
User Guide []

UG029 (v13.1) March 1, 2011 []

í

ChipScope Pro 13.1
Software and Cores

User Guide

UG029 (v13.1) March 1, 2011

ChipScope Pro Software and Cores User Guide www.xilinx.com UG029 (v13.1) March 1, 2011

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development
of designs to operate with Xilinx® hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY
RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© Copyright 2011. Xilinx, Inc. XILINX, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, and other designated brands included herein are
trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Revision History

The following table shows the revision history for this document.

Date Version Revision

03/24/08 10.1

Updated all chapters to be compatible with 10.1 tools.
Updated version numbers to reflect version number of tools.

Replaced the ChipScope™ CORE Generator™ tool with the Xilinx CORE Generator tool.

Chapter 1, “Introduction”: Added Xilinx CORE Generator tool to Table 1-1, page 7;
Updated PC and Linux system requirements in Table 1-9, page 43 and Table 1-10,
page 43, respectively, removed “Host System Requirements for Solaris.” Chapter 4,
“Using the ChipScope Pro Analyzer”: Added “Using Multiple Platform Cable USB
Connections,” page 84 and “External Input,” page 102. Chapter 5, “ChipScope Engine
Tcl Interface”: Updated “Requirements,” page 133 and
“::chipscope::csefpga_get_config_reg,” page 184.

04/24/09 11.1

Updated all chapters to be compatible with 11.1 tools.

Added ChipScope Pro IBERT support.

Chapter 1, “Introduction”: Expanded “IBERT Core,” page 19.

Chapter 4, “Using the ChipScope Pro Analyzer”: “IBERT Console Window for Virtex-5
FPGA GTP and GTX Transceivers,” page 103.

Chapter 5, “ChipScope Engine Tcl Interface”: Expanded “CSE/Tcl Command
Summary,” page 134: Added commands in “CseFpga Command Details,” page 180,
“CseCore Command Details,” page 194, and “CseVIO Command Details,” page 197.

Added Appendix B, “References.”

http://www.xilinx.com

UG029 (v13.1) March 1, 2011 www.xilinx.com ChipScope Pro Software and Cores User Guide

06/24/09 11.2

Updated all chapters to be compatible with 11.2 tools. Added Support for Virtex®-6
LXT/SXT/CXT families.

Updated:

“IBERT Design Flow,” page 19 and “::chipscope::csevio_write_values,” page 205,
“::chipscope::csevio_read_values,” page 206, and Appendix B, “References.”

Added:
“IBERT Feature Descriptions,” page 19, Table 1-6, page 23 “Generating IBERT v2.0 Cores
for Virtex-6 FPGA GTX Transceivers,” page 50, “IBERT Console Window for Virtex-6
FPGA GTX Transceivers,” page 117.

09/16/09 11.3

11.3 updates. Added support for Spartan®-6 FPGAs. Added IBERT Core for the
Spartan-6 FPGA GTP transceivers section in “IBERT Feature Descriptions,” page 19
and Table 1-8, page 25, “Generating IBERT v2.0 Cores for Virtex-6 FPGA GTH
Transceivers,” page 52, “Sweep Test Settings Panel,” page 120, “IBERT Console Window
for Spartan-6 FPGA GTP Transceivers,” page 126, and Appendix A, “ChipScope Pro
Tools Troubleshooting Guide.”

12/02/09 11.4
Updated all chapters to be compatible with 11.4 tools. Added support for Virtex-6 FPGA
HXT devices. Updated “IBERT Feature Descriptions,” page 19 and Table 1-7, page 24.
Added “Generating IBERT v2.0 Cores for Virtex-6 FPGA GTH Transceivers,” page 52.

04/19/10 12.1

• Updated all chapters to be compatible with 12.1 tools

• Added IBERT v2.0 for Virtex-5 FPGA GTX Transceivers

• Added Analyzer support for opening JTAG plug-ins

• Added support for ByteTools Catapult EJ-1 Ethernet-to-JTAG cable

• Added Analyzer single and repetitive trigger run modes

• Added Analyzer trigger and capture status

• Added csejtag_target is_connected command

• Added csefpga_configure_device_with_file command

• Added csefpga_is_configured command

09/21/2010 12.3 Updated for 12.3 release.

03/01/11 13.1

• Added 7 series support for logic debug

• Removed IBA/PLB (not IBA/PLB46)

• Removed IBA/OPB

• Removed IBERT V4 GT11

• Added Startup trigger mode

• Added Analyzer IBERT sweep test plot

• Added standalone IBERT plot viewer

• Added 1/2, 1/4, 1/8 line rate support for GTH

• Added ICON, ILA, VIO, and ATC2

• Added MARK_DEBUG to PA UG

• Updated the CSE/Tcl section with new commands and changes

Date Version Revision

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com UG029 (v13.1) March 1, 2011

