ON Semiconductor

Is Now

Onsemí

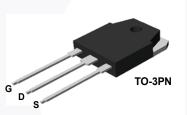
To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

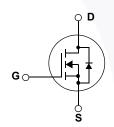
onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

FCA47N60 / FCA47N60_F109 N-Channel SuperFET[®] MOSFET

600 V, 47 A, 70 mΩ

Features


- 650 V @ T_J = 150°C
- Typ. R_{DS(on)} = 58 mΩ
- Ultra Low Gate Charge (Typ. Q_g= 210 nC)
- Low Effective Output Capacitance (Typ. Coss(eff.) = 420 pF)
- 100% Avalanche Tested


Application

- · Solar Invertor
- AC-DC Power Supply

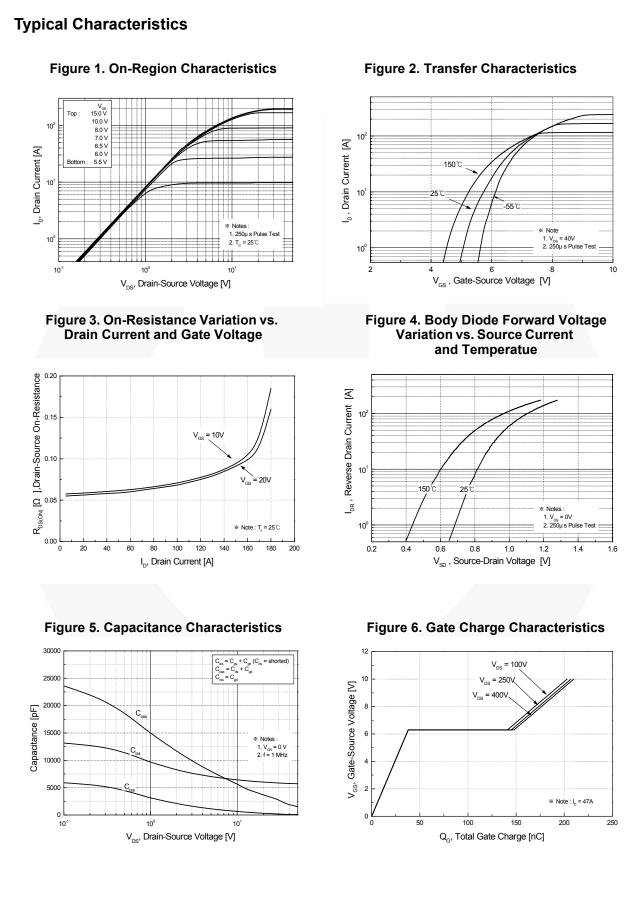
Description

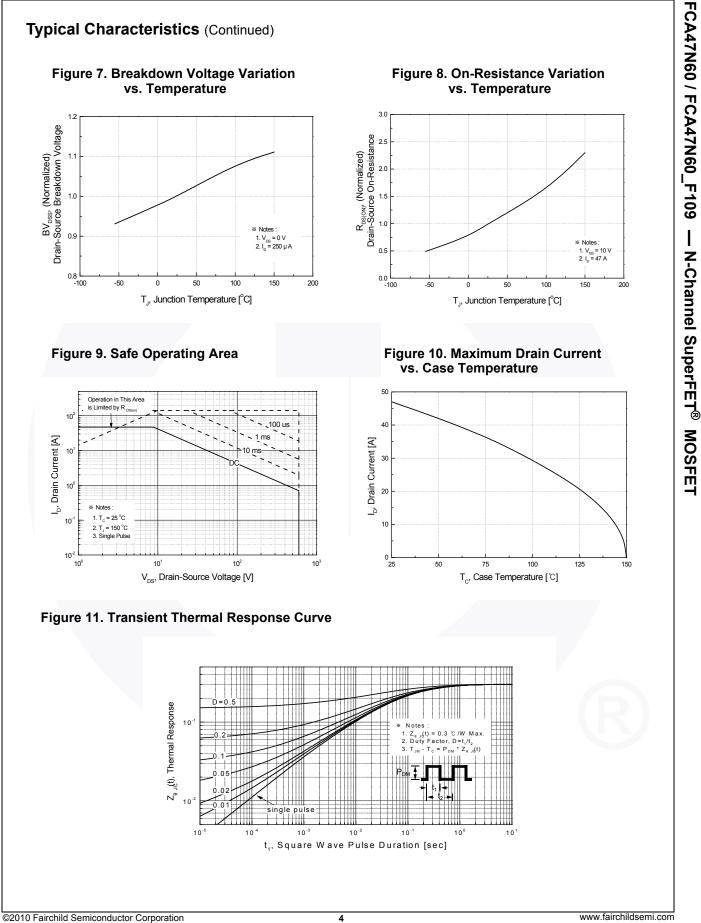
SuperFET® MOSFET is Fairchild Semiconductor's first generation of high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low onresistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET MOSFET is very suitable for the switching power applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications.

