Data sheet acquired from Harris Semiconductor SCHS249B August 1998 - Revised July 2002 # Octal D Flip-Flop with Reset ### Features - Buffered Inputs - · Typical Propagation Delay - 6.5ns at $V_{CC} = 5V$, $T_A = 25^{\circ}C$, $C_L = 50pF$ - Exceeds 2kV ESD Protection MIL-STD-883, Method 3015 - SCR-Latchup-Resistant CMOS Process and Circuit Design - Speed of Bipolar FAST™/AS/S with Significantly Reduced Power Consumption - Balanced Propagation Delays - AC Types Feature 1.5V to 5.5V Operation and Balanced Noise Immunity at 30% of the Supply - ±24mA Output Drive Current - Fanout to 15 FAST™ ICs - Drives 50Ω Transmission Lines ### **Pinout** CD54AC273, CD54ACT273 (CDIP) CD74AC273, CD74ACT273 (PDIP, SOIC) TOP VIEW ### Description The 'AC273 and 'ACT273 devices are octal D-type flip-flops with reset that utilize advanced CMOS logic technology. Information at the D input is transferred to the Q output on the positive-going edge of the clock pulse. All eight flip-flops are controlled by a common clock (CP) and a common reset ($\overline{\text{MR}}$). Resetting is accomplished by a low voltage level independent of the clock. ### **Ordering Information** | PART
NUMBER | TEMPERATURE
RANGE | PACKAGE | |----------------|--|------------| | CD74AC273E | 0°C to 70°C
-40°C to 85°C
-55°C to 125°C | 20 Ld PDIP | | CD54AC273F3A | -55°C to 125°C | 20 Ld CDIP | | CD74ACT273E | 0°C to 70°C
-40°C to 85°C
-55°C to 125°C | 20 Ld PDIP | | CD54ACT273F3A | -55 ⁰ C to 125 ⁰ C | 20 Ld CDIP | | CD74AC273M | 0°C to 70°C
-40°C to 85°C
-55°C to 125°C | 20 Ld SOIC | | CD74ACT273M | 0°C to 70°C
-40°C to 85°C
-55°C to 125°C | 20 Ld SOIC | - 1. When ordering, use the entire part number. Add the suffix 96 to obtain the variant in the tape and reel. - Wafer and die for this part number is available which meets all electrical specifications. Please contact your local sales office for ordering information. # Functional Diagram **TRUTH TABLE** | | OUTPUTS | | | |---------------|-------------|------------|----| | RESET
(MR) | CLOCK
CP | DATA
Dn | Qn | | L | Х | Х | L | | Н | ↑ | Н | Н | | Н | 1 | L | L | | Н | L | Х | Q0 | ### **Absolute Maximum Ratings** | DC Supply Voltage, V _{CC} 0. | 5V to 6V | |--|----------| | DC Input Diode Current, I _{IK} | | | For $V_I < -0.5V$ or $V_I > V_{CC} + 0.5V$ | .±20mA | | DC Output Diode Current, IOK | | | For $V_O < -0.5V$ or $V_O > V_{CC} + 0.5V$ | .±50mA | | DC Output Source or Sink Current per Output Pin, IO | | | For $V_O > -0.5V$ or $V_O < V_{CC} + 0.5V$ | .±50mA | | DC V _{CC} or Ground Current, I _{CC or} I _{GND} (Note 3) | ±100mA | ### **Thermal Information** | Thermal Resistance, θ_{JA} (Typical, Note 5) | |--| | E Package | | M Package58°C/W | | Maximum Junction Temperature (Plastic Package) 150°C | | Maximum Storage Temperature Range65°C to 150°C | | Maximum Lead Temperature (Soldering 10s)300°C | ### **Operating Conditions** | Temperature Range, T _A | |---| | Supply Voltage Range, V _{CC} (Note 4) | | AC Types | | ACT Types | | DC Input or Output Voltage, V _I , V _O 0V to V _{CC} | | Input Rise and Fall Slew Rate, dt/dv | | AC Types, 1.5V to 3V 50ns (Max) | | AC Types, 3.6V to 5.5V | | ACT Types, 4.5V to 5.5V | CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. #### NOTES: - 3. For up to 4 outputs per device, add $\pm 25 \text{mA}$ for each additional output. - 4. Unless otherwise specified, all voltages are referenced to ground. - 5. The package thermal impedance is calculated in accordance with JESD 51. ### **DC Electrical Specifications** | | | TEST