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 5

UG029 (v13.1) March 1, 2011

Revision History . 2

Chapter 1: Introduction

ChipScope Pro Tools Overview. 7

ChipScope Pro Tools Description. 7

ChipScope Pro Cores Description . 11

System Requirements . 26

Software Installation and Licensing . 28

Chapter 2: Using the Core Generator Tools

Overview . 29

Using the Xilinx CORE Generator Tool with ChipScope Pro Cores 29

Generating an ICON Core . 29

Generating an ILA Core . 32

Generating the VIO Core . 37

Generating the ATC2 Core . 39

Generating IBERT v1.0 Cores for Virtex-5 FPGAs . 42

Generating IBERT v2.0 Cores for Virtex-5 FPGA GTX Transceivers 48

Generating IBERT v2.0 Cores for Virtex-6 FPGA GTX Transceivers 50

Generating IBERT v2.0 Cores for Virtex-6 FPGA GTH Transceivers 52

Generating IBERT v2.0 Cores for Spartan-6 FPGA GTP Transceivers 54

Chapter 3: Using the ChipScope Pro Core Inserter

Core Inserter Overview. 57

Using the Core Inserter with PlanAhead . 57

Using the Core Inserter with ISE Project Navigator . 57

Using the Core Inserter with Command Line Implementation. 59

ChipScope Pro Core Inserter Features . 62

Chapter 4: Using the ChipScope Pro Analyzer

Analyzer Overview . 73

Analyzer Server Interface . 74

Analyzer Client Interface . 75

Analyzer Features . 78

ChipScope Pro ILA Waveform Toolbar Features . 131

ChipScope Pro Analyzer Command Line Options. 131

Table of Contents

http://www.xilinx.com

6 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

Overview . 133

CSE/Tcl Command Summary. 134

CseJtag Tcl Commands . 139

CseFpga Command Details . 180

CseCore Command Details . 194

CseVIO Command Details . 197

CSE/Tcl Examples . 207

Appendix A: ChipScope Pro Tools Troubleshooting Guide

Overview . 209

ChipScope Pro Tools Installation Troubleshooting . 210

Xilinx JTAG Programming Cable Troubleshooting . 211

ChipScope Pro Analyzer Core Troubleshooting . 219

Gathering Information for Xilinx Technical Support . 225

Appendix B: References

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 7

UG029 (v13.1) March 1, 2011

Chapter 1

Introduction

ChipScope Pro Tools Overview

As the density of FPGA devices increases, so does the impracticality of attaching test
equipment probes to these devices under test. The ChipScope™ Pro tools integrate key
logic analyzer and other test and measurement hardware components with the target
design inside the supported Xilinx® FPGA devices listed in the ISE® Design Suite Product
Table [See Reference 15, p. 227]. The tools communicate with these components and
provide the designer with a robust logic analyzer solution.

The ChipScope Pro Serial I/O Toolkit provides features and capabilities specific to the
exploration and debug of designs that use the high-speed serial transceiver I/O capability
of Xilinx FPGAs. The IBERT (internal bit error ratio tester) core and related software
provides access to the high-speed serial transceivers and perform bit error ratio analysis on
channels composed of these transceivers. In this document, the transceivers are called
MGTs (multi-gigabit transceivers). The IBERT core supports the high-speed serial
transceivers found in the Xilinx Virtex®-5, Virtex-6, and Spartan®-6 FPGA devices listed in
the ISE Design Suite Product Table [See Reference 15, p. 227].

ChipScope Pro Tools Description

The following table gives a brief description of the various ChipScope Pro software tools
and cores.

Table 1-1: ChipScope Pro Tools Description

Tool Description

Xilinx CORE
Generator™ Tool

Provides core generation capability for the ICON (integrated
controller), ILA (integrated logic analyzer), VIO, (virtual
input/output), and ATC2 (Agilent trace core) cores targeting all
supported FPGA device families. Also provides core generation
capability for the IBERT v2.0 core targeting the Virtex-5, Virtex-6,
and Spartan-6 FPGA families. The Xilinx CORE Generator tool is
part of the Xilinx ISE Design Suite software tool installation.

IBERT Core
Generator

Provides full design generation capability for the IBERT v1.0 core
targeting the Virtex-5 devices. You select the MGTs and parameters
governing the design, and the CORE Generator tool uses the ISE
design suite to produce a configuration file.

Core Inserter
Automatically inserts the ICON, ILA, and ATC2 cores into your
synthesized design.

http://www.xilinx.com

8 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 1: Introduction

This figure shows a block diagram of a system containing debug cores added using the
ChipScope Pro tools. You can place the ICON, ILA, VIO, and ATC2 cores (collectively
called the ChipScope Pro cores) into your design by generating the cores with the CORE
Generator tool and instantiating them into the HDL source code. You can also insert the
ICON, ILA, and ATC2 cores directly into the synthesized design netlist using the Core
Inserter or PlanAhead tools. You then place and route your design using the ISE
implementation tools. Next, download the bitstream into the device under test and
analyze the design with the Analyzer software.

PlanAhead™ Design
Analysis Tool

Automatically inserts the ICON and ILA cores into the design
netlist. For more information on this feature, go to PlanAhead™
Design Analysis Tool [See Reference 16, p. 227].

Analyzer
Provides in-system device configuration, as well as trigger setup,
trace display, control, and status for the ICON, ILA,VIO, and IBERT
cores.

ChipScope Engine Tcl
(CSE/Tcl) Scripting
Interface

The scriptable CSE/Tcl command interface makes it possible to
interact with devices in a JTAG (Joint Text Action Group, IEEE
standard) chain from a Tcl shell (1).

Notes:

1. Tcl stands for Tool Command Language. The CSE/Tcl interface requires the Tcl shell program (called
xtclsh) that is included in the ChipScope Pro and ISE tool installations or in the ActiveTcl 8.4 shell
available from ActiveState [See Reference 23, p. 227].

X-Ref Target - Figure 1-1

Figure 1-1: ChipScope Pro System Block Diagram

Table 1-1: ChipScope Pro Tools Description (Cont’d)

Tool Description

Board-Under-Test

Host Computer with
ChipScope Pro Software

JTAG
Connections

cs_pro_sys_blk_diag

ChipScope
Pro

Target Device Under Test

User

Function

User

Function

User

Function

ILA Pro

ICON Pro

ILA Pro

ILA Pro

Parallel
Cable

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 9

UG029 (v13.1) March 1, 2011

ChipScope Pro Tools Description

ChipScope Pro Analyzer supports the following download cables for communication
between your computer and the devices in the JTAG boundary scan chain:

• Platform Cable USB

• Parallel Cable IV

Analyzer and cores contain many features that you can use to verify your logic (Table 1-2).
User-selectable data channels range from 1 to 4,096 and the sample buffer sizes range from
256 to 131,072 samples. You can change the triggers in real time without affecting your
logic. Analyzer leads you through the process of modifying triggers and analyzing the
captured data.

Table 1-2: ChipScope Pro Logic Debug Features and Benefits

Feature Benefit

1 to 4,096 user-selectable data channels
Accurately captures wide data bus
functionality.

User-selectable sample buffers ranging in
size from 256 to 131,072 samples

Large sample size increases accuracy and
probability of capturing infrequent events.

Up to 16 separate trigger ports, each with a
user-selectable width of 1 to 256 channels (for
a total of up to 4096 trigger channels)

Multiple separate trigger ports increase the
flexibility of event detection and reduce the
need for sample storage.