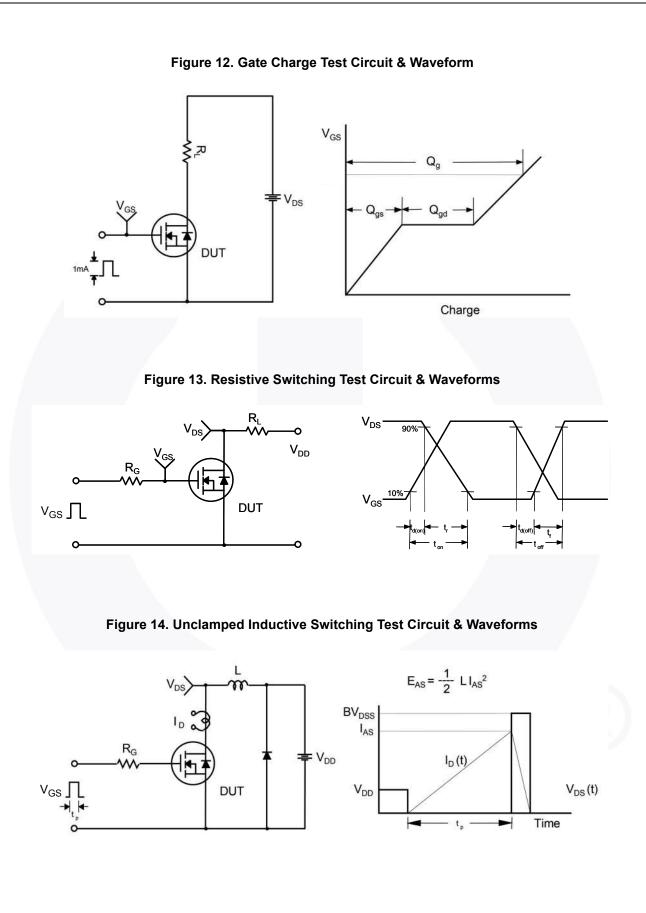
Absolute Maximum Ratings

Symbol		Parameter		FCA47N60	FCA47N60_F109	Unit
V _{DSS}	Drain-Source Voltage	e			V	
ID	Drain Current	- Continuous - Continuous		47 29.7		A A
I _{DM}	Drain Current	- Pulsed	(Note 1)		141	A
V _{GSS}	Gate-Source voltage				V	
E _{AS}	Single Pulsed Avalar	nche Energy	(Note 2)		1800	mJ
I _{AR}	Avalanche Current		(Note 1)	47		А
E _{AR}	Repetitive Avalanche	e Energy	(Note 1)	41.7		mJ
dv/dt	Peak Diode Recovery dv/dt (Note		(Note 3)	4.5		V/ns
P _D	Power Dissipation	(T _C = 25°C) - Derate above 25°C			417 3.33	W W/°C
T _{J,} T _{STG}	Operating and Storage Temperature Range			-5	5 to +150	°C
Τ _L	Maximum Lead Temperature for Soldering Purpose, 1/8" from Case for 5 Seconds				°C	

