

## **General Description**

The MAX4889B evaluation kit (EV kit) provides a proven design to evaluate the MAX4889B PCI Express® (PCIe) Gen II 5.0Gbps passive switch. The MAX4889B is a quad double-pole/double-throw (4 x DPDT) switch ideal for switching four half lanes of PCIe data between two destinations. The MAX4889B EV kit is used for critical tests (e.g., eve diagrams and s-parameter measurements such as insertion loss, return loss, and off-isolation).

The MAX4889B EV kit PCB comes with a MAX4889BETO+ installed. The MAX4889BETO+ is available in a lead(Pb)free 3.5mm x 9.0mm, 42-pin TQFN package with an exposed pad.

The MAX4889B EV kit can also be used to evaluate the MAX4889C. Contact the factory for a free sample of the pin-compatible MAX4889CETO+.

## **Component List**

| DESIGNATION                              | QTY | DESCRIPTION                                                          |  |  |
|------------------------------------------|-----|----------------------------------------------------------------------|--|--|
| C1, C2, C6,<br>C8, C10, C12,<br>C14, C16 | 8   | 0.1µF ±10%, 16V X7R ceramic capacitors (0402) Murata GRM155R71C104K  |  |  |
| C3, C4, C5,<br>C7, C9, C11,<br>C13, C15  | 8   | 1000pF ±10%, 16V X5R ceramic capacitors (0402) Murata GRM155R61C102K |  |  |
| C17                                      | 1   | 10μF ±10%, 16V X5R ceramic capacitor (0805) Murata GRM21BR61C106K    |  |  |
| JU1                                      | 1   | 3-pin header                                                         |  |  |
| P1–P12                                   | 12  | Edge-mount receptacle, SMA connectors                                |  |  |
| R1, R2                                   | 2   | 49.9Ω ±1% resistors (0402)                                           |  |  |
| U1                                       | 1   | 5.0Gbps PCIe passive switch<br>(42 TQFN-EP*)<br>Maxim MAX4889BETO+   |  |  |
| _                                        | 1   | Shunt                                                                |  |  |
| _                                        | 1   | PCB: MAX4889B Evaluation Kit+                                        |  |  |

<sup>\*</sup>EP = Exposed pad.

## **Component Supplier**

| SUPPLIER                                     | PHONE        | WEBSITE                         |
|----------------------------------------------|--------------|---------------------------------|
| Murata<br>Electronics North<br>America, Inc. | 770-436-1300 | www.murata-<br>northamerica.com |

**Note:** Indicate that you are using the MAX4889B when contacting this component supplier.

PCI Express is a registered trademark of PCI-SIG Corp.

### **Features**

- ♦ Eye Diagram Test Circuit with SMA Input/Output
- **♦ Calibration Trace Load and No Load**
- **♦ Lead(Pb)-Free and RoHS Compliant**
- **♦ Proven PCB Layout**
- ◆ Fully Assembled and Tested

## **Ordering Information**

| PART           | TYPE   |
|----------------|--------|
| MAX4889BEVKIT+ | EV Kit |

+Denotes lead(Pb)-free and RoHS compliant.

### **Quick Start**

## **Required Equipment**

- MAX4889B EV kit
- 3.3V/100mA DC power supply
- Pulse data generator with frequency of at least 2.5GHz (e.g., Agilent 81142A)
- Digital serial analyzer sampling oscilloscope with frequency of at least 2.5GHz (e.g., Tektronix DSA8200)
- Six SMA cables of equal lengths

#### **Procedure**

The MAX4889B EV kit is fully assembled and tested. Follow the steps below to verify board operation and eye diagram/jitter measurements. Caution: Do not turn on the power until all connections are completed.

- Connect the 3.3V/100mA power supply to the VCC and GND pads of the EV kit.
- 2) Verify that JU1 is in the 2-3 position.
- Set up the pulse data generator to a bit rate of 5Gbps (2.5GHz), the VHI and VLO to +250mV and -250mV, respectively, nonreturn-to-zero (NRZ) mode, and desired pseudorandom binary (bit) sequence (PRBS) with 2<sup>15</sup>-1 or 2<sup>7</sup>-1 patterns.
- 4) Use a pair of SMA cables to connect the differential output signals of the pulse data generator to the AOUTA+ and AOUTA- (P5 and P6) of the EV kit.
- 5) Use a single SMA cable to connect the trigger input of the digital serial analyzer to the trigger output of the pulse data generator.