CONDITIONS | | v _{cc} | 25 | o°C | | C TO
°C | | C TO
5°C | | |---------------------------|-----------------|------------------------------------|---------------------|-----------------|------|------|------|------------|------|-------------|-------| | PARAMETER | SYMBOL | V _I (V) | I _O (mA) | (V) | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | | AC TYPES | | | | | | | | | | | | | High Level Input Voltage | V _{IH} | - | - | 1.5 | 1.2 | - | 1.2 | - | 1.2 | - | V | | | | | | 3 | 2.1 | - | 2.1 | - | 2.1 | - | V | | | | | | 5.5 | 3.85 | - | 3.85 | - | 3.85 | - | V | | Low Level Input Voltage | V _{IL} | - | - | 1.5 | - | 0.3 | - | 0.3 | - | 0.3 | V | | | | | | 3 | - | 0.9 | - | 0.9 | - | 0.9 | V | | | | | | 5.5 | - | 1.65 | - | 1.65 | - | 1.65 | V | | High Level Output Voltage | V _{OH} | V _{IH} or V _{IL} | -0.05 | 1.5 | 1.4 | - | 1.4 | - | 1.4 | - | V | | | | | -0.05 | 3 | 2.9 | - | 2.9 | - | 2.9 | - | V | | | | | -0.05 | 4.5 | 4.4 | - | 4.4 | - | 4.4 | - | V | | | | | -4 | 3 | 2.58 | - | 2.48 | - | 2.4 | - | V | | | | | -24 | 4.5 | 3.94 | - | 3.8 | - | 3.7 | - | V | | | | | -75
(Note 6, 7) | 5.5 | - | - | 3.85 | - | - | - | V | | | | | -50
(Note 6, 7) | 5.5 | - | - | - | - | 3.85 | - | V | ### DC Electrical Specifications (Continued) | | | | ST
ITIONS | v _{cc} | 25 | 25°C | | C TO
°C | -55°C TO
125°C | | | |---|------------------|------------------------------------|---------------------|-----------------|------|------|------|------------|-------------------|------|-------| | PARAMETER | SYMBOL | V _I (V) | I _O (mA) | (v) | MIN | MAX | MIN | MAX | MIN | MAX | UNITS | | Low Level Output Voltage | V_{OL} | V _{IH} or V _{IL} | 0.05 | 1.5 | - | 0.1 | - | 0.1 | - | 0.1 | V | | | | | 0.05 | 3 | - | 0.1 | - | 0.1 | - | 0.1 | V | | | | | 0.05 | 4.5 | - | 0.1 | - | 0.1 | - | 0.1 | V | | | | | 12 | 3 | - | 0.36 | - | 0.44 | - | 0.5 | V | | | | | 24 | 4.5 | - | 0.36 | - | 0.44 | - | 0.5 | V | | | | | 75
(Note 6, 7) | 5.5 | - | - | - | 1.65 | - | - | V | | | | | 50
(Note 6, 7) | 5.5 | - | - | - | - | - | 1.65 | V | | Input Leakage Current | lį | V _{CC} or
GND | - | 5.5 | - | ±0.1 | - | ±1 | - | ±1 | μА | | Quiescent Supply Current
MSI | I _{CC} | V _{CC} or
GND | 0 | 5.5 | - | 8 | - | 80 | - | 160 | μА | | ACT TYPES | | | | | | | | | | | | | High Level Input Voltage | V _{IH} | - | - | 4.5 to
5.5 | 2 | - | 2 | - | 2 | - | V | | Low Level Input Voltage | V _{IL} | - | - | 4.5 to
5.5 | - | 0.8 | - | 0.8 | - | 0.8 | V | | High Level Output Voltage | V _{OH} | V _{IH} or V _{IL} | -0.05 | 4.5 | 4.4 | - | 4.4 | - | 4.4 | - | V | | | | | -24 | 4.5 | 3.94 | - | 3.8 | - | 3.7 | - | V | | | | | -75
(Note 6, 7) | 5.5 | - | - | 3.85 | - | - | - | V | | | | | -50
(Note 6, 7) | 5.5 | - | - | - | - | 3.85 | - | V | | Low Level Output Voltage | V _{OL} | V _{IH} or V _{IL} | 0.05 | 4.5 | - | 0.1 | - | 0.1 | - | 0.1 | V | | | | | 24 | 4.5 | - | 0.36 | - | 0.44 | - | 0.5 | V | | | | | 75
(Note 6, 7) | 5.5 | - | - | - | 1.65 | - | - | V | | | | | 50
(Note 6, 7) | 5.5 | - | - | - | - | - | 1.65 | V | | Input Leakage Current | lį | V _{CC} or