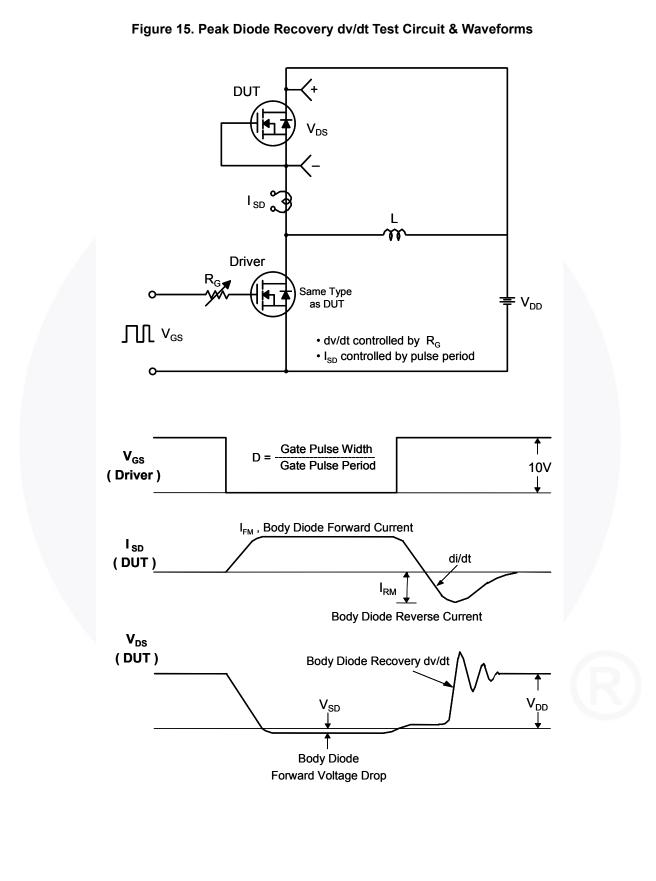
Thermal Characteristics

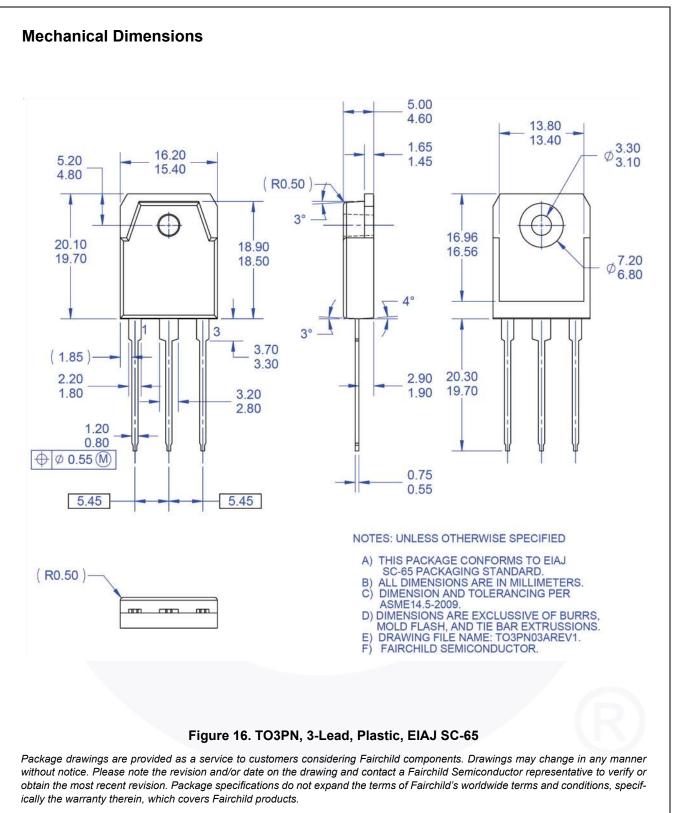

Symbol	Parameter	Тур.	Max.	Unit		
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction-to-Case, Max.		0.3	°C/W		
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient, Max.		41.7	°C/W		


September 2017


Of Characteristics BVDSS Drain-Source Breakdown Voltage $V_{GS} = 0$ V, $I_D = 250 \mu$ A, $T_J = 150^{\circ}$ C $$ $$ V_{GS} AbVDSS Breakdown Voltage Temperature $I_D = 250 \mu$ A, $T_J = 150^{\circ}$ C $$ 650 $$ V_{CS} VAT_J Coefficient $I_D = 250 \mu$ A, Referenced to 25° C $$ 0.6 $$ V_{CS} BVDSS Drain-Source Avalanche Breakdown $V_{GS} = 0$ V, $I_D = 47$ A $$ 700 $$ 10 μ I_{DSS} Zero Gate Voltage Drain Current $V_{SS} = 30$ V, $V_{DS} = 0$ V $$ $$ 10 μ I_{DSSR} Gate-Body Leakage Current, Forward $V_{CS} = 30$ V, $V_{DS} = 0$ V $$ $$ 100 n Drain-Source $V_{GS} = 30$ V, $V_{DS} = 0$ V $$ $$ 100 n $$ $$ 0.058 $0.$ On-Resistance $V_{GS} = 30$ V, $V_{DS} = 250 \mu$ A 3.0 $$ 500 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Device Marking		Device	Pac	kage	Reel Size	Таре	e Width		Quantity	/	
Lectrical Characteristics Symbol Parameter Test Conditions Min. Typ. Max. U Off Characteristics BVOSS Drain-Source Breakdown Voltage $V_{GS} = 0$ V, $I_D = 250$ µA, $T_J = 25^{\circ}$ C 600 V BVOSS Breakdown Voltage Temperature $I_D = 250$ µA, $T_J = 25^{\circ}$ C - 0.6 V BVOSS Drain-Source Avalanche Breakdown VGS = 0 V, $I_D = 47$ A 700 V BVDS Drain-Source Avalanche Breakdown VGS = 0 V, $I_D = 47$ A 700 V Voss Coefficient VDS = 460 V, $C_D = 125^{\circ}$ C 10 µ Voss Gate-Body Leakage Current, Forward VGS = 30 V, $V_D = 20$ µA 100 n Caster Gate-Body Leakage Current, Reverse VGS = 30 V, $V_D = 235$ A 0.058 0.0 Orthardteristics VGS = 0 V, $I_D = 235$ A 0.058 0.0 0.0 0.0<	FCA47	'N60	FCA47N60	TO	-3PN	-		-		30	30	
SymbolParameterTest ConditionsMin.Typ.Max.UOff Characteristics BV_{DSS} Drain-Source Breakdown Voltage $V_{CS} = 0$ V, $I_p = 250 \mu$ A, $T_y = 25^\circ$ C 600 N ABV_{DSS} Breakdown Voltage Temperature $I_p = 250 \mu$ A, $Referenced to 25^\circC0.6V/BV_{DS}Drain-Source Avalanche BreakdownV_{DS} = 0 V, I_p = 47 A700NV_{DS}Drain-Source Avalanche BreakdownV_{DS} = 0 V, I_p = 47 A700NI_{DSS}Zero Gate Voltage Drain CurrentV_{DS} = 400 V, C_S = 20 V10µI_{QSSF}Gate-Body Leakage Current, ForwardV_{CS} = 30 V, V_{DS} = 0 V100nI_{QSSR}Gate-Body Leakage Current, ReverseV_{CS} = 30 V, V_{DS} = 0 V100nI_{QSSR}Gate-Threshold VoltageV_{DS} = V_{CS}. I_p = 250 \muA3.05On CharacteristicsV_{GS} = 10$ V, $I_p = 23.5$ A40V $V_{GS}(m)$ Gate Threshold Voltage $V_{DS} = V_{GS}$. $I_p = 250 \mu$ A3.05Dynamic CharacteristicsV_{DS} = V_{CS}. $I_p = 250 \mu$ A40- $V_{GS}(m)$ Gate Threshold Voltage $V_{DS} = 20$ V, $I_p = 23.5$ A40- $V_{GS}(m)$ Gate Threshold Voltage $V_{DS} = 25$ V, $V_{CS} = 0$ V, $I_p = 320$ μ A3.05Dynamic Characte	FCA47	'N60	FCA47N60_F109	TO	-3PN	3PN -		-		30		
Of Characteristics BVDSS Drain-Source Breakdown Voltage $V_{GS} = 0 V$, $I_D = 250 \muA$, $T_J = 150^{\circ}$ C 650 V ABVDSS Breakdown Voltage Temperature $I_D = 250 \muA$, Referenced to 25° C 660 V VAT_J Coefficient $I_D = 250 \muA$, Referenced to 25° C 0.6 V BVDSS Drain-Source Avalanche Breakdown VGS = 0 V, $I_D = 47 A$ 700 V Votatage Zero Gate Voltage Drain Current $V_{QS} = 30 V$, $V_{DS} = 0 V$ 100 µ VGS(m) Gate Threshold Voltage $V_{QS} = 30 V$, $V_{DS} = 0 V$ 100 n Drain-Source Concernet Reverse $V_{QS} = 30 V$, $V_{DS} = 0 V$ 100 n On-Resistance $V_{DS} = V_{GS}$, $I_D = 235 A$ 0.058 0. On-Resistance $V_{DS} = 250 \mu A$ 3.0 5 500 Opparatic Characteristics 200 $I_D H H Z$	Electrica	al Cha	racteristics τ_c =	25°C unle	ess otherwi	se noted.						
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Symbol		Parameter			Test Conditions		Min.	Тур.	Max.	Uni	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Off Chara	cteristic	cs									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BV _{DSS}	Drain-S	Source Breakdown Volt	age	V _{GS} =	0 V, I _D = 250 μA, T _J	= 25°C	600			V	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					V _{GS} =	0 V, I_D = 250 μ A, T_J	= 150°C		650		V	
Voltage <				ure	I _D = 2	50 μ A, Referenced to	25°C		0.6		V/°C	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	BV _{DS}			ikdown		2			700		V	
	I _{DSS}	Zero G	Zero Gate Voltage Drain Current		V _{DS} =	$600 \text{ V}, \text{V}_{\text{GS}} = 0 \text{ V}$					μA	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u> </u>	Cata 5	adul aakasa Oumsat	Converd						-	μA	
											nA nA	
	IGSSR	Gale-E	souy Leakage Current,	Reverse	v _{GS} =	-30 V, V _{DS} = 0 V				-100	ΠA	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	On Chara	cteristic	s									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{GS(th)}	Gate T	hreshold Voltage		V _{DS} =	V _{GS} , I _D = 250 μA			3.0		5.0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	R _{DS(on)}				V _{GS} =	V _{GS} = 10 V, I _D = 23.5 A				0.058	0.0	
Dynamic CharacteristicsOperation of the problem of t		Forwa	rd Transconductance		20	-				40	-	
	V _{GS(th)}	Gate T	hreshold Voltage		V _{DS} =	V _{GS} , I _D = 250 μA			3.0		5.0	
	Dvnamic	Charact	eristics									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-			-	V _{DS} =	25 V, V _{GS} = 0 V,			5900	8000	pF	
CrssReverse Transfer Capacitance250pCossOutput Capacitance $V_{DS} = 480 \text{ V}, V_{GS} = 0 \text{ V}, f = 1.0 \text{ MHz}$ 160pCoss eff.Effective Output Capacitance $V_{DS} = 0 \text{ V}$ to 400 V, $V_{GS} = 0 \text{ V}$ 420pSwitching Characteristicstd(on)Turn-On Delay Time $V_{DD} = 300 \text{ V}, I_D = 47 \text{ A}$ 185430rtrTurn-On Rise TimeRG = 25 \Omega210450rtd(off)Turn-Off Delay TimeVDS = 480 V, ID = 47 A5201100rtqTurn-Off Fall TimeVDS = 480 V, ID = 47 A210270nQgTotal Gate ChargeVDS = 480 V, ID = 47 A210270nQgdGate-Drain ChargeVDS = 10 VNote 4)110nDrain-Source Diode CharacteristicsIsMaximum Pulsed Drain-Source Diode Forward Current47AVSDDrain-Source Diode Forward VoltageVGS = 0 V, IS = 47 A141AVrrReverse Recovery TimeVGS = 0 V, IS = 47 A590n			·	_			_				pF	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Revers	e Transfer Capacitance	е			-		250		pF	
