voltage [VTR-VCP] required for switching, where VTR is the true input level and VCP is the complementary input level.
- 4 Differential cross-point voltage is expected to track variations of VDD and is the voltage at which the differential signal must be crossing.

Timing Requirements

 $T_A = 0$ °C to +85°C; Supply Voltage AVDD, VDD = 2.5 V +/- 0.2V (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
Max clock frequency ³	freq _{op}		33	233	MHz
Application Frequency Range ³	freq _{App}		60	220	MHz
Input clock duty cycle	d _{tin}		40	60	%
CLK stabilization	T _{STAB}			100	μs

Switching Characteristics

 $T_A = 0$ °C to +85°C; Supply Voltage AVDD, VDD = 2.5 V +/- 0.2V (unless otherwise stated)

PARAMETER	SYMBOL	CONDITION	MIN	TYP	MAX	UNITS
Max clock frequency ³	freq _{op}		40		333	MHz
Application Frequency Range ³	freq _{App}		60		220	MHz
Input clock duty cycle	d_{tin}		40		60	%
Input clock slew rate	t _{sl(I)}		1		2	v/ns
CLK stabilization	T _{STAB}				100	μs
Low-to high level propagation delay time	t _{PLH} 1	CLK_IN to any output			5.5	ns
High-to low level propagation delay time	t _{PHL} 1	CLK_IN to any output			5.5	ns
Output enable time	t _{en}	PD# to any output		5		ns
Output disable time	t _{dis}	PD# to any output		5		ns
Period jitter	t _{jit (per)}		-75		75	ps
Half-period jitter	t _{jit(hper)}		-75		75	ps
Output clock slew rate	t _{sl(o)}	Over the application	1		2.5	v/ns
Cycle to Cycle Jitter	t _{cyc} -t _{cyc}	frequency range	-75		75	ps
Static Phase Offset	t _(spo)]	-50		50	ps
Output to Output Skew	t _{skew}	7		40	60	ps

Notes:

- 1. Refers to transition on noninverting output in PLL bypass mode.
- 2. While the pulse skew is almost constant over frequency, the duty cycle error increases at higher frequencies. This is due to the formula: duty cycle=twH/tc, were the cycle (tc) decreases as the frequency goes up.
- 3. Switching characteristics are guaranteed for application frequency range. The PLL Locks over the Max Clock Frequency range, but the device doe not necessarily meet other timing parameters.
- 4. Does not include jitter.

Parameter Measurement Information

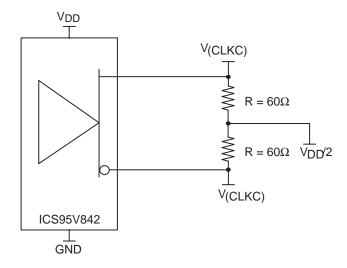


Figure 1. IBIS Model Output Load

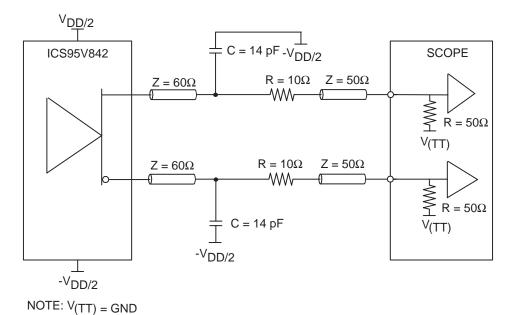


Figure 2. Output Load Test Circuit

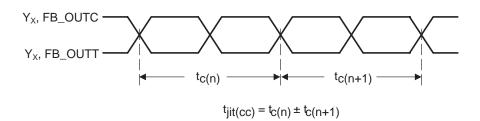


Figure 3. Cycle-to-Cycle Jitter

Parameter Measurement Information

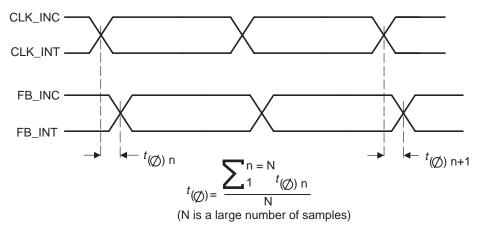
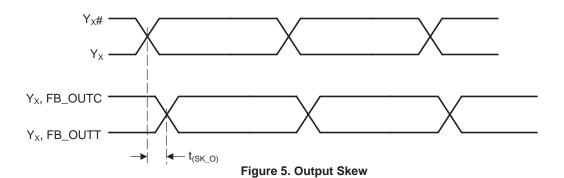



Figure 4. Static Phase Offset

 Y_X , FB_OUTC Y_X , FB_OUTC Y_X , FB_OUTC Y_X , FB_OUTT $t_{(jit_per)} = t_{C(n)} - \frac{1}{f_0}$

Figure 6. Period Jitter

Parameter Measurement Information

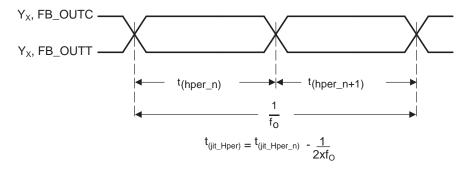


Figure 7. Half-Period Jitter

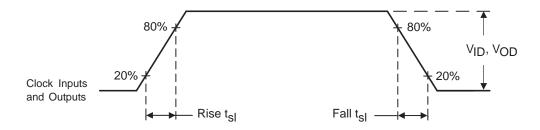
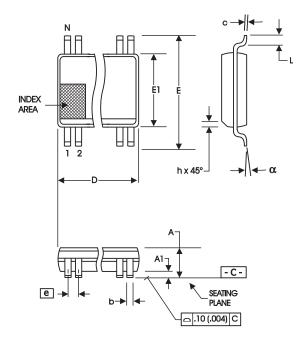
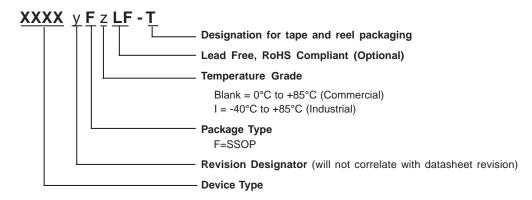



Figure 8. Input and Output Slew Rates

16-Lead, 150 mil SSOP (QSOP)

	In Milli	meters	In Inches			
SYMBOL	COMMON DIMENSIONS		COMMON DIMENSION			
	MIN	MAX	MIN	MAX		
Α	1.35	1.75	.053	.069		
A1	0.10	0.25	.004	.010		
A2		1.50		.059		
b	0.20	0.30	.008	.012		
С	0.18	0.25	.007	.010		
D	SEE VAF	SEE VARIATIONS		SEE VARIATIONS		
E	5.80	6.20	.228	.244		
E1	3.80	4.00	.150	.157		
е	0.635 BASIC		0.025 BASIC			
L	0.40	1.27	.016	.050		
N	SEE VARIATIONS		SEE VARIATIONS			
а	0°	8°	0°	8°		
ZD	SEE VARIATIONS		SEE VAR	RIATIONS		

VARIATIONS


	N	Dn	nm.	ZD	D (ii	nch)	ZD
	IN	MIN	MAX	(Ref)	MIN	MAX	(Ref)
ı	16	4.80	5.00	0.23	.189	.197	.009

Reference Doc.: JEDEC Publication 95, MO-137

10-0032

Ordering Information

95V842yFzLF-T

0830B—11/24/08

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/