GND | - | 5.5 | - | ±0.1 | - | ±1 | - | ±1 | μА | | Quiescent Supply Current
MSI | Icc | V _{CC} or
GND | 0 | 5.5 | - | 8 | - | 80 | - | 160 | μΑ | | Additional Supply Current per
Input Pin TTL Inputs High
1 Unit Load | Δl _{CC} | V _{CC}
-2.1 | - | 4.5 to
5.5 | - | 2.4 | - | 2.8 | - | 3 | mA | ### NOTES: - 6. Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation. - 7. Test verifies a minimum 50Ω transmission-line-drive capability at 85° C, 75Ω at 125° C. ### **ACT Input Load Table** | INPUT | UNIT LOAD | |-------|-----------| | Dn | 0.5 | | MR | 0.57 | | СР | 1 | NOTE: Unit load is ΔI_{CC} limit specified in DC Electrical Specifications Table, e.g., 2.4mA max at $25^{\rm o}C.$ # **Prerequisite For Switching Function** | | | | -40°C | ГО 85°C | -55°C T | | | |------------------------|------------------|---------------------|-------|---------|---------|-----|-------| | PARAMETER | SYMBOL | V _{CC} (V) | MIN | MAX | MIN | MAX | UNITS | | AC TYPES | | | | | | | | | Data to CP Set-Up Time | t _{SU} | 1.5 | 2 | - | 2 | - | ns | | | | 3.3
(Note 9) | 2 | - | 2 | - | ns | | | | 5
(Note 10) | 2 | - | 2 | - | ns | | Hold Time | t _H | 1.5 | 2 | - | 2 | - | ns | | | | 3.3 | 2 | - | 2 | - | ns | | | | 5 | 2 | - | 2 | - | ns | | Removal Time, MR to CP | t _{REM} | 1.5 | 2 | - | 2 | - | ns | | | | 3.3 | 2 | - | 2 | - | ns | | | | 5 | 2 | - | 2 | - | ns | | MR Pulse Width | t _W | 1.5 | 55 | - | 63 | - | ns | | | | 3.3 | 6.1 | - | 7 | - | ns | | | | 5 | 4.4 | - | 5 | - | ns | | CP Pulse Width | t _W | 1.5 | 55 | - | 63 | - | ns | | | | 3.3 | 6.1 | - | 7 | - | ns | | | | 5 | 4.4 | - | 5 | - | ns | | CP Frequency | f _{MAX} | 1.5 | 9 | - | 8 | - | MHz | | | | 3.3 | 81 | - | 71 | - | MHz | | | | 5 | 114 | - | 100 | - | MHz | | ACT TYPES | • | | | | | | | | Data to CP Set-Up Time | ^t su | 5
(Note 10) | 2 | - | 2 | - | ns | | Hold Time | t _H | 5 | 2 | - | 2 | - | ns | | Removal Time MR to CP | t _{REM} | 5 | 2 | - | 2 | - | ns | | MR Pulse Width | t _W | 5 | 4.4 | - | 5 | - | ns | | CP Pulse Width | t _W | 5 | 5.3 | - | 6 | - | ns | | CP Frequency | f _{MAX} | 5 | 97 | - | 85 | - | MHz | # **Switching Specifications** Input t_r , t_f = 3ns, C_L = 50pF (Worst Case) | | | | -40°C TO 85°C | | -55°C TO 125°C | | | | | |--------------------|-------------------------------------|---------------------|---------------|-----|----------------|-----|-----|------|-------| | PARAMETER | SYMBOL | V _{CC} (V) | MIN | TYP | MAX | MIN | TYP | MAX | UNITS | | AC TYPES | | | | | | | | | | | Propagation Delay, | t _{PLH} , t _{PHL} | 1.5 | - | - | 154 | - | - | 169 | ns | | CP to Qn | | 3.3
(Note 9) | 4.9 | - | 17.2 | 4.7 | - | 18.9 | ns | | | | 5
(Note 10) | 3.5 | - | 12.3 | 3.4 | - | 13.5 | ns | ### Switching Specifications Input t_r , $t_f = 3ns$, $C_L = 50pF$ (Worst Case) (Continued) | | | | -40°C TO 85°C | | -55 | | | | | |--------------------------------|--|---------------------|---------------|-----|------|-----|-----|------|-------| | PARAMETER | SYMBOL | V _{CC} (V) | MIN | TYP | MAX | MIN | TYP | MAX | UNITS | | Propagation Delay, | t _{PLH} , t _{PHL} | 1.5 | - | - | 154 | - | - | 169 | ns | | MR to Qn | | 3.3 | 4.9 | - | 17.2 | 4.7 | - | 18.9 | ns | | | | 5 | 3.5 | - | 12.3 | 3.4 | - | 13.5 | ns | | Input Capacitance | Cl | - | - | - | 10 | - | - | 10 | pF | | Power Dissipation Capacitance | C _{PD}