Up to 16 separate match units per trigger
port (up to 16 total match units) for a total of
16 different comparisons per trigger
condition

Multiple match units per trigger ports
increase the flexibility of event detection
while conserving valuable resources.

All data and trigger operations are
synchronous to your clock at rates up to 500
MHz

Capable of high-speed trigger event
detection and data capture.

Trigger conditions implement either a
boolean equation or a trigger sequence of up
to 16 match functions

Can combine up to 16 trigger port match
functions using a boolean equation or a
16-level trigger sequencer.

Data storage qualification condition
implements a boolean equation of up to 16
match functions

Can combine up to 16 trigger port match
functions using a boolean equation to
determine which data samples are captured
and stored in on-chip memory.

Trigger and storage qualification conditions
are in-system changeable without affecting
the user logic

No need to single step or stop a design for
logic analysis.

Easy-to-use graphical interface
Guides you through selecting the correct
options.

Up to 15 independent ILA, VIO, or ATC2
cores per device

Can segment logic and test smaller sections
of a large design for greater accuracy.

Multiple trigger settings
Records duration and number of events
along with matches and ranges for greater
accuracy and flexibility.

Downloadable from the Xilinx Web site
Tools are easily accessible from the
ChipScope Suite [See Reference 17, p. 227].

http://www.xilinx.com

10 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 1: Introduction

Design Flow

The tools design flow (Figure 1-2) merges easily with any standard FPGA design flow that
uses a standard HDL synthesis tool and the ISE implementation tools.

Using ChipScope Pro Cores in Embedded Processor and DSP Tool Flows

The cores (ICON, ILA, IBA, VIO, and ATC2) can also be used in the EDK and System
Generator for DSP tool flows for embedded processor and DSP designs, respectively. For
information on how to use the ChipScope Pro cores, see the EDK Platform Studio [See
Reference 14, p. 227] and System Generator for DSP [See Reference 18, p. 227]
documentation.

X-Ref Target - Figure 1-2

Figure 1-2: ChipScope Pro Tools Design Flow

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 11

UG029 (v13.1) March 1, 2011

ChipScope Pro Cores Description

ChipScope Pro Cores Description

ICON Core

All the cores use the JTAG boundary scan port to communicate to the host computer via a
JTAG download cable. The ICON core provides a communications path between the JTAG
boundary scan port of the target FPGA and up to 15 ILA, VIO, and/or ATC2 cores (as
shown in Figure 1-1, page 8).

For devices of the Spartan-3, Spartan-3E, Spartan-3A, and Spartan-3A DSP families, the
ICON core uses either the USER1 or USER2 JTAG boundary scan instructions for
communication via the BSCAN primitive. The unused USER1 or USER2 scan chain of the
BSCAN primitive can also be exported for use in your application, if needed.

For all other supported devices, the ICON core uses any one of the USER1, USER2, USER3
or USER4 scan chains available via the BSCAN primitives. It is not necessary to export
unused USER scan chains because each BSCAN primitive implements a single scan chain.

ILA Core

The ILA core is a customizable logic analyzer core that can be used to monitor any internal
signal of your design. Since the ILA core is synchronous to the design being monitored, all
design clock constraints that are applied to your design are also applied to the components
inside the ILA core. The ILA core consists of three major components:

• Trigger input and output logic:

− Trigger input logic detects elaborate trigger events.

− Trigger output logic triggers external test equipment and other logic.

• Data capture logic:

− ILA cores capture and store trace data information using on-chip block RAM
resources.

• Control and status logic:

− Manages the operation of the ILA core.

ILA Trigger Input Logic

The triggering capabilities of the ILA core include many features that are necessary for
detecting elaborate trigger events. These features are described in Table 1-3.

Table 1-3: Trigger Features of the ILA Core

Feature Description

Wide Trigger Ports Each trigger port can be 1 to 256 bits wide.

Multiple Trigger Ports

Each ILA core can have up to 16 trigger ports. The ability to
support multiple trigger ports is necessary in complex systems
where different types of signals or buses must be monitored
using separate match units.

Multiple Match Units per
Trigger Port

Each trigger port can be connected to up to 16 match units. This
feature enables multiple comparisons to be performed on the
trigger port signals.

http://www.xilinx.com

12 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 1: Introduction

Boolean Equation Trigger
Condition

The trigger condition can consist of a Boolean AND or OR
equation of up to 16 match unit functions.

Multi-Level Trigger
Sequencer

The trigger condition can consist of a multi-level trigger
sequencer of up to 16 match unit functions.

Boolean Equation Storage
Qualification Condition

The storage qualification condition can consist of a Boolean
AND or OR equation of up to 16 match unit functions.

Choice of Match Unit
Types

The match unit connected to each trigger port can be one of the
following types:

• Basic comparator:

− Performs ‘=’ and ‘<>’ comparisons.

− Compares up to 8 bits per slice in LUT4-baseda devices.

− Compares up to 19 bits per slice in Virtex-5 and Spartan-6
devices.

− Compares up to 20 bits per slice in all other LUT6b-based
devices.

• Basic comparator w/edges:

− Performs ‘=’ and ‘<>’ comparisons.

− Detects high-to-low and low-to-high bit-wise transitions.

− Compares up to 4 bits per slice in LUT4-based devices.

− Compares up to 8 bits per slice in LUT6-based devices.

• Extended comparator:

− Performs ‘=’, ‘<>’, ‘>’, ‘>=’, ‘<‘, and ‘<=’ comparisons.

− Compares up to 2 bits per slice in LUT4-based devices.

− Compares up to 8 bits per slice in LUT6-based devices.

• Extended comparator w/edges:

− Performs ‘=’, ‘<>’, ‘>’, ‘>=’, ‘<‘, and ‘<=’ comparisons.

− Detects high-to-low and low-to-high bit-wise transitions.

− Compares up to 2 bits per slice in LUT4-based devices.

− Compares up to 8 bits per slice in LUT6-based devices.

• Range comparator:

− Performs ‘=’, ‘<>’, ‘>’, ‘>=’, ‘<‘, ‘<=’, ‘in range’, and ‘not in
range’ comparisons.

