

FQB5N50CF 500V N-Channel MOSFET

Features

- 5A, 500V, $R_{DS(on)}$ = $~1.55~\Omega$ @V_{GS} = 10 V
- Low gate charge (typical 18nC)
- Low Crss (typical 15pF)
- · Fast switching
- 100% avalanche tested
- Improved dv/dt capability

These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, planar stripe, DMOS technology.

May 2006

8 F.

TM ۲

This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switched mode power supplies, electronic lamp ballasts based on half bridge topology.

O D

GC

Absolute Maximum Ratings

Symbol	Parameter		FQB5N50CF	Units
V _{DSS}	Drain-Source Voltage	500	V	
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$)	5	А	
	- Continuous (T _C = 100°C)		3.2	А
I _{DM}	Drain Current - Pulsed	(Note 1)	20	А
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	300	mJ
I _{AR}	Avalanche Current	(Note 1)	5	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	9.6	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	4.5	V/ns
P _D	Power Dissipation ($T_C = 25^{\circ}C$)		96	W
	- Derate above 25°C		0.76	W/°C
TJ, T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
TL	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C

Thermal Characteristics

Symbol	Parameter	FQB5N50CF	Units
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction-to-Case	1.3	°C/W
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient*	40	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	62.5	°C/W

* When mounted on the minimum pad size recommended (PCB Mount)

Device N	larking	Device	Packag	e	Reel Size	Тар	e Widt	h	Quan	tity
FQB5N	50CF	FQB5N50CFTM	D2-PAK		330mm		24mm		800)
FQB5N	QB5N50CF FQB5N50CFTF D2-PAK			330mm		24mm		800		
Electric	al Cha	racteristics Tc	= 25°C unless othe	rwise note	d			-		
Symbol		Parameter			Test Condition	าร	Min	Тур	Max	Units
Off Charac	teristics			1		ļ		!		
BV _{DSS}	Drain-Sou	urce Breakdown Volta	ge	$V_{GS} =$	0 V, I _D = 250 μA		500			V
ΔBV _{DSS} / ΔT _J	Breakdow	vn Voltage Temperatu	re Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25°C			0.5		V/°C	
-		e Voltage Drain Current		$V_{DS} = 500 \text{ V}, V_{GS} = 0 \text{ V}$				10	μA	
				$V_{\rm DS} = 400 \text{ V}, \text{ T}_{\rm C} = 125^{\circ} \text{C}$				100	μA	
I _{GSSF}	Gate-Bod	ly Leakage Current, F					100	nA		
I _{GSSR}	Gate-Bod	ly Leakage Current, R			/ _{GS} = -30 V, V _{DS} = 0 V				-100	nA
On Charact	eristics			1		ļ		1	1	
V _{GS(th)}	Gate Thre	hreshold Voltage		$V_{DS} = V_{GS}, I_D = 250 \ \mu A$		2.0		4.0	V	
R _{DS(on)}	Static Dra	ain-Source On-Resista	nce $V_{GS} = 10 \text{ V}, \text{ I}_{D} = 2.5 \text{ A}$			1.3	1.55	Ω		
9 _{FS}	Forward ⁻	Transconductance		$V_{DS} = 40 \text{ V}, I_D = 2.5 \text{ A}$ (Note 4)			5.2		S	
Dynamic Cl	naracteristi	CS								
C _{iss}	Input Cap	pacitance		$V_{DS} = 25 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$ f = 1.0 MHz			480	625	pF	
C _{oss}	Output Ca	apacitance						80	105	pF
C _{rss}	Reverse ⁻	Transfer Capacitance					15	20	pF	
Switching C	haracterist	tics								
t _{d(on)}	Turn-On I	Delay Time	y Time		$V_{DD} = 250 \text{ V}, \text{ I}_{D} = 5\text{ A},$			12	35	ns
t _r	Turn-On I	Rise Time		R _G = 25 Ω			46	100	ns	
t _{d(off)}	Turn-Off I	Delay Time					50	110	ns	
t _f	Turn-Off I	Fall Time				(Note 4, 5)		48	105	ns
Qg	Total Gate	e Charge		$V_{DS} = 400 \text{ V}, \text{ I}_D = 5\text{A},$ $V_{GS} = 10 \text{ V}$ (Note 4, 5)				18	24	nC
Q _{gs}	Gate-Sou	irce Charge					2.2		nC	
Q _{gd}	Gate-Dra	in Charge				(Note 4, 5)		9.7		nC
Drain-Source	e Diode C	haracteristics and Ma	ximum Ratings							
I _S	Maximum	n Continuous Drain-So	ource Diode For	rward C	Surrent				5	Α
I _{SM}	Maximum	Pulsed Drain-Source	e Diode Forward	d Curre	nt				20	Α
V _{SD}	Drain-Sou	urce Diode Forward V	oltage		0 V, I _S = 5 A				1.4	V
t _{rr}	Reverse I	Recovery Time			$0 V, I_{S} = 5 A,$			65		ns
Q _{rr}	Reverse I	Recovery Charge		$dI_{F} / dt = 100 \text{ A}/\mu\text{s} \qquad (\text{Note 4})$		(Note 4)		110		nC