(Note 11) | - | - | 45 | - | - | 45 | - | pF | | ACT TYPES | | | | | | | | | | | Propagation Delay,
CP to Qn | t _{PLH} , t _{PHL} | 5
(Note 10) | 3.5 | - | 12.3 | 3.4 | - | 13.5 | ns | | Propagation Delay, MR to Qn | ^t PLH [,] ^t PHL | 5 | 3.5 | - | 12.3 | 3.4 | - | 13.5 | ns | | Input Capacitance | Cl | - | - | - | 10 | - | - | 10 | pF | | Power Dissipation Capacitance | C _{PD}
(Note 11) | - | - | 45 | - | - | 45 | - | pF | #### NOTES: - 8. Limits tested 100%. - 9. 3.3V Min is at 3.6V, Max is at 3V. - 10. 5V Min is at 5.5V, Max is at 4.5V. 11. C_{PD} is used to determine the dynamic power consumption per flip-flop. AC: $P_D = C_{PD} \ V_{CC}^2 f_j = \sum (C_L \ V_{CC}^2 f_0)$ ACT: $P_D = C_{PD} \ V_{CC}^2 f_i + \sum (C_L \ V_{CC}^2 f_0) + V_{CC} \ \Delta I_{CC}$ where f_i = input frequency, f_0 = output frequency, C_L = output load capacitance, V_{CC} = supply voltage. FIGURE 1. PROPAGATION DELAY TIMES AND CLOCK **PULSE WIDTH** FIGURE 2. PREREQUISITE AND PROPAGATION DELAY TIMES FOR MASTER RESET FIGURE 3. PREREQUISITE FOR CLOCK NOTE: For AC Series Only: When $V_{\mbox{\footnotesize{CC}}}$ = 1.5V, R_L = 1k $\!\Omega.$ | | AC | ACT | |--|---------------------|---------------------| | Input Level | V _{CC} | 3V | | Input Switching Voltage, V _S | 0.5 V _{CC} | 1.5V | | Output Switching Voltage, V _S | 0.5 V _{CC} | 0.5 V _{CC} | FIGURE 4. PROPAGATION DELAY TIMES 6-Feb-2020 ### **PACKAGING INFORMATION** | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead/Ball Finish (6) | MSL Peak Temp | Op Temp (°C) | Device Marking (4/5) | Samples | |------------------|--------|--------------|--------------------|------|----------------|----------------------------|----------------------|--------------------|--------------|----------------------|---------| | CD54AC273F3A | ACTIVE | CDIP | J | 20 | 1 | TBD | Call TI | N / A for Pkg Type | -55 to 125 | CD54AC273F3A | Samples | | CD54ACT273F3A | ACTIVE | CDIP | J | 20 | 1 | TBD | Call TI | N / A for Pkg Type | -55 to 125 | CD54ACT273F3A | Samples | | CD74AC273E | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | NIPDAU | N / A for Pkg Type | -55 to 125 | CD74AC273E | Samples | | CD74AC273EE4 | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | NIPDAU | N / A for Pkg Type | -55 to 125 | CD74AC273E | Samples | | CD74AC273M | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | AC273M | Samples | | CD74AC273M96 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | AC273M | Samples | | CD74ACT273E | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | NIPDAU | N / A for Pkg Type | -55 to 125 | CD74ACT273E | Samples | | CD74ACT273EE4 | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | NIPDAU | N / A for Pkg Type | -55 to 125 | CD74ACT273E | Samples | | CD74ACT273M | ACTIVE | SOIC | DW | 20 | 25 | Green (RoHS
& no Sb/Br) | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | ACT273M | Samples | | CD74ACT273M96 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | ACT273M | Samples | | CD74ACT273M96E4 | ACTIVE | SOIC | DW | 20 | 2000 | Green (RoHS
& no Sb/Br) | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | ACT273M | Samples | | CD74ACT273PW | ACTIVE | TSSOP | PW | 20 | 70 | Green (RoHS
& no Sb/Br) | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HM273 | Samples | | CD74ACT273PWR | ACTIVE | TSSOP | PW | 20 | 2000 | Green (RoHS
