

- 700ps max. propagation delay
- Extended 100E VEE range of -4.2V to -5.5V
- **■** Differential outputs
- Fully compatible with industry standard 10KH, 100K ECL levels
- Internal 75K Ω input pulldown resistors
- Fully compatible with Motorola MC10E/100E150
- Available in 28-pin PLCC package

The SY10/100E150 are 6-bit D latches with differential outputs designed for use in new, high- performance ECL systems. When both Latch Enables (LEN1, LEN2) are at a logic LOW, the latch is in the transparent mode and input data propagates through to the output. A logic HIGH on either LEN1 or LEN2 (or both) latches the input data. The Master Reset (MR) overrides all other signals to set the Q outputs to a logic LOW.

Pin	Function
D0-D5	Data Inputs
LEN1, LEN2	Latch Enables
MR	Master Reset
Q0-Q5	True Outputs
$\overline{\overline{Q}}_0$ – $\overline{\overline{Q}}_5$	Inverting Outputs
Vcco	Vcc to Output

28-Pin PLCC (J28-1)

Ordering Information⁽¹⁾

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY10E150JC	J28-1	Commercial	SY10E150JC	Sn-Pb
SY10E150JCTR ⁽²⁾	J28-1	Commercial	SY10E150JC	Sn-Pb
SY100E150JC	J28-1	Commercial	SY100E150JC	Sn-Pb
SY100E150JCTR ⁽²⁾	J28-1	Commercial	SY100E150JC	Sn-Pb
SY10E150JZ ⁽³⁾	J28-1	Commercial	SY10E150JZ with Pb-Free bar-line indicator	Matte-Sn
SY10E150JZTR ^(2, 3)	J28-1	Commercial	SY10E150JZ with Pb-Free bar-line indicator	Matte-Sn
SY100E150JZ ⁽³⁾	J28-1	Commercial	SY100E150JZ with Pb-Free bar-line indicator	Matte-Sn
SY100E150JZTR ^(2, 3)	J28-1	Commercial	SY100E150JZ with Pb-Free bar-line indicator	Matte-Sn

Notes

- 1. Contact factory for die availability. Dice are guaranteed at T_A = 25°C, DC Electricals only.
- 2. Tape and Reel.
- 3. Pb-Free package is recommended for new designs.

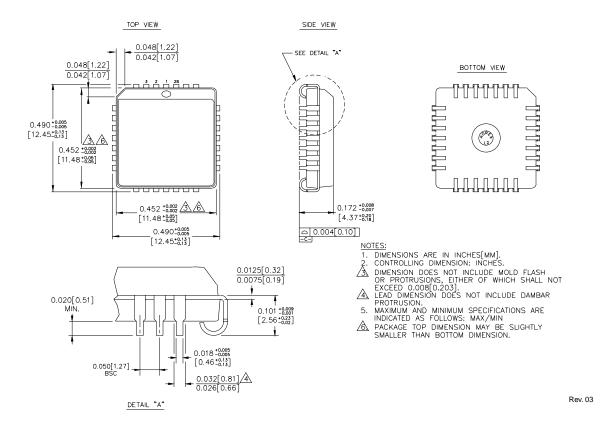
(Each Latch)

	INPUTS			OUTI	PUTS	Operating
Dn	LEN ₁	LEN ₂	MR	Qn	Q n	Mode
Н	L	L	L	Н	L	Latch
L	L	L	L	L	Н	
Х	Х	Н	L	Latched ⁽²⁾	Latched ⁽²⁾	
Х	Н	Χ	L	Latched ⁽²⁾	Latched ⁽²⁾	
X	Х	Х	Н	L	Н	Asynchronous

Notes:

- 1. H = HIGH state
 - L = LOW state
 - X = Don't care
- 2. Retains Data that is present before the LEN positive transition.

VEE = VEE (Min.) to VEE (Max.); VCC = VCCO = GND


		TA = 0°C			TA = +25°C			TA = +85°C				
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
Iн	Input HIGH Current										μΑ	_
	D	_	—	200	—	—	200	—	—	200		
	LEN MR	_	_	150	_	<u> </u>	150	_	_	150		
IEE	Power Supply Current										mΑ	-
	10E	 —	52	62	l —	52	62	l —	52	62		
	100E	_	52	62	_	52	62	—	60	72		

VEE = VEE (Min.) to VEE (Max.); VCC = VCCO = GND

		TA = 0°C			TA = +25°C			TA = +85°C				
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
tPD	Propagation Delay to Output D LEN MR	250 375 450	375 500 625	550 700 750	250 375 450	375 500 625	550 700 750	250 375 450	375 500 625	550 700 750	ps	1
ts	Set-up Time, D	200	50	_	200	50	_	200	50		ps	
tH	Hold Time, D	200	-50	_	200	- 50	_	200	- 50		ps	_
trr	Reset Recovery Time	750	650	_	750	650	_	750	650		ps	
tpw	Minimum Pulse Width, MR	400	_	_	400	_	_	400	_		ps	
tskew	Within-Device Skew	_	50		_	50		_	50	_	ps	1
tr tf	Rise/Fall Time 20% to 80%	300	450	650	300	450	650	300	450	650	ps	_

Note:

1. Within-device skew is defined as identical transitions on similar paths through a device.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.

Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2006 Micrel, Incorporated.