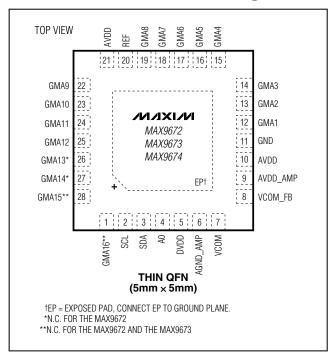


General Description

The MAX9672/MAX9673/MAX9674 output 12/14/16 voltage references for gamma correction in TFT LCDs and one voltage reference for VCOM. Each gamma reference voltage has its own 10-bit DAC and buffer to ensure a stable voltage. The VCOM reference voltage has its own 10-bit DAC and an amplifier to ensure a stable voltage when critical levels and patterns are displayed. The MAX9672/MAX9673/MAX9674 feature integrated multiple-time programmable (MTP) memory to store gamma and VCOM values on the chip, eliminating the need for external EEPROM. The MAX9672/ MAX9673/MAX9674 support up to 300 write operations to the on-chip nonvolatile memory.


The gamma outputs can drive 200mA peak transient current and settle within 1µs. The VCOM output can provide 600mA peak transient current and also settles within 1µs. The analog supply voltage range extends from 9V to 20V, and the digital supply voltage range extends from 2.7V to 3.6V.

Gamma values and the VCOM value are programmed into registers through the I²C interface.

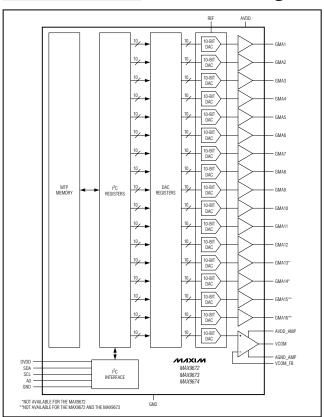
Applications

TFT LCDs

Pin Configuration

Features

- **♦ DAC Reference Input**
- ♦ 12/14/16-Channel Gamma Correction, 10-Bit Resolution
- ♦ VCOM Driver
- ♦ Integrated MTP Memory
- **♦ Programmable VCOM Limits**
- ♦ 200mA Peak Current on Gamma Channels
- ♦ 600mA Peak Current on VCOM Channel


Ordering Information

PART	GAMMA CHANNELS	PIN-PACKAGE
MAX9672ETI+	12	28 TQFN-EP*
MAX9673ETI+	14	28 TQFN-EP*
MAX9674ETI+	16	28 TQFN-EP*

⁺Denotes a lead(Pb)-free/RoHS-compliant package.

Note: All devices are specified over the -40°C to +85°C temperature range

Functional Diagram

Maxim Integrated Products 1

^{*}EP = Exposed pad.

ABSOLUTE MAXIMUM RATINGS

Supply Voltages	
AVDD, REF to GND	0.3V to +22V
	0.3V to +22V
AVDD to AVDD_AMP	0.3V to +0.3V
	0.3V to +4V
AGND_AMP to GND	0.1V to +0.1V
Outputs	
	0.3V to $(V_{AVDD} + 0.3V)$
VCOM	0.3V to (V _{AVDD_AMP} + 0.3V)
Inputs	
SDA, SCL	0.3V to +6V
VCOM_FB	0.3V to (VAVDD_AMP + 0.3V)

GMA1-GMA16±200mA
VCOM±600mA
Continuous Power Dissipation (T _A = +70°C)
28-Pin TQFN-EP (derate 28.6mW/°C
above +70°C)2285.7mW
Operating Temperature Range40°C to +85°C
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (soldering, 10s)+300°C
Soldering Temperature (reflow)+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(VAVDD = 18V, VAVDD_AMP = V_{REF} = 18V, V_{DVDD} = 3.3V, V_{GND} = V_{AGND_AMP} = 0, VCOM = VCOM_FB, no load, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SUPPLIES						
Analog Supply Voltage Range	Vavdd, Vavdd_amp	Guaranteed by total output error	9		20	V
Analog Supply Voltage Range for Programming MTP	Vavdd_mtp		15		20	V
Digital Supply Voltage Range	V _{DVDD}		2.7		3.6	V
Analog Quiescent Current	lavdd			20	35	mA
VCOM Quiescent Current	IAVDD_AMP			2.7	5.6	mA
Digital Quiaccent Current	lavaa	During a register mode load event		400		
Digital Quiescent Current	IDVDD	No SCL or SDA transitions		260	600	μΑ
Thermal Shutdown				+160		°C
Thermal-Shutdown Hysteresis				15		°C
Undervoltage Lockout Threshold	UVLO	DVDD undervoltage lockout voltage threshold		2.3	2.6	V
REF Input Resistance				384		kΩ
VCOM OUTPUT (VCOM)						
Resolution	RES		10			Bits
Integral Nonlinearity Error	INL			0.125	1	LSB
Differential Nonlinearity Error	DNL			0.125	1	LSB
Total Output Error	VERR	Code = 512, V _{AVDD_AMP} = 9V and 20V, T _A = +25°C	-40		+40	mV
Total Output-Error Drift	ΔV_{ERR}	Code = 512		15		μV/°C
Output-Voltage Low	Vout	$T_A = +25$ °C, sinking 100mA		0.4	0.85	V

. ______NIXIN

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{AVDD}=18V,\,V_{AVDD_AMP}=V_{REF}=18V,\,V_{DVDD}=3.3V,\,V_{GND}=V_{AGND_AMP}=0,\,VCOM=VCOM_FB,\,no\,\,load,\,T_A=T_{MIN}\,\,to\,\,T_{MAX},\,unless\,otherwise\,noted.\,Typical\,\,values\,are\,\,at\,\,T_A=+25^{\circ}C.)\,\,(Note\,\,1)$

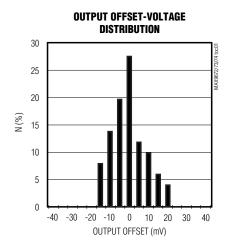
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output-Voltage High	Vout	$T_A = +25$ °C, sourcing 100mA	VAVDD_AMP VAVDD_AMP - 1.1 - 0.6			V
Power-Supply Rejection Ratio	PSRR	To AVDD_AMP, f = 60kHz, REF shorted to VAVDD_AMP		40		dB
		9V ≤ V _{AVDD_AMP} ≤ 20V	60	90		
Output Load Regulation	LR	Transient -80mA to +80mA, code = 512		±0.1		mV/mA
Continuous Output Current	IO	Code = 512 (Note 2)		80		mA
Short-Circuit Current		9V ≤ V _{AVDD_AMP} ≤ 20V		600		mA
Slew Rate	SR	Swing 4V _{P-P} at VCOM, 10% to 90%, R _L = $10k\Omega$, C _L = $50pF$ (Note 3)		100		V/µs
Program to Output Delay	t _D	From SCL rising edge for ACK bit after programming VCOM to 50% voltage change at output		0.8		μs
Bandwidth	BW	$R_S = 10k\Omega$, $C_L = 50pF$ (Note 3)		60		MHz
Noise	eN	RMS noise voltage (10MHz BW)		375		μV
DAC OUTPUTS (GMA1-GMA16))					
Resolution	RES	Guaranteed monotonic	10			Bits
Integral Nonlinearity Error	INL			0.125	1	LSB
Differential Nonlinearity Error	DNL			0.125	1	LSB
Total Output Error	V _{ERR}	Code = 512, V _{AVDD} = 9V and 20V, T _A = +25°C	-40		+40	mV
Output-Voltage Low	Vout	$T_A = +25$ °C, sinking 10mA		0.15	0.28	V
Output-Voltage High	Vout	$T_A = +25$ °C, sourcing 10mA	V _{AVDD} - 0.38	V _{AVDD} - 0.25		V
Power-Supply Rejection Ratio	PSRR	To AVDD, f = 60kHz, REF shorted to AVDD		40		dB
		9V ≤ V _{AVDD} ≤ 20V	60	90		
Load Regulation	LR	-12mA to +12mA		0.5		mV/mA
Short-Circuit Current	Isc	Outputs to AVDD or GND		200		mA
Output Impedance	ZO	Output resistance when output is disabled		84		kΩ
Slew Rate	SR	Swing 5V _{P-P} at input, 10% to 90% measurement on output		22		V/µs
Program to Output Delay	tD	From SCL rising edge for ACK bit after programming gamma to 50% voltage change at output		0.8		μs
Noise	eN	RMS noise voltage at any output (10MHz BW)		375		μV
Channel-to-Channel Isolation	CXTLK	f = 5MHz, all channels to all channels		80		dB