& no Sb/Br) | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HM273 | Samples | | CD74ACT273PWRG4 | ACTIVE | TSSOP | PW | 20 | 2000 | Green (RoHS
& no Sb/Br) | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | HM273 | Samples | | CD74ACT273SM96 | ACTIVE | SSOP | DB | 20 | 2000 | Green (RoHS
& no Sb/Br) | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | ACT273SM | Samples | ⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. **LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. ### PACKAGE OPTION ADDENDUM 6-Feb-2020 **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. **Green:** TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF CD54AC273, CD54ACT273, CD74AC273, CD74ACT273: Catalog: CD74AC273, CD74ACT273 Military: CD54AC273, CD54ACT273 NOTE: Qualified Version Definitions: - Catalog TI's standard catalog product - Military QML certified for Military and Defense Applications PACKAGE MATERIALS INFORMATION www.ti.com 2-Oct-2019 ### TAPE AND REEL INFORMATION | | Dimension designed to accommodate the component width | |----|---| | B0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | All dimensions are nominal | | | | | | | | | | | | | |----------------------------|-------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | Device | _ | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | | CD74AC273M96 | SOIC | DW | 20 | 2000 | 330.0 | 24.4 | 10.8 | 13.3 | 2.7 | 12.0 | 24.0 | Q1 | | CD74ACT273M96 | SOIC | DW | 20 | 2000 | 330.0 | 24.4 | 10.8 | 13.3 | 2.7 | 12.0 | 24.0 | Q1 | | CD74ACT273PWR | TSSOP | PW | 20 | 2000 | 330.0 | 16.4 | 6.95 | 7.0 | 1.4 | 8.0 | 16.0 | Q1 | | CD74ACT273SM96 | SSOP | DB | 20 | 2000 | 330.0 | 16.4 | 8.2 | 7.5 | 2.5 | 12.0 | 16.0 | Q1 | www.ti.com 2-Oct-2019 *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |----------------|--------------|-----------------|------|------|-------------|------------|-------------| | CD74AC273M96 | SOIC | DW | 20 | 2000 | 367.0 | 367.0 | 45.0 | | CD74ACT273M96 | SOIC | DW | 20 | 2000 | 367.0 | 367.0 | 45.0 | | CD74ACT273PWR | TSSOP | PW | 20 | 2000 | 367.0 | 367.0 | 38.0 | | CD74ACT273SM96 | SSOP | DB | 20 | 2000 | 367.0 | 367.0 | 38.0 | SMALL OUTLINE PACKAGE - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. - 5. Reference JEDEC registration MO-150. SMALL OUTLINE PACKAGE NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SMALL OUTLINE PACKAGE NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. # 14 LEADS SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package is hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. - E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20. PW (R-PDSO-G20) ### PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side. - E. Falls within JEDEC MO-153 # PW (R-PDSO-G20) # PLASTIC SMALL OUTLINE - All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. C. Publication IPC-7351 is recommended for alternate design. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. # N (R-PDIP-T**) # PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. SOIC - 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side. - 5. Reference JEDEC registration MS-013. SOIC NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SOIC NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. #### IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated