

DATA SHEET

SkelMod 51V

- + 51 V DC nominal voltage
- + Ultra-low ESR
- + Long lifetime 1 million duty cycles
- + Integrated Ultracapacitor Management System for effective cell balancing
- + CAN bus communication
- + Natural cooling
- + High Power output
- + IP65 Protection

UNIT

CMARINITATE	A C TECHNICAL	CDECIEICATIO
SIVIADIVITE	AF IECHINICAL	SPECIFICATION

I CD	ECI	CATI	IC

	Α Ι	П	
V			
₹#			
V / /			

Electrical

di		
Rated voltage V _R	V	51
Surge voltage	V	54
Minimum monitoring voltage	V	9
Rated capacitance	F	177
DC 10ms ESR (~AC 100Hz) rated	m $Ω$	3.3
DC 1s ESR (~AC 0.1 Hz), rated	mΩ	4.0
Maximum series voltage	VDC	850
Maximum peak current (for 1 s duration) ¹	Α	2643
Short circuit current	kA	11.6
Maximum stored energy ²	Wh	63.9
Cells in total	pcs.	18
Cell type		SCA3200

Life

Life at 51 V and maximum operating temperature	1500 h
Life at 48 Volt and Maximum Operating Temperature	2500 h
Shelf life @ RT, uncharged	10 years
Projected cycle life @ RT between 51 V and 25.5 V	1 000 000 cycles
Projected cycle life @ RT between 48 V and 24 V	2 000 000 cycles
Capacitance decrease 20% from rated value; resistance	
increase 100% from rated value	

Temperature

-40 °C to +65 °C Operating temperature range

Ultracapacitor Management System

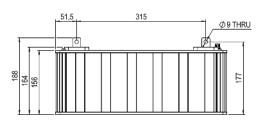
Cell balancing method Temperature reading Voltage monitoring/balancing Communication interface Nominal auxiliary supply voltage 24 V Auxiliary supply voltage range Auxiliary supply current

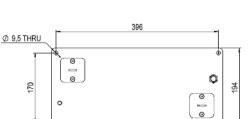
Connectors

Power connector Communications connector

Controlled Resistive Balancing 4 NTC sensors Individual Cell CAN bus 2.0B 16-33 V max. 0.02 A

Ø 9 mm Trough hole


Phoenix Contact Male M12 A coded 8-pos



Standards

International protection marking Isolation protection Vibration protection EMC immunity EMC emissions IEC 60529, IP65 EN60664-1, OV2 ISO 16750-3, Table 14 IEC EN 61000-6-2, UNECE R-10 IEC EN 61000-6-3, UNECE R-10

SMA51V177FAF TECHNICAL SPECIFICATIONS	UNIT	VALUE
Energy Max stored energy ² Specific energy ³ Energy density ⁴	Wh Wh/kg Wh/L	63.9 4.0 5.0
Nominal Power (calculated from DC 10ms ESR, for comparison) Power (matched impedance) ⁵ Practical specific power (matched impedance) ⁶ Practical power density (matched impedance) ⁷	kW kW/kg kW/L	197.0 12.5 15.5
Practical Power (calculated from DC 1s ESR, for engineering) Power (matched impedance) ⁵ Practical specific power (matched impedance) ⁶ Practical power density (matched impedance) ⁷	kW kW/kg kW/L	162.6 10.3 12.8
Thermal Parameters (based on DC Is ESR) Thermal resistance given at ΔT 30 °C (R_{th}) ⁸ Thermal capacitance (C_{th}) Maximum continuous current (ΔT 15 °C) Maximum continuous current (ΔT 30 °C) Maximum continuous current (ΔT 40 °C)	°C/W kJ/°C A A	0.33 16.85 102 150 177
Physical Parameters Typical mass Volume Length x width x height	kg L mm	15.8 12.7 418 x 194 x 188

418

Maximum peak current(1s)= $\frac{C \times \frac{1}{2} \times V}{C \times ESR + 1 \text{ s}}$	2 E _{stored} = $\frac{\frac{1}{2} \times C \times V^{2}}{3600}$	3 E _{specific} = $\frac{E_{stored}}{mass}$
$^{4}E_{density} = \frac{E_{stored}}{volume}$ $^{5}P_{max} = \frac{v^{2}}{4 \times ESR}$	⁶ $P_{\text{specific}} = \frac{P_{\text{max}}}{mass}$	7 P _{density} = $\frac{P_{max}}{volume}$
⁸ $R_{th} = \frac{\Delta T}{DC ls ESR \times l^2}$		

Standard markings

- Name of Manufacturer, Part number, Serial number, Rated voltage
- Rated capacitance, Negative and positive terminals, Warning marking
- + Total energy in watt-hours

Notes

- * All information provided on this data sheet and all subsequent ultracapacitors sales and testing are subject to Standard Terms of Service (ToS) available on www.skeletontech.com, document *General Terms of Sale for Skeleton Technologies OÜ*
- * For ultracapacitors, the power values are often calculated using nominal resistance values (DC 10 ms ESR). For engineering purposes, practical values based on total resistance (DC 1s ESR) are preferred.
- Mounting Recommendation:
 Please refer to the user manual for installation recommendations.

Skeleton Technologies GmbH

Sales and Headquarters Schücostraße 8, 01900 Großröhrsdorf, Germany info@skeletontech.com

www.skeletontech.com