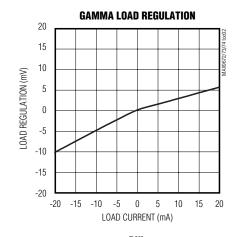
ELECTRICAL CHARACTERISTICS (continued)

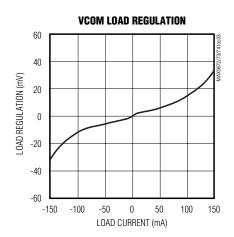
 $(V_{AVDD} = 18V, V_{AVDD_AMP} = V_{REF} = 18V, V_{DVDD} = 3.3V, V_{GND} = V_{AGND_AMP} = 0, VCOM = VCOM_FB, no load, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25$ °C.) (Note 1)

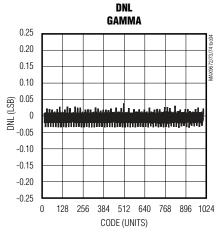
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LOGIC INPUTS (SDA, SCL)			•			
Input High Voltage	VIH		0.7 x V _{DVDD}			V
Input Low Voltage	V _{IL}				0.3 x V _{DVDD}	V
Input Leakage Current	I _{IH} , I _{IL}	$V_{IN} = 0V \text{ or } V_{DVDD}$	-1	+0.01	+1	μΑ
Input Capacitance				5		рF
Power-Down Input Current	I _{IN}	$V_{DVDD} = 0V, V_{IN} = 2V$	-10		+10	μΑ
SDA Output Low Voltage	V _{OL}	I _{SINK} = 6mA			0.4	V
I ² C TIMING CHARACTERISTICS ((Figure 1)					
Serial-Clock Frequency	fscL		0		400	kHz
Bus Free Time Between STOP and START Conditions	tBUF		1.3			μs
Hold Time (REPEATED) START Condition	tHD,STA		0.6			μs
SCL Pulse-Width Low	tLOW		1.3			μs
SCL Pulse-Width High	thigh		0.6			μs
Setup Time for a REPEATED START Condition	tsu,sta		0.6			μs
Data Hold Time	thd,dat		0		900	ns
Data Setup Time	tsu,dat		100			ns
SDA and SCL Receiving Rise Time	t _R	(Note 4)	20 + 0.1C _B		300	ns
SDA and SCL Receiving Fall Time	tF	(Note 4)	20 + 0.1C _B		300	ns
SDA Transmitting Fall Time	t _{F,TX}	(Note 4)	20 + 0.1C _B		250	ns
Setup Time for STOP Condition	tsu,sto		0.6			μs
Bus Capacitance	CB				400	рF
Pulse Width of Suppressed Spike	tsp		0		50	ns

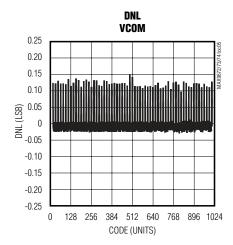
Note 1: All devices are 100% production tested at $T_A = +25^{\circ}C$. All temperature limits are guaranteed by design.

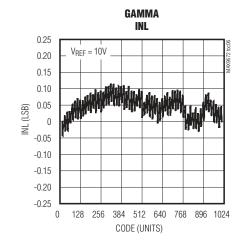

Note 2: Thermal pad attached to multilayered board. Exceeding this limit may cause the thermal shutdown to trip.

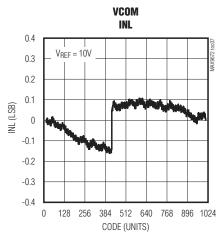

Note 3: Measured with the VCOM amplifier configured as an inverting unity-gain amplifier ($R_S = R_F = 1k\Omega$).

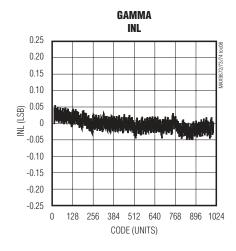

Note 4: CB is in pF.

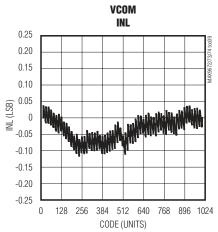

Typical Operating Characteristics

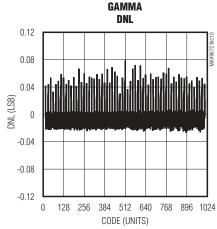

 $(V_{AVDD} = V_{AVDD_AMP} = V_{REF} = 18V, V_{DVDD} = 3.3V, V_{GND} = V_{AGND_AMP} = 0$, no load, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

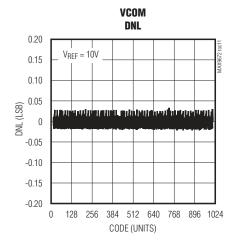


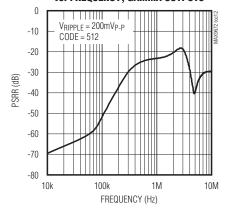


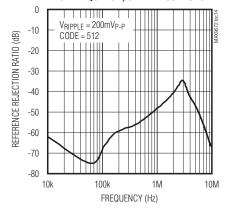




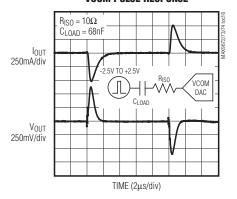

Typical Operating Characteristics (continued)

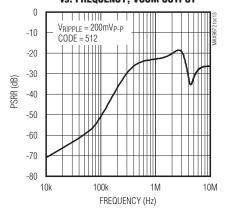

 $(V_{AVDD} = V_{AVDD}_{AMP} = V_{REF} = 18V, V_{DVDD} = 3.3V, V_{GND} = V_{AGND}_{AMP} = 0$, no load, unless otherwise noted. Typical values are at $T_A = +25$ °C.)