Maxim Integrated Products 1

- 6) Use a single SMA cable to connect the clock input of the pattern sync module of the digital serial analyzer to the clock output of the pulse data generator.
- 7) Use the other pair of SMA cables to connect the two sampling channels of the digital serial analyzer to AIN+ and AIN- (P1 and P2) of the EV kit.
- 8) Set the digital serial analyzer to infinite persistence and select the math function of the signal ((AIN+) (AIN-)).
- 9) Adjust the vertical scale to 100mV/div and horizontal scale to 200ps/div on the digital serial analyzer.
- 10) Turn on the DC power supply.
- 11) Enable the data and clock outputs on the pulse data generator and observe the waveform on the digital serial analyzer.
- 12) Save the waveform on the digital serial analyzer.
- 13) Disable the data and clock outputs of the pulse generator.
- 14) Turn off the DC power supply.
- 15) Remove the pair of SMA cables connected to AOUTA+ and AOUTA- (P5 and P6) of the EV kit and connect the cables to R\_AOUT\_+ and R\_AOUT\_- (P9 and P10) of the EV kit.
- 16) Remove the pair of SMA cables connected to AIN+ and AIN- (P1 and P2) of the EV kit and connect the cables to R\_AIN+ and R\_AIN- (P7 and P8) of the EV kit.
- 17) Enable the data and clock outputs on the pulse data generator and observe the waveform on the digital serial analyzer.
- 18) Compare the waveform to the waveform that includes the MAX4889B and observe the jitter/eye height of both systems. Take the difference in jitter/eye height, which is the extra jitter/eye height coming from the MAX4889B.

# Detailed Description of Hardware

The MAX4889B EV kit provides a proven design to evaluate the MAX4889B PCle Gen II 5.0Gbps passive switch. The MAX4889B is a quad double-pole/double-throw (4 x DPDT) switch ideal for switching four half lanes of PCle data between two destinations. The MAX4889B EV kit is used for critical tests (e.g., eye diagrams and s-parameter measurements such as insertion loss, return loss, and off-isolation).

For simplicity, only one channel of the device is used in the EV kit. Only the AIN\_, AOUTA\_, and AOUTB\_ signals are used in the EV kit. All signal traces coming out of the MAX4889B are  $100\Omega$  differential controlled-impedance traces. Once the traces split into separate directions, the traces are  $50\Omega$  single-ended controlled impedances, which is equivalent to  $100\Omega$  differentially.

The MAX4889B operates from a 3.0V to 3.6V supply.

### **Calibration Trace**

At the bottom of the EV kit board are calibration traces used as a reference to differentiate the performance of the switch from the traces and SMA connector providing a complete analysis of the MAX4889B.

#### No Load

The first calibration traces are made with no load. The lengths of the traces are equal to the above circuitry minus the MAX4889B. The traces starting from R\_AIN\_ and R\_AOUT\_ are  $50\Omega$  single-ended controlled impedances. Once the traces run parallel to each other, and are matched side by side, the traces are  $100\Omega$  differential controlled impedances.

### Load

The second calibration traces are made with a  $50\Omega$  load. The lengths of the traces are half the calibration traces without the load.

## **Jumper Selection**

Table 1 shows the control input for SEL. The MAX4889B EV kit default setting is JU1 in the 2-3 position, which selects the signal's path between AIN\_ and AOUTA\_. Move JU1 to the 1-2 position to test the quality of the signals between AIN\_ and AOUTB\_.

**Table 1. SEL Control Input (JU1)** 

| JUMPER | SHUNT<br>POSITION | DESCRIPTION                                          |
|--------|-------------------|------------------------------------------------------|
| JU1    | 1-2               | Selects signal path between AIN_ and AOUTB_ channels |
|        | 2-3*              | Selects signal path between AIN_ and AOUTA_ channels |

<sup>\*</sup>Default position.