− Compares up to 1 bit per slice in LUT4-based devices.

− Compares up to 4 bits per slice in LUT6-based devices.

• Range comparator w/edges:

− Performs ‘=’, ‘<>’, ‘>’, ‘>=’, ‘<‘, ‘<=’, ‘in range’, and ‘not in
range’ comparisons.

− Detects high-to-low and low-to-high bit-wise transitions.

− Compares up to 1bit per slice in LUT4-based devices.

− Compares up to 4 bits per slice in LUT6-based devices.

All match units connected to a given trigger port are the same
type.

Table 1-3: Trigger Features of the ILA Core (Cont’d)

Feature Description

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 13

UG029 (v13.1) March 1, 2011

ChipScope Pro Cores Description

Choice of Match Function
Event Counter

All the match units of a trigger port can be configured with an
event counter, with a selectable size of 1 to 32 bits. This counter
can be configured at run time to count events in the following
ways:

• Exactly n occurrences

− Matches only when exactly n consecutive or non-
consecutive events occur

• At least n occurrences

− Matches and stays asserted once n consecutive or
non-consecutive events occur

• At least n consecutive occurrences

− Matches once n consecutive events occur, and stays
asserted until the match function is not satisfied.

Trigger Output Port

The internal trigger condition of the ILA core can be accessed
using the optional trigger output port. This signal can be used as
a trigger for external test equipment by attaching the signal to an
output pin.

However, it can also be used by internal logic as an interrupt, a
trigger, or to cascade multiple ILA cores together.

The trigger output port of the ILA core has a latency of 10 clock
cycles.

The shape (level or pulse) and sense (active-High or
active-Low) of the trigger output can be controlled at run-time.

a. LUT4-based device families are Spartan-3, Spartan-3E, Spartan-3A, Spartan-3A DSP, and Virtex-4
FPGAs (and the variants of these families).

b. LUT6-based device families include Virtex-5, Virtex-6, Spartan-6, Artix™-7, Kintex™-7, and Virtex-7
FPGAs (and the variants of these families).

Table 1-3: Trigger Features of the ILA Core (Cont’d)

Feature Description

http://www.xilinx.com

14 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 1: Introduction

Using Multiple Trigger Ports

The ability to monitor different kinds of signals and buses in the design requires the use of
multiple trigger ports. For example, if you are instrumenting an internal system bus in
your design that is made up of control, address, and data signals, then you could assign a
separate trigger port to monitor each signal group (as shown in Figure 1-3).

If you connected all these different signals and buses to a single trigger port, you would
not be able to monitor for individual bit transitions on the CE, WE, and OE signals while
looking for the Address bus to be in a specified range. The flexibility of being able to
choose from different types of match units allows you to customize the ILA cores to your
triggering needs while keeping resource usage to a minimum.

X-Ref Target - Figure 1-3

Figure 1-3: ILA Core Connection Example

Match Unit M0

(Basic w/edges)

Match Unit M1

(Basic w/edges)

Match Unit M2

(Basic)

Match Unit M3

(Basic)

Match Unit M4

(Range)

Match Unit M5

(Basic w/edges)

Trigger

Condition

Storage

Qualification

Condition

Data

Capture

Control

Data

Capture

Memory

TRIG0

TRIG_OUT

TRIG1

TRIG2

TRIG3

ILA Core

Interrupt
Clock

CE, WE, OE

Address

Data

Ext. Trigger

3

24

32

1

60

ila_pro_connection_example_070704

n

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 15

UG029 (v13.1) March 1, 2011

ChipScope Pro Cores Description

Using Trigger and Storage Qualification Conditions

The ILA core implements both trigger and storage qualification condition logic. The
trigger condition is a Boolean or sequential combination of events that is detected by match
unit comparators that are attached to the trigger ports of the core. The trigger condition is
used to mark a distinct point of origin in the data capture window and can be located at the
beginning, the end, or anywhere within the data capture window.

Similarly, the storage qualification condition is also a Boolean combination of events that is
detected by match unit comparators that are subsequently attached to the trigger ports of
the core. However, the storage qualification condition differs from the trigger condition in
that it evaluates trigger port match unit events to decide whether or not to capture and
store each individual data sample. The trigger and storage qualification conditions can be
used together to define when to start the capture process and what data is captured.

In the ILA core example shown in Figure 1-3, page 14, suppose you want to do the
following:

• Trigger on the first memory write cycle (CE = rising edge, WE = 1, OE = 0) to Address
= 0xFF0000;

• Capture only memory read cycles (CE = rising edge, WE = 0, OE = 1) from Address =
0x23AACC where the Data values are between 0x00000000 and 0x1000FFFF;

To implement these conditions successfully, you would need to make sure that both the
TRIG0 and TRIG1 trigger ports each have two match units attached to them: one for the
trigger condition and one for the storage qualification condition. Here is how you would
set up the trigger and storage qualification equations and each individual match unit to
satisfy the conditions above:

• Trigger Condition = M0 && M2, where:

− M0[2:0] = CE, WE, OE = “R10” (where ‘R’ means “rising edge”)

− M2[23:0] = Address = “FF0000”

• Storage Qualification Condition = M1 && M3 && M4, where:

− M1[2:0] = CE, WE, OE = “R10” (where ‘R’ means “rising edge”)

− M3[23:0] = Address = “23AACC”

− M4[31:0] = Data = in the range of 0x00000000 through 0x1000FFFF

The triggering and storage qualification capabilities of the ILA core allow you to locate and
capture exactly the information that you want without wasting valuable on-chip memory
resources.

ILA Trigger Output Logic

The ILA core implements a trigger output port called TRIG_OUT. The TRIG_OUT port is
the output of the trigger condition that is set up at run-time using the Analyzer. The shape
(level or pulse) and sense (active-High or active-Low) of the trigger output can also be
controlled at run-time. The latency of the TRIG_OUT port relative to the input trigger ports
is 10 clock cycles.

