
Optical Comparator Array

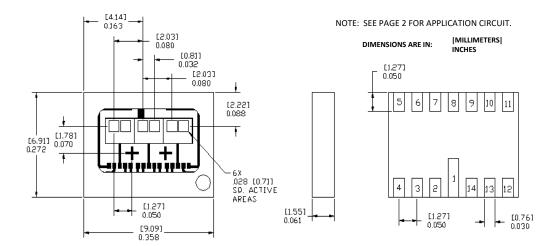
OPR5011

Features:

- Precise active area location
- Surface mountable
- TTL compatible output
- Wide supply voltage range
- Wide operating temperature range

Description:

Each **OPR5011** device is a hybrid sensor array that consists of three channels of the OPTEK differential optical comparator ('TRI-DOC") IC. The single chip construction ensures very tight dimensional tolerances between active areas.


Specifically designed for high-speed/high-resolution encoder applications, the open collector output switches based on the comparison of the input photodiode's light current levels. Logarithmic amplification of the input signals facilitates operation over a wide range of light levels.

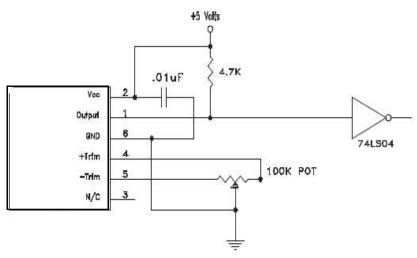
The surface-mountable opaque polyimide package shields the photodiodes from stray light and can withstand multiple exposures to the most demanding soldering conditions, while the gold-plated wraparound contacts provide exceptional storage and wetting characteristics.

See Application Bulletin 237 for handling instructions.

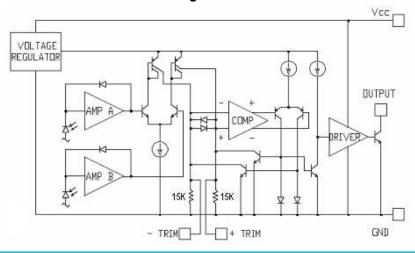
Applications:

- High-speed applications
- High-resolution applications
- · Applications requiring a wide range of light levels

Warning: Front Window is pressure sensitive. Do not apply pressure or high vacuum to window.



Ordering Information										
Part Number	Sensor	# of Elements	Icc (mA) Typ / Max	Optical Hysteresis (%) Typical	Optical Offset (%) Min / Max	Packaging				
OPR5011	Differential Optical Comparator	3	9 / 20	40.00	-40/+40	Chip Tray				
OPR5011T	Differential Optical Comparator	3	9 / 20	40.00	-40/+40	Tape & Reel				


Application Circuit - OPR5011

Notes:

- (1) The 74LS04 is recommended as a means of isolating the "DOC" comparator circuitry from transients induced by inductive and capacitive loads.
- (2) It is recommended that a decoupling capacitor be placed as close as possible to the device.

Block Diagram - OPC8332

Optical Comparator Array

OPR5011

Electrical Specifications

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

Storage and Operating Temperature	-40° C to +100° C
Supply Voltage	24 V
Output Voltage	24 V
Output Current	14 mA
Power Dissipation	500 mW
Solder reflow time within 5°C of peak temperature is 20 to 40 seconds ⁽¹⁾	250° C

Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
I _{cc}	Supply Current	-	9	20	mA	V _{CC} = 24 V
V _{OL}	Low Level Output Voltage ⁽²⁾	-	0.3	0.4	V	I _{OL} = 14 mA, V _{CC} = 4.5 V
I _{OH}	High Level Output Current ⁽³⁾	-	0.1	1	μΑ	V _{CC} = V _O = 20 V
OPT-HYS	Optical Hysteresis ⁽⁴⁾⁽⁷⁾	-	40	-	%	V _{CC} = 5 V, I _{OL} = 1 mA
OPT-OFF	Optical Offset ⁽⁴⁾⁽⁷⁾	-40	10	+40	%	V _{CC} = 5 V, I _{OL} = 1 mA
f _{max}	Frequency Response ⁽⁵⁾	-	1	-	MHz	
t _{Ih}	Output Rise Time ⁽⁶⁾	-	1	-	μs	V _{CC} = 5 V
t _{hl}	Output Fall Time ⁽⁶⁾	-	300	-	ns	

Notes:

- (1) Solder time less than 5 seconds at temperature extreme.
- (2) Pin (+) = 100.0 nW and Pin (-) = $1.0 \mu W$.
- (3) Pin (+) = 1.0 μ W and Pin (-) = 100.0 nW.
- (4) Pin (-) is held at 1.0 μ W while Pin (+) is ramped from 0.5 μ W to 1.5 μ W and back to 0.5 μ W.
- (5) Pin (+) is modulated from 1.0 μW to 2.0 μW. Pin (-) is modulated from 1.0 μW to 2.0 μW with phase shifted 180° with respect to Pin (+). Use 100 $k\Omega$ trimpot to set the output signal to 50% duty cycle for maximum operating frequency.
- (6) Measured between 10% and 90% points.
- Optical Hysteresis and Optical Offset are found by placing 1.0 µW of light on the inverting photodiode and ramping the light intensity of the non-inverting input from 0.5 µW up to 1.5 µW and back down. This will produce two trigger points – an upper trigger point and lower trigger point. These points are used to calculate the optical hysteresis and offset.

These are defined as:

Where:

= Light level incident upon the "-" photodiode on the IC chip (Pin) (-) = 1.0 μ W).

P in (-) P rise

= Value of light power level incident upon the "+" photodiode that his required to switch the digital output when the

light level is an increasing level (rising edge).

P fall = Value of light power level incident upon the "+" photodiode that is required to switch the digital output when the light

level is decreasing level (falling edge).

P average = (P rise + P fall)

2