\_\_\_\_\_\_\_\_/N/XI/N

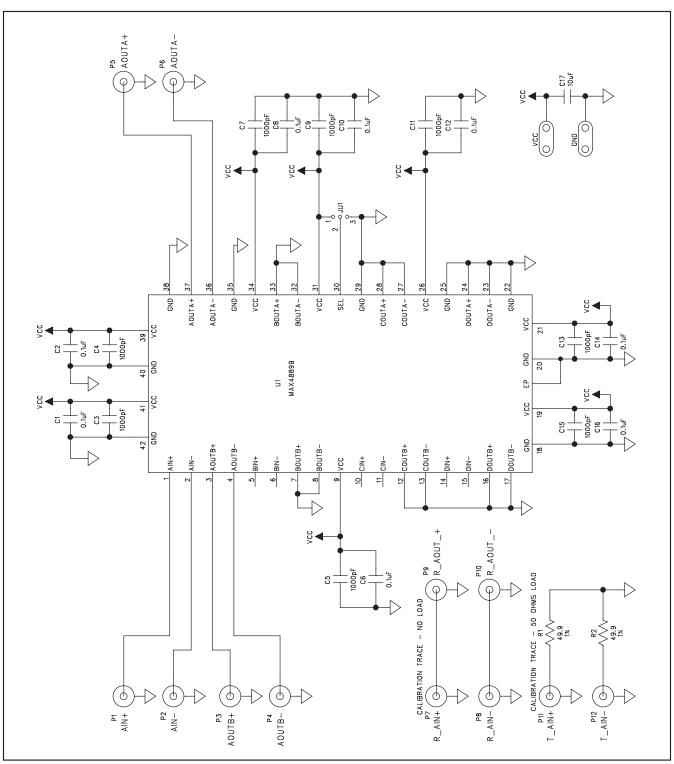



Figure 1. MAX4889B EV Kit Schematic

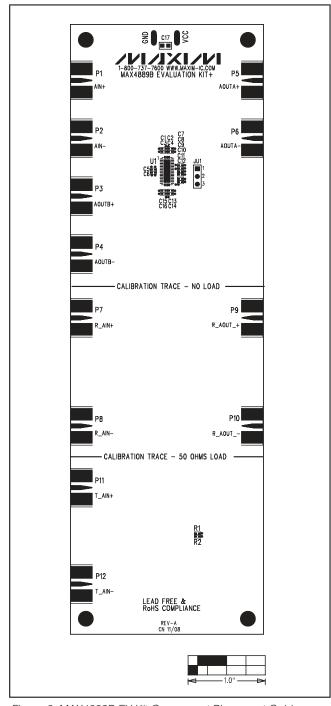



Figure 2. MAX4889B EV Kit Component Placement Guide—Component Side

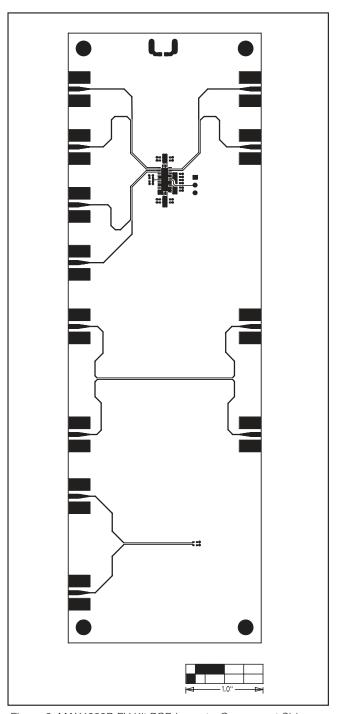



Figure 3. MAX4889B EV Kit PCB Layout—Component Side

MIXKIN \_\_\_\_\_\_

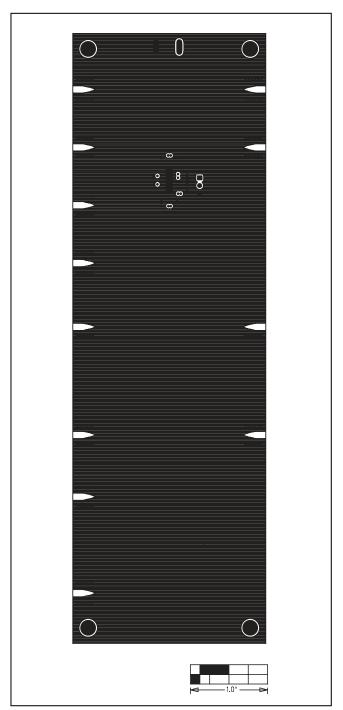



Figure 4. MAX4889B EV Kit PCB Layout—Inner Layer 2

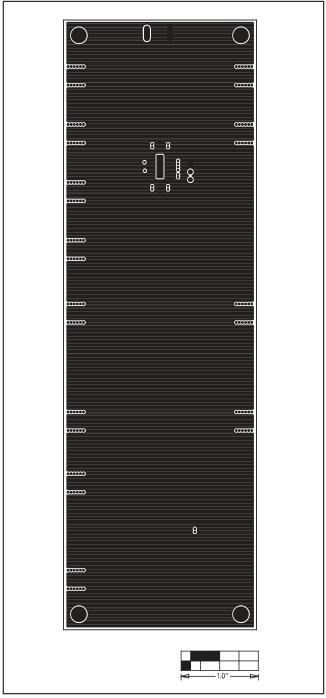



Figure 5. MAX4889B EV Kit PCB Layout—Inner Layer 3

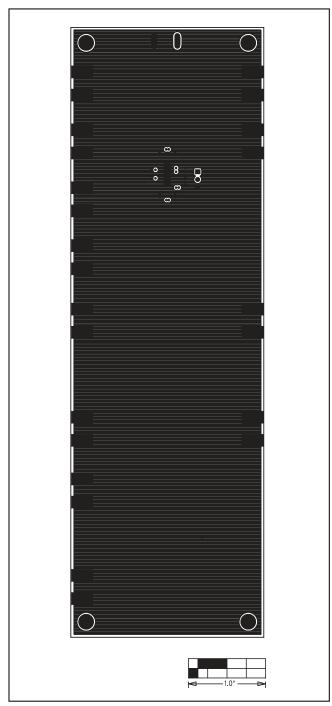



Figure 6. MAX4889B EV Kit PCB Layout—Solder Side

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

6 \_\_\_\_\_\_Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600