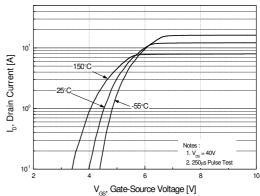
NOTES:

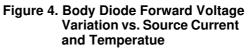
1. Repetitive Rating : Pulse width limited by maximum junction temperature

2. L = 21.5mH, I_{AS} = 5A, V_DD = 50V, R_G = 25 $\Omega,$ Starting $\ T_J$ = 25°C

3. $I_{SD} \leq$ 5A, di/dt \leq 200A/µs, $V_{DD} \leq BV_{DSS},$ Starting $\ T_J$ = 25°C

4. Pulse Test : Pulse width $\leq 300 \mu s, \, Duty \, cycle \leq 2\%$

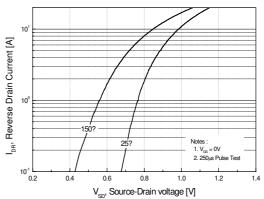
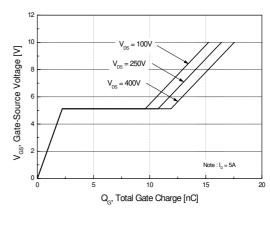
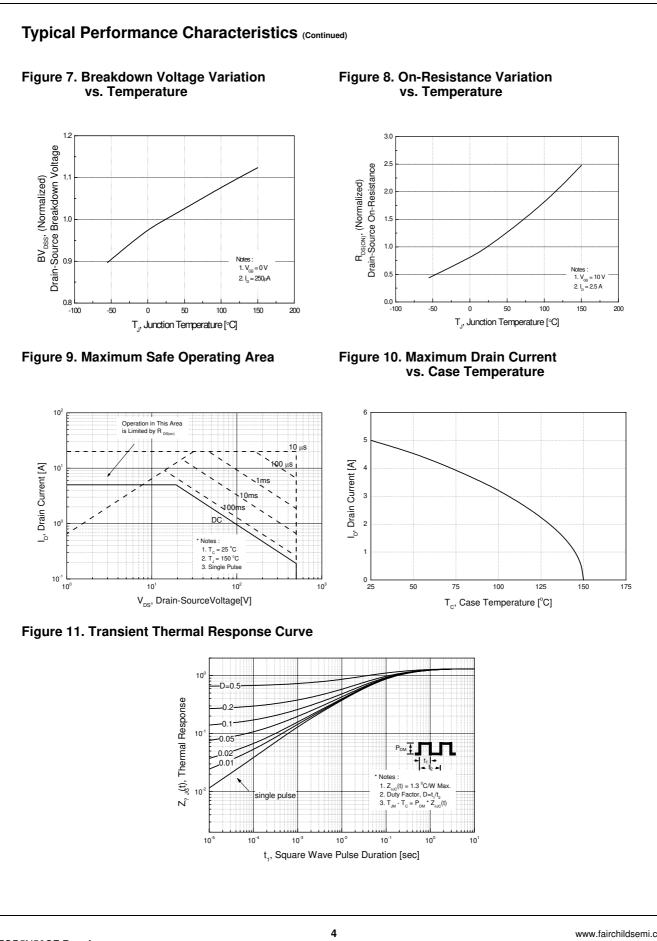
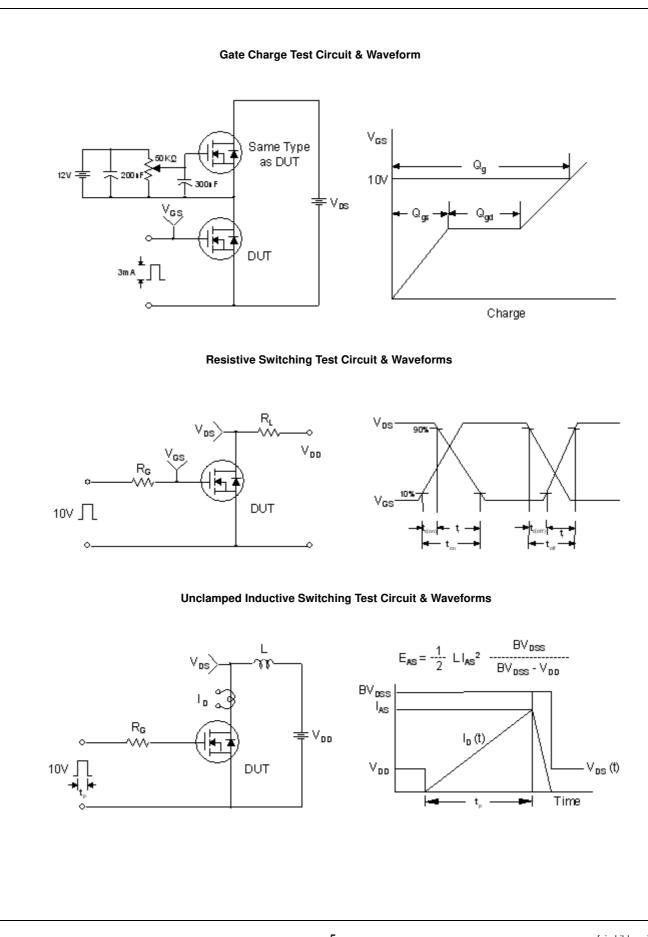
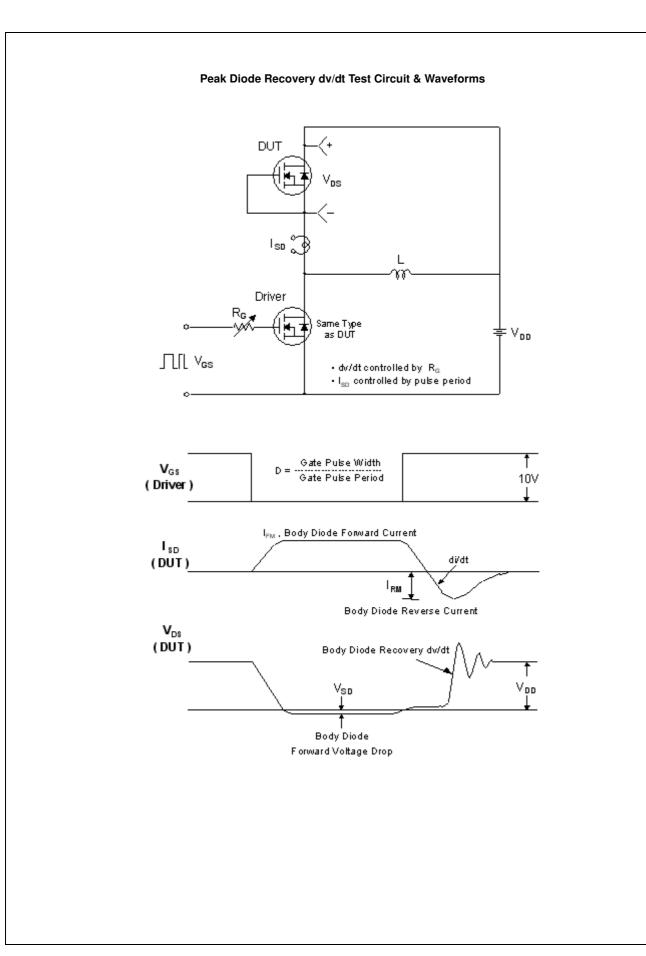