The TRIG_OUT port is very flexible and has many uses. You can connect the TRIG_OUT
port to a device pin in order to trigger external test equipment such as oscilloscopes and
logic analyzers. Connecting the TRIG_OUT port to an interrupt line of an embedded
PowerPC® or MicroBlaze™ processor can be used to cause a software event to occur. You
can also connect the TRIG_OUT port of one core to a trigger input port of another core in
order to expand the trigger and data capture capabilities of your on-chip debug solution.

http://www.xilinx.com

16 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 1: Introduction

ILA Data Capture Logic

Each ILA core can capture data using on-chip block RAM resources independently from all
other cores in the design. Each ILA core can also capture data using one of two capture
modes: Window and N samples.

Window Capture Mode

In Window capture mode, the sample buffer can be divided into one or more equal-sized
sample windows. The window capture mode uses a single trigger condition event (i.e., a
Boolean combination of the individual trigger match unit events) to collect enough data to
fill a sample window.

In the case where the depth of the sample windows is a power of 2 up to 131,072 samples,
the trigger position can be set to the beginning of the sample window (trigger first, then
collect), the end of the sample window (collect until the trigger event), or anywhere in
between.

In the other case where the window depth is not a power of 2, the trigger position can only
be set to the beginning of the sample window.

Once a sample window has been filled, the trigger condition of the ILA core is
automatically re-armed and continues to monitor for trigger condition events. This process
is repeated until all sample windows of the sample buffer are filled or until you halt the
ILA core.

N Samples Capture Mode

The N Samples capture mode is similar to the Window capture mode except for two major
differences:

• The number of samples per window can be any integer N from 1 to the sample buffer
size minus 1.

• The trigger position must always be at position 0 in the window.

The N sample capture mode is useful for capturing the exact number of samples needed
per trigger without wasting valuable capture storage resources.

Trigger Marks

The data sample in the sample window that coincides with a trigger event is tagged with
a trigger mark. This trigger mark tells the Analyzer the position of the trigger within the
window. This trigger mark consumes one extra bit per sample in the sample buffer.

Data Port

The ILA core provides the capability to capture data on a port that is separate from the
trigger ports that are used to perform trigger functions. This feature is useful for limiting
the amount of data to be captured to a relatively small amount since it is not always useful
to capture and view the same information that is used to trigger the core.

However, in many cases it is useful to capture and view the same data that is used to
trigger the core. In this case, you can choose for the data to consist of one or more of the
trigger ports. This feature allows you to conserve resources while providing the flexibility
to choose what trigger information is interesting enough to capture.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 17

UG029 (v13.1) March 1, 2011

ChipScope Pro Cores Description

ILA Control and Status Logic

The ILA contains a modest amount of control and status logic that is used to maintain the
normal operation of the core. All logic necessary to properly identify and communicate
with the ILA core is implemented by this control and status logic.

VIO Core

The Virtual Input/Output (VIO) core is a customizable core that can both monitor and
drive internal FPGA signals in real time. Unlike the ILA core, no on- or off-chip RAM is
required. Four kinds of signals are available in a the VIO core:

• Asynchronous inputs:

− These are sampled using the JTAG clock signal that is driven from the JTAG cable.

− The input values are read back periodically and displayed in the Analyzer.

• Synchronous inputs:

− These are sampled using the design clock.

− The input values are read back periodically and displayed in the Analyzer.

• Asynchronous outputs:

− You define these in the Analyzer and drive them out of the core to the
surrounding design.

− A logical 1 or 0 value can be defined for individual asynchronous outputs.

• Synchronous outputs:

− You define these in the Analyzer. They are synchronized to the design clock and
driven out of the core to the surrounding design.

− A logical 1 or 0 can be defined for individual synchronous outputs. Pulse trains of
16 clock cycles worth of 1’s and/or 0’s can also be defined for synchronous
outputs.

Activity Detectors

Every VIO core input has additional cells to capture the presence of transitions on the
input. Since the design clock will most likely be much faster than the sample period of the
Analyzer, it is possible for the signal being monitored to transition many times between
successive samples. The activity detectors capture this behavior and the results are
displayed along with the value in the Analyzer.

In the case of a synchronous input, activity cells capable of monitoring for asynchronous
and synchronous events are used. This feature can be used to detect glitches as well as
synchronous transitions on the synchronous input signal.

Pulse Trains

Every VIO synchronous output has the ability to output a static 1, a static 0, or a pulse train
of successive values. A pulse train is a 16-clock cycle sequence of 1's and 0's that drive out
of the core on successive design clock cycles. The pulse train sequence is defined in the
Analyzer and is executed only one time after it is loaded into the core.

http://www.xilinx.com

18 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 1: Introduction

ATC2 Core

The Agilent Trace Core 2 (ATC2) is a customizable debug capture core that is specially
designed to work with the latest generation Agilent logic analyzers. The ATC2 core
provides external Agilent logic analyzers access to internal FPGA design nets (as shown in
Figure 1-4).

ATC2 Core Data Path Description

The data path of the ATC2 core consists of:

• Up to 64 run-time selectable input signal banks that connect to your FPGA design

• Up to 64 output data pins that connect to the probe connectors of the Agilent logic
analyzer

• Optional 2x time-division multiplexing (TDM) available on each output data pin that
can be used to double the width of each individual signal bank from 64 to 256 bits

• Supports both asynchronous timing and synchronous state capture modes

• Supports any valid I/O standard, drive strength, and output slew rate on each output
data pin on an individual pin-by-pin basis

• Supports any Agilent probe connection technology [See Reference 24, p. 227]

The maximum number of data probe points available at run time is calculated as:
(64 data ports) * (64 bits per data port) * (2x TDM) = 8,192 probe points.

ATC2 Core Data Capture and Run-Time Control

The external Agilent logic analyzer is used to trigger on and capture the data that passes
through the ATC2 core. This allows you to take full advantage of the complex triggering,
deep trace memory, and system-level data correlation features of the Agilent logic analyzer
as well as the increased visibility of internal design nodes provided by the ATC2 core. The
Agilent logic analyzer is also used to control the run-time selection of the active data port
by communicating with the ATC2 core via a JTAG port connection (as shown in
Figure 1-4).