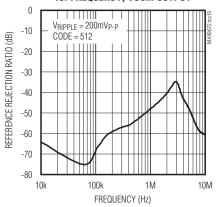


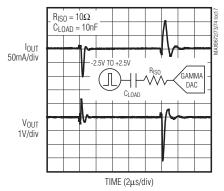

Typical Operating Characteristics (continued)

(VAVDD = VAVDD_AMP = VREF = 18V, VDVDD = 3.3V, VGND = VAGND_AMP = 0, no load, unless otherwise noted. Typical values are at T_A = +25°C.)


POWER-SUPPLY REJECTION RATIO vs. Frequency, Gamma Outputs


REFERENCE REJECTION RATIO vs. FREQUENCY, GAMMA OUTPUTS


VCOM PULSE RESPONSE


POWER-SUPPLY REJECTION RATIO vs. Frequency, vcom output

REFERENCE REJECTION RATIO vs. FREQUENCY, VCOM OUTPUT

GAMMA PULSE RESPONSE

Pin Description

	PIN		NAME	FUNCTION	
MAX9672	MAX9673	MAX9674	NAME	FUNCTION	
1, 26, 27, 28	1, 28	_	N.C.	No Connection. Not internally connected.	
_	_	1	GMA16	Gamma DAC Analog Output 16	
2	2	2	SCL	I2C-Compatible Serial-Clock Input	
3	3	3	SDA	I ² C-Compatible Serial-Data Input/Output	
4	4	4	A0	I ² C-Compatible Device Address Bit 0	
5	5	5	DVDD	Digital Power Supply. Bypass DVDD with a 0.1µF capacitor to GND.	
6	6	6	AGND_AMP	Ground for VCOM Amplifier	
7	7	7	VCOM	VCOM Output	
8	8	8	VCOM_FB	Feedback for VCOM Amplifier	
9	9	9	AVDD_AMP	Power Supply for VCOM Amplifier. Bypass AVDD_AMP with a 0.1µF capacitor to AGND_AMP.	
10, 21	10, 21	10, 21	AVDD	Analog Power Supply. Bypass AVDD with a 0.1µF capacitor to GND.	
11	11	11	GND	Analog Ground	
12	12	12	GMA1	Gamma DAC Analog Output 1	
13	13	13	GMA2	Gamma DAC Analog Output 2	
14	14	14	GMA3	Gamma DAC Analog Output 3	
15	15	15	GMA4	Gamma DAC Analog Output 4	
16	16	16	GMA5	Gamma DAC Analog Output 5	
17	17	17	GMA6	Gamma DAC Analog Output 6	
18	18	18	GMA7	Gamma DAC Analog Output 7	
19	19	19	GMA8	Gamma DAC Analog Output 8	
20	20	20	REF	DAC Reference Input	
22	22	22	GMA9	Gamma DAC Analog Output 9	
23	23	23	GMA10	Gamma DAC Analog Output 10	
24	24	24	GMA11	Gamma DAC Analog Output 11	
25	25	25	GMA12	Gamma DAC Analog Output 12	
_	26	26	GMA13 Gamma DAC Analog Output 13		
_	27	27	GMA14 Gamma DAC Analog Output 14		
_	_	28	GMA15	Gamma DAC Analog Output 15	
_	_	_	EP	Exposed Pad, EP is internally connected to the analog ground a	

Detailed Description

The MAX9672/MAX9673/MAX9674 feature 13/15/17 total programmable reference voltage channels. Each channel has a 10-bit DAC to create the reference voltage. One channel has an amplifier that follows the DAC while all other channels have a buffer after the DAC. The MAX9672/MAX9673/MAX9674 feature integrated

MTP memory to store gamma and VCOM values on the chip, eliminating the need for external EEPROM. The MAX9672/MAX9673/MAX9674 support up to 300 write operations to the on-chip nonvolatile memory.

The MAX9672/MAX9673/MAX9674 can provide the gamma, VCOM, and possibly level-shifter reference voltages for an LCD panel that can potentially replace a discrete digital variable resistor (DVR), VCOM amplifier,

gamma buffers, high-voltage linear regulator, and resistor strings. The high-voltage linear regulator can be eliminated because the DAC contains a lowpass filter that reduces horizontal line frequency noise by 50dB. Power sequencing is well controlled since a single chip generates all the various reference voltages needed for the LCD panel.

Each part has an I²C interface for programming both the MTP memory and the I²C registers.

With the MTP memory and the I²C interface, the MAX9672/MAX9673/MAX9674 enable automatic gamma and automatic flicker calibration on a panel-bypanel basis on the production line. Contact your Maxim representative for more details.

10-Bit DACs

The voltage at REF sets the full-scale output of the DACs. Determine the output voltage using the following equation:

$$VOUT = (VREF \times CODE)/2^N$$

where CODE is the numeric value of the DAC's binary input code and N is the bits of resolution. For the MAX9672/MAX9673/MAX9674, N=10 and CODE ranges from 0 to 1023.

The DAC can never output REF because the maximum value of CODE is always 1 least significant bit (LSB) less than the reference. For example, if $V_{REF} = 16V$ and CODE = 1023, then the output voltage is:

$$V_{OUT} = (16V \times 1023)/2^{10}$$

= 15.98438V

Gamma Buffers

The gamma buffers are guaranteed to source or sink 10mA of DC current within 200mV of the supplies.

The source drivers can kick back a great deal of current to the buffer outputs during a horizontal line change or a polarity switch. The DAC output buffers can source/sink 200mA of peak current to reduce the recovery time of the output voltages when critical levels and patterns are displayed.

VCOM Amplifier

The operational amplifier attached to the VCOM DAC holds the VCOM voltage stable while providing the ability to source and sink 600mA into the backplane of a TFT LCD panel. The operational amplifier can directly drive the capacitive load of the TFT LCD backplane without the need for a series resistor in most cases. The VCOM amplifier has current limiting on its output to protect its bond wires.

If the application requires more than 600mA, buffer the output of the VCOM amplifier with a MAX9650, a VCOM power amplifier. The MAX9650 can source or sink 1A of current.

Thermal Shutdown

The MAX9672/MAX9673/MAX9674 feature thermal-shutdown protection with temperature hysteresis. When the die temperature reaches +165°C, all of the gamma outputs are disabled. When the die cools down by 15°C, the outputs are enabled again.

I²C Serial Interface

The MAX9672/MAX9673/MAX9674 feature an I²C/SMBus™-compatible, 2-wire serial interface consisting of a serial-data line (SDA) and a serial-clock line (SCL). SDA and SCL facilitate communication between the MAX9672/MAX9673/MAX9674 and the master at clock rates up to 400kHz. Figure 1 shows the 2-wire interface timing diagram. The master generates SCL and initiates data transfer on the bus. A master device writes data to the MAX9672/MAX9673/MAX9674 by transmitting the

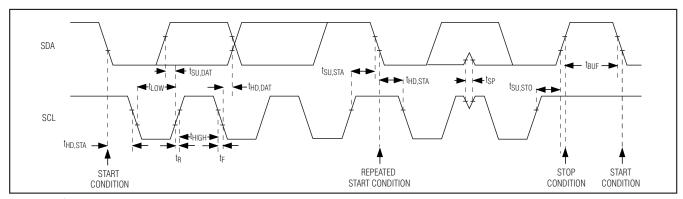


Figure 1. I²C Serial-Interface Timing Diagram

SMBus is a trademark of Intel Corp.