5. Essentially independent of operating temperature

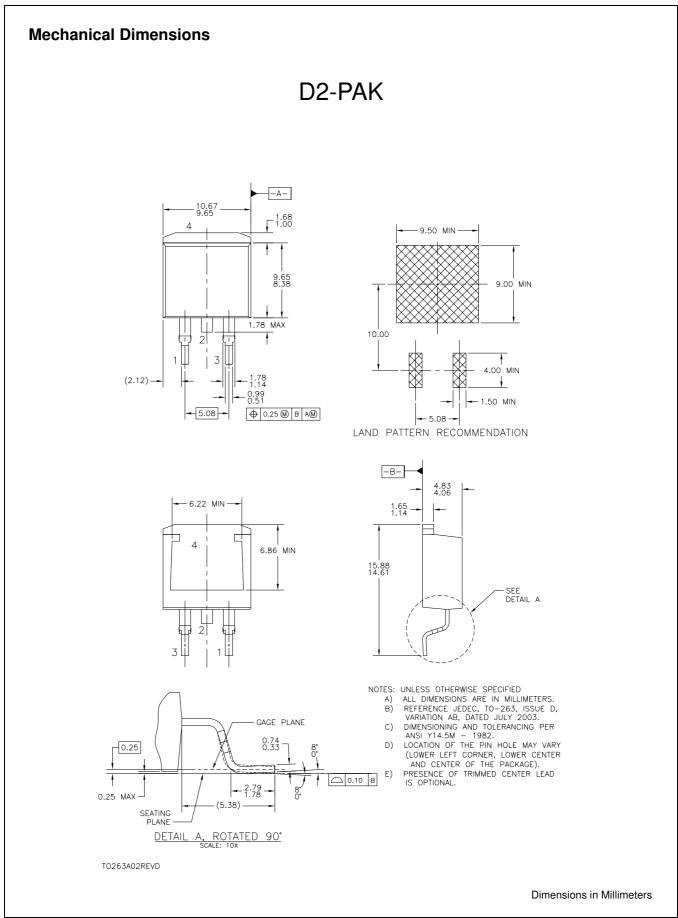

V_{cs} 15.0 V 10.0 V 8.0 V 7.0 V 6.5 V 6.0 V 5.5 V 5.0 V 10 10 Drain Current [A] I_D, Drain Current [A] 10 10 _____ 10 1. 250µs Pulse 2. T_c = 25°C 10⁻¹ 10¹ 10 10 V_{DS}, Drain-Source Voltage [V] Figure 3. On-Resistance Variation vs. Drain Current and Gate Voltage 4.5 4.0 10 R_{DS(ON)} [Ω], Drain-Source On-Resistance Reverse Drain Current [A] 3.5 = 10\ 3.0 2.5 10 2.0 $V_{GS} = 20V$ 1.5 DR, 1.0 Note : T, = 25°C 10⁻¹ L. 0.2 0.5 10 15 0 I_D, Drain Current [A] **Figure 5. Capacitance Characteristics** 1200 12 $$\begin{split} C_{lss} &= C_{gs} + C_{gd} \left(C_{ds} = shorted \right) \\ C_{sss} &= C_{ds} + C_{gd} \end{split}$$ $C_{rss} = C_{gc}$ 1000 10 Gate-Source Voltage [V] 800 ۶ Capacitance [pF] 600 6 400 Notes ; 1. V_{GS} = 0 V 2. f = 1 MHz ر اردی 200 2 0 0 10 10 10 V_{DS}, Drain-Source Voltage [V]

Typical Performance Characteristics

Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics


Figure 6. Gate Charge Characteristics

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ FAST[®] FASTr™ ActiveArray™ FPS™ Bottomless™ Build it Now™ FRFET™ **CoolFFT™** GlobalOptoisolator™ *CROSSVOLT*™ GTO™ HiSeC™ DOME™ EcoSPARK™ I²C™ i-Lo™ E²CMOS™ EnSigna™ ImpliedDisconnect[™] FACT™ IntelliMAX™ FACT Quiet Series™ Across the board. Around the world.™ The Power Franchise[®] Programmable Active Droop™

ISOPLANAR[™] LittleFET[™] MiCROCOUPLER[™] MicroPak[™] MICROWIRE[™] MSX[™] MSX[™] MSXPro[™] OCX[™] OCX[™] OCX[™] OPTOLOGIC[®] OPTOPLANAR[™] PACMAN[™] POP[™] Power247[™] PowerEdge™ PowerSaver™ PowerTrench® QFET® QS™ Quiet Series™ RapidConfigure™ RapidConnect™ µSerDes™ ScalarPump™ SILENT SWITCHER® SMART START™ SPM™ Stealth™ SuperFET[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET[™] TCM[™] TinyLogic[®] TINYOPTO[™] TruTranslation[™] UHC[™] UHFET[™] UItraFET[®] VCX[™] Wire[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition			
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.			
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.			
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.			
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor The datasheet is printed for reference information only			

PRODUCT STATUS DEFINITIONS Definition of Terms

Rev. 119