X-Ref Target - Figure 1-4

Figure 1-4: ATC2 Core and System Block Diagram
1

 to
 3

2
 B

a
n

k
s

1
x
 o

r 2
x
 T

D
M

P
ro

b
e

C
o

n
n

e
c
to

r

ICON Core

ATC2 Core

FPGA

PCB

User

Design

256

256

256 64

256

JTAG Cable
JTAG

Agilent Logic Analyzer

LPT or USB

Probes

UG029_atc2_block_diagram_021610

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 19

UG029 (v13.1) March 1, 2011

ChipScope Pro Cores Description

IBERT Core

The IBERT core has all the logic to control, monitor, and change transceiver parameters and
perform bit error ratio tests. The IBERT core has three major components:

• BERT Logic

− The BERT logic instantiates the actual transceiver component, and contains the
pattern generators and checkers. A variety of patterns are available, including
simple clock-type patterns, full PRBS (pseudo random bit sequence) patterns, and
framed counter patterns utilizing commas and comma detection.

• Dynamic Reconfiguration Port (DRP) Logic

− Each transceiver has a Dynamic Reconfiguration Port (DRP) on it, so that
transceiver attributes can be changed in system. All attributes and DRP addresses
are readable and writable in the IBERT core. The DRP for each transceiver can be
accessed individually.

• Control and status logic

− Manages the operation of the IBERT core.

IBERT Design Flow

Because the IBERT is a self-contained design, the design flow is very simple. When using
the ChipScope IBERT Core Generator to generate IBERT core designs for Virtex-5 devices,
the design directory and bit file name are specified, options are chosen, and the Generator
runs the entire implementation flow, including bitstream creation, in one step.

The design flow for generating IBERT core designs for Virtex-6 and Spartan-6 devices are
very similar except the Xilinx CORE Generator tool is used. The main difference is that the
design directory and device information is specified in the Xilinx CORE Generator project.
In both cases, you are not required to explicitly run any other Xilinx software to generate
an IBERT core design bit file.

IBERT Feature Descriptions

The features of the IBERT core vary according to the FPGA device architecture that is
targeted. The MGT features that are supported are as follows:

• IBERT v1.0 core for Virtex-5 FPGA GTP and GTX transceivers (Table 1-4, page 20)

− Full PMA control, including differential swing, emphasis, RX equalization, and
DFE

− Ability to change line rates and reference clock source at runtime

− Limited PCS (physical cooling sub layer) support, including loopback, and
enabling/disabling 8B/10B encoding. Clock correction and channel bonding are
not supported

− 2-byte fabric width only for GTP transceivers, 4-byte fabric width only for GTX
transceivers

• IBERT v2.0 for Virtex-5 FPGA GTX Transceivers

− Full PMA (physical medium attachment) control, including differential swing,
emphasis, RX Equalization, and DFE

− Ability to change line rate at runtime

− Limited PCS support, including loopback (8b/10b encoding, clock correction, and
channel bonding are not supported)

http://www.xilinx.com

20 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 1: Introduction

− 40-bit fabric data width (4-byte mode)

• IBERT v2.0 core for Virtex-6 FPGA GTX transceivers (Table 1-6, page 23)

− Full PMA control, including differential swing, emphasis, RX equalization, and
DFE

− Ability to change line rates at run-time

− Ability to set reference clock sources at generate time

− Limited PCS support, including loopback. Pattern encoding, clock correction and
channel bonding are not supported

• IBERT v2.0 core for Virtex-6 FPGA GTH transceivers (Table 1-7, page 24)

− Full PMA control, including differential swing, emphasis, RX equalization, and
DFE

− Ability to set reference clock sources at generate time

− Limited PCS support, including loopback. Pattern encoding, clock correction, and
channel bonding are not supported

− TX Diff Swing

− TX Pre-Emphasis and Post-Emphasis

• IBERT v2.0 core for Spartan-6 FPGA GTP transceivers (Table 1-8, page 25)

− Full PMA control, including differential swing, emphasis, RX equalization, and
DFE

− Ability to change line rates at run-time

− Ability to set reference clock sources at generate time

− Limited PCS support, including loopback. Pattern encoding, clock correction and
channel bonding are not supported

− TX Diff Swing

− TX Pre-Emphasis

Table 1-4: IBERT v1.0 Core for the Virtex-5 FPGA GTP and GTX Transceivers

Feature Description

Multiple Multi-Gigabit
Transceivers

Up to eight transceivers can be selected per design.

Pattern Generator

One pattern generator per selected transceiver is used. If the
basic pattern generator is chosen, the PRBS (pseudo random bit
sequence) 7-bit, PRBS 23-bit, PRBS 31-bit, and User-defined
patterns are enabled. If the full pattern generator is used, the
above patterns are included, along with Alternate PRBS 7-bit,
PRBS 9-bit, PRBS 11-bit, PRBS 15-bit, PRBS 20-bit, PRBS 29-bit,
Framed Counter, and Idle patterns. While the set of patterns
available for all transceivers is selected once at compile time, the
particular pattern from that set can be chosen individually for
each transceiver at runtime.

Pattern Checker
One pattern checker per selected transceiver is used. The same
pattern set is available as the pattern generator. The pattern can
be chosen for each transceiver at runtime.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 21

UG029 (v13.1) March 1, 2011

ChipScope Pro Cores Description

Fabric Width
The FPGA fabric interface to the GTP transceiver is fixed in 2-
byte mode. The FPGA fabric interface to the GTX transceiver is
fixed in 4-byte mode.

BERT Parameters
Number of bits received in error and total number of words
received are gathered dynamically and read out by the Analyzer.

Polarity
The polarity of the TX or RX side of each transceiver can be
changed at runtime.

8B/10B
Encoding/Decoding
Support

8B/10B encoding or decoding can be enabled at run time on a
per dual-transceiver (GTP_DUAL or GTX_DUAL tile) basis. TX
encoding and RX decoding are selected together.

Note: If 8B/10B coding is enabled, the only valid patterns that can

be used are the Framed Counter and Idle Patterns.

Reset
Each transceiver and its BER counters can be reset
independently. A global reset is also available to reset all
transceivers and BER counters at once.

Link and Lock Status
Link, DCM, and PLL lock status are gathered for each
transceiver in the core.

DRP Read
The contents of the DRP space for each transceiver can be read
independently of all others.