proper slave address followed by the register address and then the data word. Each transmit sequence is framed by a START (S) or REPEATED START (Sr) condition and a STOP (P) condition. Each byte is serially transmitted to the MAX9672/MAX9673/MAX9674 as 8 bits and is followed by an acknowledge clock pulse. A master reading data from the MAX9672/MAX9673/MAX9674 transmit the proper slave address followed by a series of nine SCL pulses. The MAX9672/MAX9673/MAX9674 transmit data on SDA in sync with the master-generated SCL pulses. The master acknowledges receipt of each byte of data. Each read sequence is framed by a START or REPEATED START condition, a not acknowledge, and a STOP condition. SDA operates as both an input and an open-drain output. A pullup resistor, typically greater than 500Ω , is required on the SDA bus. SCL operates as only an input. A pullup resistor, typically greater than 500Ω , is required on SCL if there are multiple masters on the bus, or if the master in a single-master system has an open-drain SCL output. Series resistors in line with SDA and SCL are optional. Series resistors protect the digital inputs of the MAX9672/MAX9673/MAX9674 from highvoltage spikes on the bus lines, and minimize crosstalk and undershoot of the bus signals.

Bit Transfer

One data bit is transferred during each SCL cycle. The data on SDA must remain stable during the high period of the SCL pulse. Changes in SDA while SCL is high are control signals (see the *START and STOP Conditions* section). SDA and SCL idle high when the I²C bus is not busy.

START and STOP Conditions

SDA and SCL idle high when the bus is not in use. A master initiates communication by issuing a START condition. A START condition is a high-to-low transition on SDA with SCL high. A STOP condition is a low-to-high transition on SDA while SCL is high (Figure 2). A START condition from the master signals the beginning of a transmission to the MAX9672/MAX9673/MAX9674. The master terminates transmission, and frees the bus, by issuing a STOP condition. The bus remains active if a REPEATED START condition is generated instead of a STOP condition.

Early STOP Conditions

The MAX9672/MAX9673/MAX9674 use a STOP condition at any point during data transmission except if the STOP condition occurs in the same high pulse as a START condition. For proper operation, do not send a STOP condition during the same SCL high pulse as the START condition.

Table 1. Slave Address

Α0	READ ADDRESS	WRITE ADDRESS
GND	E9h	E8h
DVDD	EBh	EAh

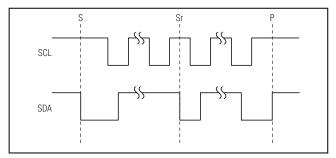


Figure 2. START, STOP, and REPEATED START Conditions

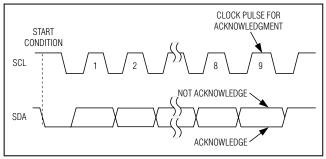


Figure 3. Acknowledge

Slave Address

The slave address is defined as the 7 most significant bits (MSBs) followed by the read/write (R/ \overline{W}) bit. Set the R/ \overline{W} bit to 1 to configure the MAX9672/MAX9673/MAX9674 to read mode. Set the R/ \overline{W} bit to 0 to configure the MAX9672/MAX9673/MAX9674 to write mode. The address is the first byte of information sent to the MAX9672/MAX9673/MAX9674 after the START condition. The MAX9672/MAX9673/MAX9674 slave address is configured with A0. Table 1 shows the possible addresses for the MAX9672/MAX9673/MAX9674.

Acknowledge

The acknowledge bit (ACK) is a clocked 9th bit that the MAX9672/MAX9673/MAX9674 use to handshake receipt of each byte of data when in write mode (see Figure 3). The MAX9672/MAX9673/MAX9674 pull down SDA during the entire master-generated ninth clock pulse if the previous byte is successfully received. Monitoring ACK allows for detection of unsuccessful data transfers. An unsuccessful data transfer occurs if

10 ______ /I/XI/VI

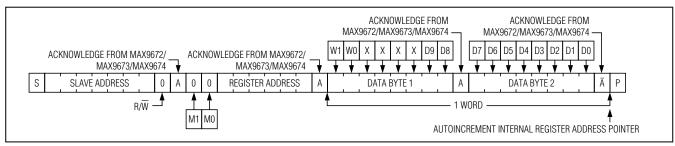


Figure 4. Writing a Word of Data to the MAX9672/MAX9673/MAX9674

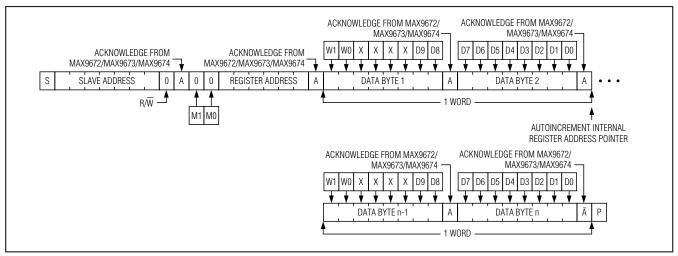


Figure 5. Writing n Bytes of Data to the MAX9672/MAX9673/MAX9674

a receiving device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master may retry communication. The master pulls down SDA during the ninth clock cycle to acknowledge receipt of data when the MAX9672/MAX9673/MAX9674 are in read mode. An acknowledge is sent by the master after each read byte to allow data transfer to continue. A not acknowledge is sent when the master reads the final byte of data from the MAX9672/MAX9673/MAX9674, followed by a STOP condition.

Write Data Format

A write to the MAX9672/MAX9673/MAX9674 consists of transmitting a START condition, the slave address with the R/\overline{W} bit set to 0, one data byte of data to configure the internal register address pointer, one word (two bytes) of data or more, and a STOP condition. Figure 4 illustrates the proper frame format for writing one word of data to the MAX9672/MAX9673/MAX9674. Figure 5 illustrates the frame format for writing n-bytes of data to the MAX9672/MAX9673/MAX9674.

The slave address with the R/\overline{W} bit set to 0 indicates that the master intends to write data to the MAX9672/MAX9673/MAX9674. The MAX9672/MAX9673/MAX9674 acknowledge receipt of the address byte during the master-generated ninth SCL pulse.

The second byte transmitted from the master configures the MAX9672/MAX9673/MAX9674's internal register address pointer. The MAX9672/MAX9673/MAX9674's internal address pointer consists of the 6 LSBs of the second byte. The 2 MSBs of the second byte (M1 and M0) are set to 00b when writing to the internal registers. See the *Memory* section for more details. The pointer tells the MAX9672/MAX9673/MAX9674 where to write the next byte of data. An acknowledge pulse is sent by the MAX9672/MAX9673/MAX9674 upon receipt of the address pointer data.