Switching Characteristics $t_{d(on)}$ Turn-On Delay Time $V_{DD} = 300 \text{ V}, I_D = 47 \text{ A}$ 185430r $t_{d(off)}$ Turn-On Rise Time $R_G = 25 \Omega$ 185430r $t_{d(off)}$ Turn-Off Delay Time $R_G = 25 \Omega$ 210450r $t_{d(off)}$ Turn-Off Fall Time $V_{DS} = 480 \text{ V}, I_D = 47 \text{ A}$ 210270n Q_g Total Gate Charge $V_{DS} = 480 \text{ V}, I_D = 47 \text{ A}$ 210270n Q_{gs} Gate-Source Charge $V_{GS} = 10 \text{ V}$ $(Note 4)$ 110nDrain-Source Diode CharacteristicsIsMaximum Pulsed Drain-Source Diode Forward Current47A V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_S = 47 \text{ A}$ 1.4V $V_{GS} = 0 \text{ V}, I_S = 47 \text{ A}$ 1.4V		Output	Capacitance	-	V _{DS} =	V _{DS} = 480 V, V _{GS} = 0 V, f = 1.0 MHz			160		pF	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C _{oss} eff.	Effectiv	ve Output Capacitance						420		pF	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Switching	Charad	cteristics									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					V =	300 V. In = 47 A			185	430	ns	
$\begin{tabular}{ c c c c c c c } \hline Turn-Off Delay Time & $$$ $$$ $$$ $$$ $$$ $$$ $$$ $$$ $$$ $. ,		-				-				ns	
Turn-Off Fall Time(Note 4)75160r Q_g Total Gate Charge $V_{DS} = 480 \text{ V}, \text{ I}_D = 47 \text{ A}$ 210270n Q_{gs} Gate-Source Charge $V_{GS} = 10 \text{ V}$ 38n Q_{gd} Gate-Drain Charge $V_{GS} = 10 \text{ V}$ 110nDrain-Source Diode CharacteristicsIsMaximum Continuous Drain-Source Diode Forward Current47A I_{SM} Maximum Pulsed Drain-Source Diode Forward Current141A V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 \text{ V}, I_S = 47 \text{ A}$ 590n								520	1100	ns		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Turn-Off Fall Time				(Note 4)		75	160	ns	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Total G			V _{DS} =	480 V, I _D = 47 A			210	270	nC	
Q_{gd} Gate-Drain Charge(Note 4)110nDrain-Source Diode CharacteristicsIsMaximum Continuous Drain-Source Diode Forward Current47/4I_{SM}Maximum Pulsed Drain-Source Diode Forward Current141/4V_{SD}Drain-Source Diode Forward Voltage $V_{GS} = 0 V$, Is = 47 A1.4/4 t_{rr} Reverse Recovery Time $V_{GS} = 0 V$, Is = 47 A590n		Gate-Source Charge		V _{GS} =	10 V	-		38		nC		
Drain-Source Diode Characteristics I_S Maximum Continuous Drain-Source Diode Forward Current47A I_{SM} Maximum Pulsed Drain-Source Diode Forward Current141A V_{SD} Drain-Source Diode Forward Voltage $V_{GS} = 0 V$, $I_S = 47 A$ 1.4V t_{rr} Reverse Recovery Time $V_{GS} = 0 V$, $I_S = 47 A$ 590n	Q _{gd}	Gate-D	Gate-Drain Charge		(Note 4)				110		nC	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			de Characteristic	·e	I							
					Forward C	urrent				47	A	
											A	
$V_{GS} = 0 V, I_S = 47 A$ 590 n											V	
					00	0					ns	
Q_{rr} Reverse Recovery Charge q_{rr}	Q _{rr}		Recovery Charge				(Note 4)		25		μC	

4. Essentially independent of operating temperature typical characteristics.


FCA47N60 / FCA47N60_F109 — N-Channel SuperFET[®] MOSFET



5

FCA47N60 / FCA47N60_F109 — N-Channel SuperFET[®] MOSFET

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT3PN-003

FCA47N60 / FCA47N60_F109

I

N-Channel SuperFET[®] MOSFET