DRP Write
The contents of the DRP for each transceiver can be changed at
run time, with single-bit granularity

Status
The dynamic status information for the entire core can be read
out of the core at run time.

Table 1-5: IBERT v2.0 Core for the Virtex-5 FPGA GTX Transceivers

Feature Description

Multiple GTX
Transceivers

Up to eight transceivers can be selected per design.

Pattern Generator

One pattern generator per selected GTX transceiver is used.
PRBS 7-bit, PRBS 15-bit PRBS 23-bit, PRBS 31-bit, Clk 2x, and Clk
10x patterns are available. The desired pattern from that set can
be selected individually for each GTX transceiver at runtime.

Pattern Checker
One pattern checker per selected GTX transceiver is used. The
same pattern set is available as the pattern generator. The pattern
can be chosen for each GTX transceiver at runtime.

Fabric Width
The FPGA fabric interface to the GTX_DUAL tile can be either
32- or 40-bits wide and selectable at generate time.

BERT Parameters
Number of bits received in error and total number of words
received are gathered dynamically and read out by the Analyzer.

Polarity
The polarity of the TX or RX side of each GTX transceiver can be
changed at runtime.

Table 1-4: IBERT v1.0 Core for the Virtex-5 FPGA GTP and GTX Transceivers

Feature Description

http://www.xilinx.com

22 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 1: Introduction

Reset
Each GTX transceiver and its BER counters can be reset
independently. A reset is also available to reset the entire MGT,
including PLLs.

Link and Lock Status
Link, DCM, and PLL lock status are gathered for each GTX
transceiver in the core.

DRP Read
The contents of the DRP space for each GTX transceiver can be
read independently of all others.

DRP Write
The contents of the DRP space for each GTX transceiver can be
changed at run time, with single-bit granularity.

Ports Read
The contents of the registers that monitor the GTX transceiver
ports can be read independently of others.

Ports Write
The contents of the registers that control the GTX transceiver's
ports can be changed at run time.

Status
The dynamic status information for the entire core can be read
out of the core at run time.

Table 1-5: IBERT v2.0 Core for the Virtex-5 FPGA GTX Transceivers (Cont’d)

Feature Description

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 23

UG029 (v13.1) March 1, 2011

ChipScope Pro Cores Description

Table 1-6: IBERT v2.0 Core for the Virtex-6 FPGA GTX Transceivers

Feature Description

Multiple GTX
Transceivers

Up to eight transceivers can be selected per design.

Pattern Generator

One pattern generator per selected GTX transceiver is used.
PRBS 7-bit, PRBS 15-bit PRBS 23-bit, PRBS 31-bit, Clk 2x, and Clk
10x patterns are available. The desired pattern from that set can
be selected individually for each GTX transceiver at runtime.

Pattern Checker
One pattern checker per selected GTX transceiver is used. The
same pattern set is available as the pattern generator. The pattern
can be chosen for each GTX transceiver at runtime.

Fabric Width
The FPGA fabric interface to the GTX transceiver can be either
16- or 20-bits wide and selectable at generate time.

BERT Parameters
Number of bits received in error and total number of words
received are gathered dynamically and read out by the Analyzer.

Polarity
The polarity of the TX or RX side of each GTX transceiver can be
changed at runtime.

Reset
Each GTX transceiver and its BER counters can be reset
independently. A reset is also available to reset the entire MGT,
including PLLs.

Link and Lock Status
Link, DCM, and PLL lock status are gathered for each GTX
transceiver in the core.

DRP Read
The contents of the DRP space for each GTX transceiver can be
read independently of all others.

DRP Write
The contents of the DRP for each GTX transceiver can be
changed at run time, with single-bit granularity.

Ports Read
The contents of the registers that monitor the GTX transceiver
ports can be read independently of others.

Ports Write
The contents of the registers that control the GTX transceiver's
ports can be changed at run time.

Status
The dynamic status information for the entire core can be read
out of the core at run time.

http://www.xilinx.com

24 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 1: Introduction

Table 1-7: IBERT v2.0 Core for the Virtex-6 FPGA GTH Transceivers

Feature Description

Multiple GTH Transceivers Up to sixteen transceivers can be selected per design

Pattern Generator One pattern generator per selected GTH transceiver (four
per QUAD) is used. PRBS 7-bit, PRBS 15-bit PRBS 23-bit,
PRBS 31-bit, Clk 2x, and Clk 10x patterns are available. The
desired pattern from that set can be selected individually
for each GTH transceiver at runtime.

Pattern Checker One pattern checker per selected GTH transceiver is used
(four per QUAD). The same pattern set is available as the
pattern generator. The pattern can be chosen for each GTH
transceiver at runtime.

Fabric Width The FPGA fabric interface to the GTX DUAL can be either
16- or 20-bits wide and selectable at generate time.

BERT Parameters Number of bits received in error and total number of words
received are gathered dynamically and read out by the
Analyzer.

Polarity The polarity of the TX or RX side of each GTH transceiver
can be changed at runtime.

Reset The BER counters for each GTH transceiver can be reset
independently. A reset is also available for the entire GTH
QUAD, including PLLs.

Link and Lock Status Link, DCM, and PLL lock status are gathered for each GTH
transceiver in the core.

DRP Read The DRP space for each GTH transceiver can be read
independently of all others.

DRP Write The contents of the DRP for each GTH transceiver can be
changed at runtime, with single-bit granularity.

Ports Read The contents of the registers that monitor the GTH
transceiver ports can be read independently of others.

Ports Write The contents of the registers that control the GTH
transceiver ports can be changed at runtime.

Status The dynamic status information for the entire core can be
read out of the core at runtime.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 25

UG029 (v13.1) March 1, 2011

ChipScope Pro Cores Description

Table 1-8: IBERT v2.0 Core for the Spartan-6 FPGA GTP Transceivers

Feature Description

Multiple GTP Transceivers Up to eight transceivers can be selected per design.

Pattern Generator

One pattern generator per selected GTP transceiver (two
per DUAL) is used. PRBS 7-bit, PRBS 15-bit PRBS 23-bit,
PRBS 31-bit, Clk 2x, and Clk 10x patterns are available. The
desired pattern from that set can be selected individually
for each GTP transceiver at runtime.