The third and fourth bytes sent to the MAX9672/MAX9673/MAX9674 contain the data that is written to the chosen register and which type of register it writes to, volatile (DAC) or nonvolatile memory (MTP). See the *Registers* section for more details. An acknowledge pulse

Table 2. Register Map

REGISTER ADDRESS	REGISTER NAME			MTP FACTORY		READ/ WRITE	
7.551.266		22001III 11011	MAX9672	MAX9673	MAX9674		
0x00	GMA1	Gamma 1	0x3B0	0x3BA	0x3C2	Read and write	
0x01	GMA2	Gamma 2	0x361	0x376	0x386	Read and write	
0x02	GMA3	Gamma 3	0x312	0x332	0x34A	Read and write	
0x03	GMA4	Gamma 4	0x2C4	0x2EE	0x30E	Read and write	
0x04	GMA5	Gamma 5	0x275	0x2AA	0x2D2	Read and write	
0x05	GMA6	Gamma 6	0x226	0x265	0x295	Read and write	
0x06	GMA7	Gamma 7	0x1D8	0x221	0x259	Read and write	
0x07	GMA8	Gamma 8	0x189	0x1DD	0x21D	Read and write	
0x08	GMA9	Gamma 9	0x13A	0x199	0x1E1	Read and write	
0x09	GMA10	Gamma 10	0x0EC	0x155	0x1A5	Read and write	
0x0A	GMA11	Gamma 11	0x09D	0x110	0x169	Read and write	
0x0B	GMA12	Gamma 12	0x04E	0x0CC	0x12C	Read and write	
0x0C	GMA13	Gamma 13	_	0x088	0X0F0	Read and write	
0x0D	GMA14	Gamma 14	_	0x044	0x0B4	Read and write	
0x0E	GMA15	Gamma 15	_	_	0x078	Read and write	
0x0F	GMA16	Gamma 16	_		0x03C	Read and write	
0x10	Reserved				_	_	
0x11	Reserved				_	_	
0x12	VCOM	Common voltage	0x193	0x193	0x193	Read and write	
0x13	Reserved				_	_	
0x14	Reserved				_	_	
0x15	Reserved				_	_	
0x16	Reserved				_	_	
0x17	Reserved				_	_	
0x18	VCOMMIN	Minimum VCOM value	0x10D	0x10D	0x10D	Read and write	
0x19	VCOMMAX	Maximum VCOM value	0x21A	0x21A	0x21A	Read and write	
0x1D	Reserved, DO NOT WRITE		_		_	_	
0x1E	Reserved, DO NOT WRITE	_	_	_	_	_	

from the MAX9672/MAX9673/MAX9674 signals receipt of each data byte. The address pointer autoincrements to the next register address after receiving every other data byte. This autoincrement feature allows a master to write to sequential register address locations within one continuous frame. The master signals the end of transmission by issuing a STOP condition.

If data is written into register address 0x1E, the address pointer autoincrements to 0xFF and stays at 0xFF until the master writes a new value into the register address pointer.

Read Data Format

The master presets the address pointer by first sending the MAX9672/MAX9673/MAX9674's slave address with the R/\overline{W} bit set to 0 followed by the register address

Table 3. Register Description

REG	REG ADDR	B15	B14	B13	B12	B11	B10	В9	В8	В7	В6	В5	B4	В3	B2	B1	В0
GMA1	0x00	W1	W0	Χ	Χ	Χ	Χ	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
GMA2	0x01	W1	WO	Χ	Χ	Χ	Χ	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
GMA3	0x02	W1	W0	Χ	Χ	Χ	Χ	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
GMA4	0x03	W1	W0	Χ	Χ	Χ	Χ	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
GMA5	0x04	W1	W0	Χ	Χ	Χ	Χ	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
GMA6	0x05	W1	W0	Χ	Χ	Χ	Χ	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
GMA7	0x06	W1	W0	Χ	Χ	Χ	Χ	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
GMA8	0x07	W1	W0	Χ	Χ	Χ	Χ	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
GMA9	0x08	W1	WO	Χ	Χ	Χ	Χ	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
GMA10	0x09	W1	WO	Χ	Χ	Χ	Χ	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
GMA11	0x0A	W1	W0	Χ	Χ	Χ	Χ	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
GMA12	0x0B	W1	W0	Χ	Χ	Χ	Χ	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
GMA13*	0x0C	W1	WO	Χ	Χ	Χ	Χ	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
GMA14*	0x0D	W1	WO	Χ	Χ	Χ	Χ	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
GMA15**	0x0E	W1	WO	Χ	Χ	Χ	Χ	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
GMA16**	0x0F	W1	WO	Χ	Χ	Χ	Χ	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
Reserved	0x10	_		-	-	-	-	1	_	_	-	1	-		-	-	_
Reserved	0x11	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_
VCOM	0x12	W1	W0	Χ	Χ	Χ	Χ	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
Reserved	0x13	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Reserved	0x14	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Reserved	0x15	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
Reserved	0x16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Reserved	0x17	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
VCOMMIN	0x18	W1	WO	Χ	Χ	Χ	Χ	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
VCOMMAX	0x19	W1	W0	Χ	Χ	Χ	Χ	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
Reserved DO NOT WRITE	0x1D	_	_	_	_	_	_	1	1	_	_	-	_	_	_	_	_
Reserved DO NOT WRITE	0x1E	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

^{*}Reserved for the MAX9672.

with M1 and M0 set to 00 after a START condition. The MAX9672/MAX9673/MAX9674 acknowledge receipt of its slave address and the register address by pulling SDA low during the ninth SCL clock pulse. A REPEAT-ED START condition is then sent followed by the slave address with the R/W bit set to 1. The MAX9672/MAX9673/MAX9674 transmit the contents of the specified register. Transmitted data is valid on the rising edge of the master-generated serial clock (SCL). The address pointer autoincrements after every other read data byte. This autoincrement feature allows all registers to be read sequentially within one continuous

frame. A STOP condition can be issued after any number of read data bytes. If a STOP condition is issued followed by another read operation, the first data byte to be read is from the register address location set by the previous transaction and not 0x00. Subsequent reads autoincrement the address pointer until the next STOP condition. Attempting to read from register addresses higher than 0x1E results in repeated reads from a dummy register containing all one data. The master acknowledges receipt of each read byte during the acknowledge clock pulse. The master must acknowledge all correctly received bytes except the

^{**}Reserved for the MAX9672/MAX9673.

Table 4. Write Control Bits

W1	W0	ACTION
0	0	No update.
0	1	All MTP registers get updated when the current I2C register has finished updating (end of B0).
1	0	All DAC registers get updated when the current I ² C register has finished updating (end of B0).
1	1	No update.

Table 5. Memory Write Bits

M1	МО	ACTION
0	0	None.
0	1	Only the addressed I ² C registers and DAC registers get set to the MTP values.
1	0	All I ² C registers and DAC registers get set to the MTP values.
1	1	None.

last byte. The final byte must be followed by a not acknowledge from the master and then a STOP condition. Figures 6 and 7 illustrate the frame format for reading data from the MAX9672/MAX9673/MAX9674.

Registers

Register Map

The MAX9672/MAX9673/MAX9674 have a bank of non-volatile MTP memory and two banks of volatile memory comprised of I²C registers and DAC registers. Each memory location whether in nonvolatile or volatile memory holds a 10-bit word. Two bytes must be read or written through the I²C interface for every 10-bit word.

Table 2 shows the register map. The same register address and register name exists in the MTP memory bank, I²C register bank, and the DAC register bank. The write control bits determine which memory location the data is stored into.

Register Description

Only the 10 LSBs are written to the registers (see Table 3). During a write operation, the write control bits (the 2 MSBs) are stripped from the incoming data stream and are used to determine whether the MTP or DAC registers are updated (see Table 4).

VCOM Programmable Range

The MAX9672/MAX9673/MAX9674 feature the programmable range for VCOM. VCOMMIN and VCOMMAX registers provide low and high limits for the VCOM DAC register. At the factory, VCOMMIN is set to 0 and VCOMMAX is set to 1023 (default values) to provide the

full rail-to-rail programmable range for VCOM. Later, users can define their own limits by programming VCOMMIN and VCOMMAX registers and MTP.

VCOM register values are limited to the defined range. This means if the VCOM register accidentally gets programmed with a value higher than VCOMMAX, it automatically gets locked to the VCOMMAX value. The I²C bus does acknowledge and receive the data sent on the bus. However, internally the part recognizes that the value is outside of the range and adjusts it accordingly. The same scenario is true if the value programming VCOM is below VCOMMIN.

Memory

The MAX9672/MAX9673/MAX9674 include both volatile memory (I²C and DAC) and nonvolatile memory (MTP). It is possible to write to each single DAC memory location from an MTP memory location individually or to write to all at once. This is done with memory write bits (M1, M0) that are the 2 MSBs of the register address byte. Table 5 shows the memory write bits. Set both M1 and M0 to low or high when writing to or reading from the register values through the I²C bus.

Volatile Memory

The MAX9672/MAX9673/MAX9674 feature a double-buffered register structure. The volatile (DAC) memory can be updated without updating the output voltage. Figure 8 shows how to program a single DAC. The output voltage is updated after sending the LSB (D0).

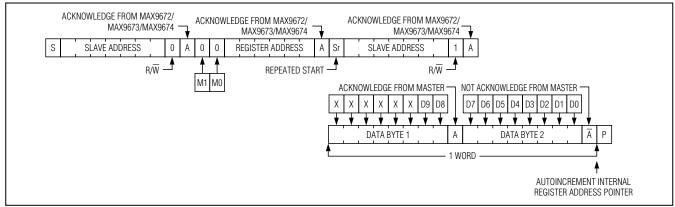


Figure 6. Reading One Indexed Word of Data from the MAX9672/MAX9673/MAX9674

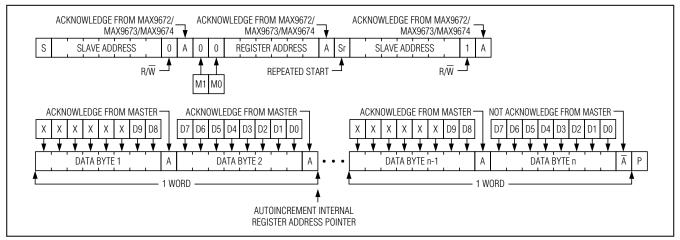


Figure 7. Reading n Bytes of Indexed Data from the MAX9672/MAX9673/MAX9674

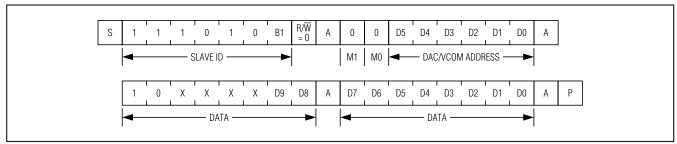


Figure 8. Single DAC Programming

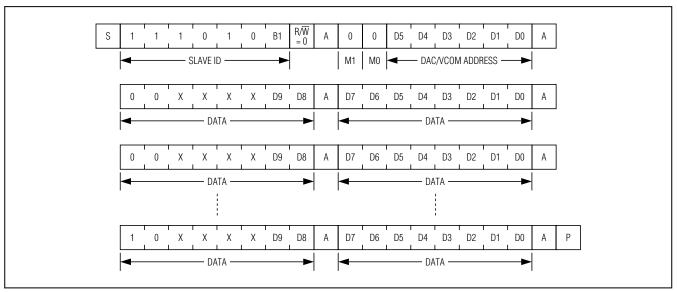


Figure 9. Multiple (or All) DACs Programming

It is possible to write to multiple DACs first then update the output voltage of all channels simultaneously, as shown in Figure 9. In this mode, it is possible for the I²C master to write to all registers of the MAX9672/MAX9673/MAX9674 (Gamma and VCOM) in one communication. In that case, the value programmed on addresses 0x10, 0x11, and 0x13 through 0x17 are meaningless. However, the MAX9672/MAX9673/MAX9674 send an acknowledge bit for each of the 2 bytes on any of these addresses. The control bits (W1, W0) shown in Figure 9 are set in a way that all DACs are programmed to their desired value with no changes to the output voltages until the LSB of the last DAC is received and then all the channels are updated simultaneously.

Nonvolatile Memory

The MAX9672/MAX9673/MAX9674 are able to write to nonvolatile memory (MTP) of any single DAC/VCOM register in a single or burst I²C transaction. This memory

can be written to at least 300 times. Figure 10 shows a single write to a MTP address. The control bits on Figure 10 set in a way that the MTP register is updated at the end of the LSB (D0).

Figure 11 shows how to program multiple MTP registers in one communication transition. Similar to programming the volatile memory, the first 2 bytes of data correspond to the DAC/VCOM address specified by the master on the previous byte and the following 2 bytes of data correspond to the next address and so on. In this configuration all the MTP registers are programmed at the same time following the LSB of the last set of data bytes. (The last set of data bytes is different than the previous bytes as it is bits 15 and 14.) If for some reason the master issues a STOP condition before sending the last 2 bytes of the data with appropriate values of bits 15 and 14 (01), then none of the MTP registers are updated.

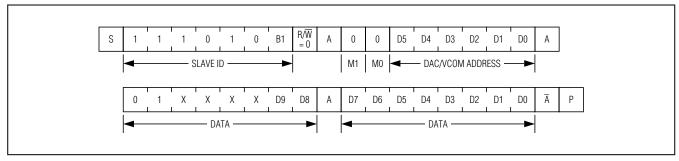


Figure 10. Single MTP Programming

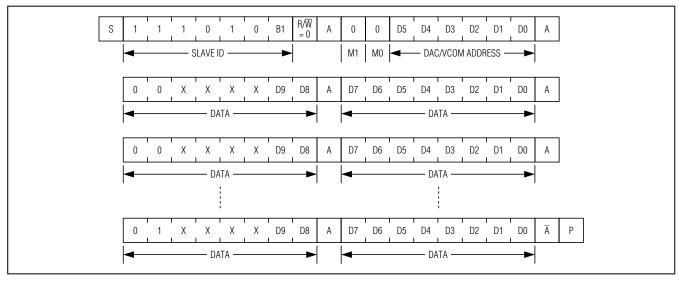


Figure 11. Multiple MTP Programming

Programming the MTP registers also updates the DACs/VCOM volatile memory as well as the output voltages. Similar to multiple volatile memory programming, the update only occurs after the LSB of the last byte is received. All the outputs are programmed and updated simultaneously. However, depending on the number of MTP registers, it takes 31ms to 500ms to store the values into the nonvolatile memory. During this time, the MAX9672/MAX9673/MAX9674 are not available on the I²C and any communication from the master should be delayed until the MTP is programmed. Any attempt from the I²C master to talk to the MAX9672/MAX9673/MAX9674 is not acknowledged.

General and Single Acquire Commands

It is possible to update all the DAC outputs to the previously stored MTP values with one special command. Set the 2 MSBs (M1 and M0) of the DAC/VCOM

address to 10 to set all the DACs and the output voltages to the values of MTP (as shown in Figure 12). The MAX9672/MAX9673/MAX9674 ignore the DAC/VCOM address in this case.

It is also possible to update the DAC and output voltage of only one channel from the MTP. Set the 2 MSBs (M1 and M0) of the DAC/VCOM address to 01 (as shown in Figure 13) to move a specific value from MTP into the DAC and output voltage of a single channel.

The MAX9672/MAX9673/MAX9674 feature a double-buffered register structure. It is important to note that updating the volatile (DAC) memory is not the same as updating the output voltage. It is possible to write to multiple DACs first then update the output voltage of all channels simultaneously.

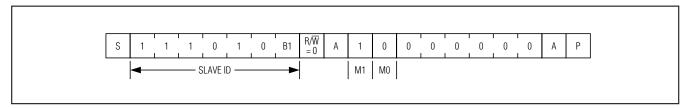


Figure 12. General Acquire Command to Update All Outputs with MTP

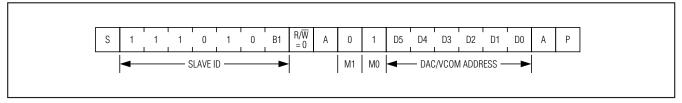


Figure 13. Single Acquire Command to Update One Output with MTP

Applications Information

Driving the Resistor Ladders with More Current

If the gamma buffers cannot provide enough current to drive the ends of the resistor ladders, then attach an additional resistor from the nearest supply. For example, at the very top of the resistor ladder, attach an additional resistor to AVDD. At the very bottom of the resistor ladder, attach an additional resistor to GND. The MAX9672/MAX9673/MAX9674 greatly diminish any noise from AVDD supply through the discrete resistor because the high-frequency noise from AVDD has been attenuated, and the buffers have excellent AC PSRR. See Figure 14.

VCOM Operational Amplifier with Feedback Resistors

The output (VCOM) and negative input (VCOM_FB) of the operational amplifier would usually be connected together, resulting in a unity-gain configuration. If a higher, closed-loop gain is desired, add feedback resistors as shown in Figure 15.

Power-Up and Power-Down

Figures 16 and 17 show the proper startup sequence of the MAX9672/MAX9673/MAX9674. The digital supply must be powered up first. The analog supply should not be powered up for at least 250µs (typ) after the digital supply has been powered up. During this time, the MTP register values are overwriting the default values in the I²C registers. Once AVDD is above approximately 8V, the output buffers have enough headroom to power up.

If REF is powered up after AVDD, then the outputs track REF. If REF is powered up before AVDD, then the outputs track AVDD.

For power-down, AVDD and REF must be powered down first to 0V, and then DVDD can safely be powered down.

Power Supplies and Bypass Capacitors

The MAX9672/MAX9673/MAX9674 operate from a single 9V to 20V analog supply (AVDD) and a 2.7V to 3.6V digital supply (DVDD). Bypass AVDD to GND with 0.1µF and 10µF capacitors in parallel. Use an extensive ground plane to ensure optimum performance. Bypass DVDD to GND with a 0.1µF capacitor. The 0.1µF bypass capacitors should be as close as possible to the device.

Refer to the MAX9672/MAX9673/MAX9674 evaluation kit for a proven PCB layout.

Layout and Grounding

Exposed Pad

If the MAX9672/MAX9673/MAX9674 are mounted using reflow soldering or wave soldering, the ground via(s) for the exposed pad should have a finished hole size of at least 14 mils to insure adequate wicking of soldering onto the exposed pad. If the MAX9672/MAX9673/MAX9674 are mounted using the solder mask technique, the via requirement does not apply. In either case, the exposed pad must be connected to both digital and analog grounds through a low thermal resistance path to ensure adequate heat dissipation. Do not route traces under these packages.

18 ______ /II/XI//I

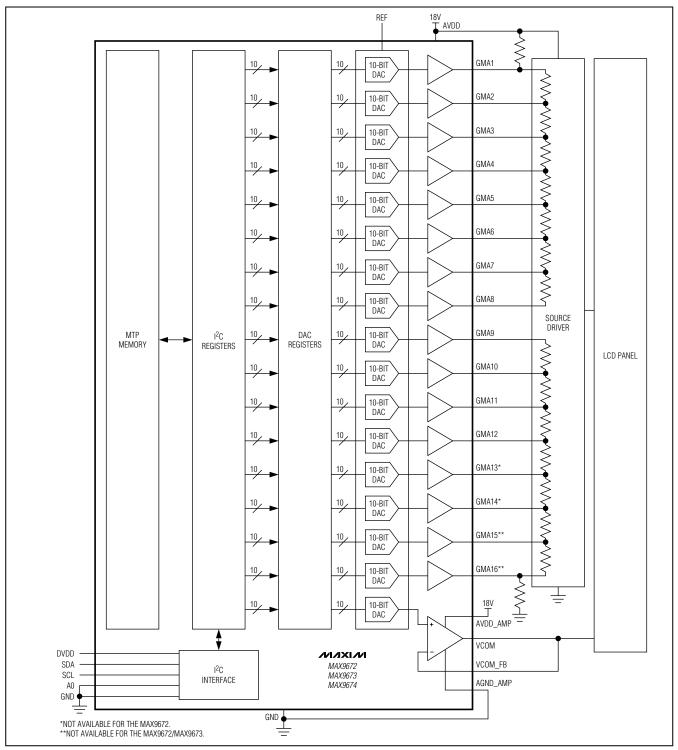


Figure 14. Typical Application Circuit with Additional Pullup and Pulldown Resistors on GMA1 and GMA16, Respectively

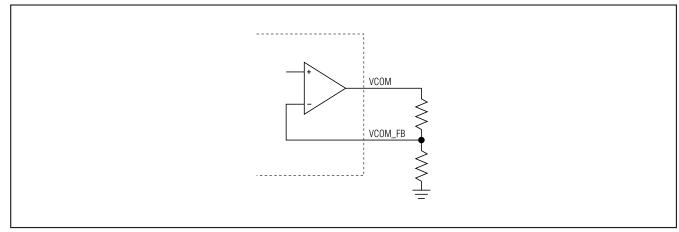


Figure 15. VCOM Operational Amplifier with Feedback Resistors

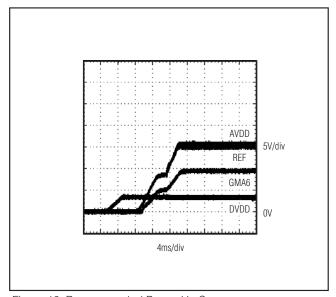


Figure 16. Recommended Power-Up Sequence

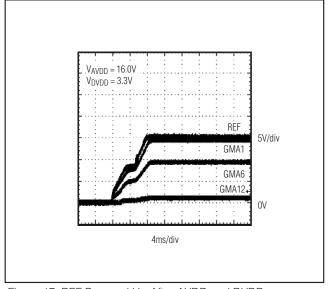
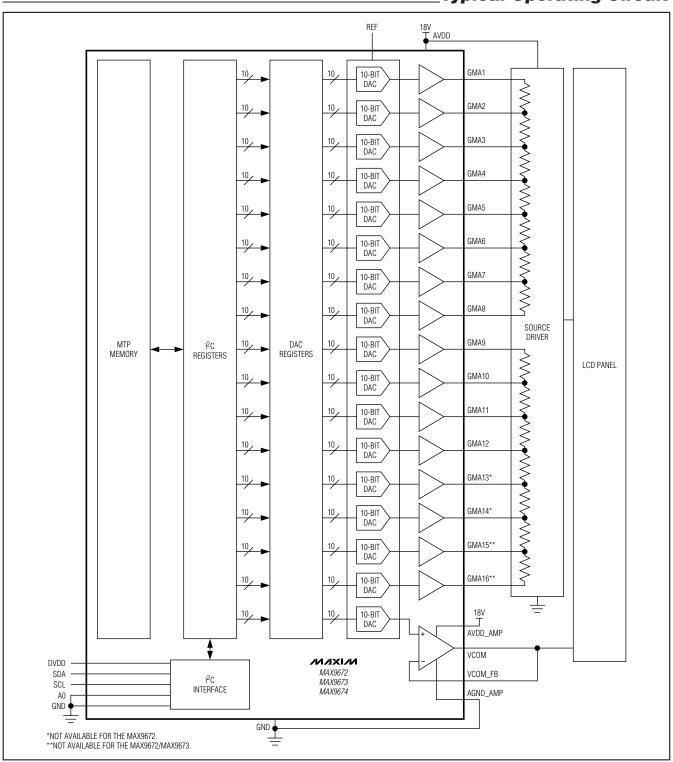
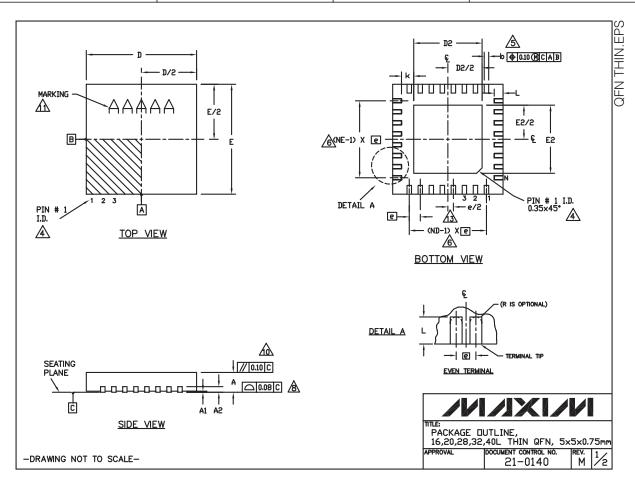



Figure 17. REF Powered Up After AVDD and DVDD

_____Chip Information

PROCESS: BICMOS


Typical Operating Circuit

Package Information

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE TYPE PACKAGE CODE		LAND PATTERN NO.		
28 TQFN-EP	T2855+8	<u>21-0140</u>	90-0028		

Package Information (continued)

For the latest package outline information and land patterns (footprints), go to www.maxim-ic.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

	COMMON DIMENSIONS														
PKG.	KG. 16L 5x5		20L 5x5			28L 5×5			32L 5x5			40L 5x5			
SYMBOL	MIN.	NOM.	MAX.	MIN.	NDM.	MAX.	MIN.	NOM.	MAX.	MIN.	NDM.	MAX.	MIN.	NOM.	MAX.
Α	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80
A1	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05
A2	A2 0.20 REF.		0.20 REF.		0.20 REF.			0.20 REF.			0.20 REF.				
b	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.20	0.25	0.30	0.15	0.20	0.25
D	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10
Ε	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10
e	0.80 BSC.		0.65 BSC.		0.50 BSC.			0.50 BSC.			0.40 BSC.				
k	0.25	_		0.25	_	_	0.25	_	_	0.25		_	0.25	_	_
L	0.30	0.40	0.50	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50	0.30	0.40	0.50
N	16		20		28		32			40					
ND	4		5		7		8		10						
NE	4		5		7		8			10					
JEDEC	EC WHHB		WHHC		WHHD-1		WHHD-2								

- 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.
- ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
- N IS THE TOTAL NUMBER OF TERMINALS.
- THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
- ⚠ DIMENSION 6 APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP.
- 6 ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
- 7. DEPUPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.

 (A) COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR
- T2855-3, T2855-6, T4055-1 AND T4055-2.
- ⚠ WARPAGE SHALL NOT EXCEED 0.10 mm.
- MARKING IS FOR PACKAGE DRIENTATION REFERENCE ONLY.
- NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY.
- LEAD CENTERLINES TO BE AT TRUE POSITION AS DEFINED BY BASIC DIMENSION 'e', ±0.05.
- ALL DIMENSIONS APPLY TO BOTH LEADED (-) AND PHFREE (+) PKG. CODES.

-DRAWING NOT TO SCALE-

EXPOSED PAD VARIATIONS							
PKG.		D2		E2			
CODES	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
T1655-2	3.00	3.10	3.20	3.00	3.10	3.20	
T1655-3	3.00	3.10	3.20	3.00	3.10	3.20	
T1655-4	2.19	2.29	2.39	2.19	2.29	2.39	
T165N-1	3.00	3.10	3.20	3.00	3.10	3.20	
T2055-3	3.00	3.10	3.20	3.00	3.10	3.20	
T2055-4	3.00	3.10	3.20	3.00	3.10	3.20	
T2055-5	3.15	3.25	3.35	3.15	3.25	3.35	
T2055MN-5	3.15	3.25	3.35	3.15	3.25	3.35	
T2855-3	3.15	3.25	3.35	3.15	3.25	3.35	
T2855-4	2.60	2.70	2.80	2.60	2.70	2.80	
T2855-5	2.60	2.70	2.80	2.60	2.70	2.80	
T2855-6	3.15	3.25	3.35	3.15	3.25	3.35	
T2855-7	2.60	2.70	2.80	2.60	2.70	2.80	
T2855-8	3.15	3.25	3.35	3.15	3.25	3.35	
T2855N-1	3.15	3.25	3.35	3.15	3.25	3,35	
T3255-3	3.00	3.10	3.20	3.00	3.10	3.20	
T3255-4	3.00	3.10	3.20	3.00	3.10	3.20	
T3255M-4	3.00	3.10	3.20	3.00	3.10	3.20	
T3255-5	3.00	3.10	3.20	3.00	3.10	3.20	
T3255N-1	3.00	3.10	3.20	3.00	3.10	3.20	
T4055-1	3.40	3.50	3.60	3.40	3.50	3.60	
T4055-2	3.40	3.50	3.60	3.40	3.50	3.60	
T4055N-1	3.40	3.50	3.60	3.40	3.50	3.60	
T4055MN-1	3.40	3.50	3.60	3.40	3.50	3.60	

ITLE:
PACKAGE DUTLINE,
16,20,28,32,40L THIN QFN, 5×5×0.75mr
PPROVAL | DOCUMENT CONTROL NO. | REV. | 2/

21-0140 М

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED	
0	9/09	Initial release	_	
1	10/09	MTP factory initialization values changed per customer request in Table 3	12	
2	11/09	Updated write operations and soldering temperature (reflow)	1, 2, 8, 16	
3	3/10	Added lead temperature and made various corrections	2, 3, 4, 6, 8, 11, 14, 19, 21	
4	2/11	Changed MTP factory initialization value of MAX9673 for GMA5	12	

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.