Pattern Checker

One pattern checker per selected GTP transceiver is used
(two per DUAL). The same pattern set is available as the
pattern generator. The pattern can be chosen for each GTP
transceiver at runtime.

Fabric Width The FPGA fabric interface to the GTP transceiver is 20 bits.

BERT Parameters
Number of bits received in error and total number of words
received are gathered dynamically and read out by the
Analyzer.

Polarity
The polarity of the TX or RX side of each GTP transceiver
can be changed at runtime.

Reset
Each GTP transceiver and its BER counters can be reset
independently. A reset is also available to reset the entire
GTP transceiver, including PLLs.

Link and Lock Status
Link, DCM, and PLL lock status are gathered for each GTP
transceiver in the core.

DRP Read
The contents of the DRP space for each GTP transceiver can
be read independently of all others.

DRP Write
The contents of DRP for each GTP transceiver can be
changed at run time, with single-bit granularity.

Ports Read
The contents of the registers that monitor the GTP
transceiver ports can be read independently of others.

Ports Write
The contents of the registers that control the GTP
transceiver ports can be changed at run time.

Status
The dynamic status information for the entire core can be
read out of the core at run time.

http://www.xilinx.com

26 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 1: Introduction

You can modify many options in the ILA, VIO, and ATC2 cores without resynthesizing.
However, after changing selectable parameters (such as width of the data port or the depth
of the sample buffer), the design must be resynthesized with new cores. Table 1-9 shows
which design changes require resynthesizing.

System Requirements

Operating System Requirements

The ChipScope Pro operating system requirements are described in the ISE Design Suite
Release Notes and Installation Guide [See Reference 13, p. 227].

Software Tools Requirements

The Xilinx CORE Generator, Core Inserter, IBERT Core Generator, and CSE/Tcl tools
require that ISE implementation tools be installed on your system. (Tcl stands for Tool
Command Language and a Tcl shell is a shell program that is used to run Tcl scripts.)
CSE/Tcl requires the Tcl shell (called xtclsh) that is included in the ChipScope Pro and
ISE tool installations.

Note: The version (including update revision) of the ChipScope Pro tools should match the version

(including update revision) of the ISE tools that is used to implement the design that contains the

ChipScope Pro cores.

Table 1-9: Design Parameter Changes Requiring Resynthesis

Design Parameter Change Resynthesis Required

Change trigger pattern No

Running and stopping the trigger No

Enabling the external triggers No

Changing the trigger signal source No (1)

Changing the data signal source No (1)

Changing the ILA clock signal Yes

Changing the sample buffer depth Yes

Notes:

1. The ability to change existing trigger and/or data signal source is supported by the ISE FPGA Editor.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 27

UG029 (v13.1) March 1, 2011

System Requirements

Communications Requirements

The Analyzer supports the following download cables (see Table 1-10) for communication
between the PC and the devices in the JTAG boundary scan chain:

• Platform Cable USB-II

• Platform Cable USB

• Parallel Cable IV

• ByteTools Catapult EJ-1 Ethernet-to-JTAG cable [See Reference 26, p. 227]

Note: Certain competing operations on the cable or device (such as configuring the device using

the iMPACT tool while communicating with the ILA core in the device using the ChipScope Pro

Analyzer) may render the design-under-test unusable. When in doubt about the results of competing

cable/device operations, close the cable connection from the ChipScope Pro Analyzer until the

competing operation has completed.

Table 1-10: ChipScope Pro Download Cable Support

Download Cable Features

Platform Cable USB II and
Platform Cable USB (1)

• Uses the USB port (USB 2.0 or USB 1.1) to communicate
with the boundary scan chain of the board-under-test

• Downloads at speeds up to 12 Mb/s throughput

• Contains an adjustable voltage interface that enables it to
communicate with systems and device I/Os operating at 5V
down to 1.5V

• Windows and Red Hat Linux OS support

Parallel Cable IV (1)

• Uses the parallel port (i.e., printer port) to communicate
with the boundary scan chain of the board-under-test

• Downloads at speeds up to 5 Mb/s throughput

• Contains an adjustable voltage interface that enables it to
communicate with systems and device I/Os operating at 5V
down to 1.5V

• Windows and Red Hat Linux OS support

ByteTools Catapult EJ-1
Ethernet-to-JTAG Cable

• Uses the Ethernet port to communicate with the boundary
scan chain of the board-under-test

• For more information, see ByteTools Web page [See
Reference 26, p. 227]

Notes:

1. The Parallel Cable IV and Platform Cable USB cables are available for purchase from the Xilinx Online
Store [See Reference 19, p. 227] (choose Online Store > Programming Cables).

http://www.xilinx.com

28 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 1: Introduction

Board Requirements

For the Analyzer and download cable to work properly with the board-under-test, the
following board-level requirements must be met:

• One or more supported devices must be connected to a JTAG header that contains the
TDI, TMS, TCK, and TDO pins

• If another device would normally drive the TDI, TMS, or TDI pins of the JTAG chain
containing the target device(s), then jumpers on these signals are required to disable
these sources, preventing contention with the download cable

• If using the Parallel Cable IV or Platform Cable USB download cable, then VREF (1.5-
5.0V) and GND headers must be available for connecting to the Parallel Cable IV cable

Software Installation and Licensing

The ChipScope Pro Analyzer software can be installed both as a standalone ISE Lab Tools
software product (for example, in a lab environment where only the Analyzer tool is
needed) or along with the rest of the ISE Design Suite tools. For software installation and
licensing instructions, refer to the ISE Design Suite Release Notes and Installation Guide
available in the ISE Documentation [See Reference 13, p. 227].

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 29

UG029 (v13.1) March 1, 2011

Chapter 2

Using the Core Generator Tools

Overview

This chapter provides instructions to use the Xilinx® CORE Generator™ tool to generate
ChipScope™ Pro cores. As a group, these cores are called the ChipScope Pro logic debug
cores.

After generating the cores, you can use the instantiation templates that are generated by
the CORE Generator tool to quickly and easily insert the cores into your VHDL or Verilog
design. After completing the instantiation and running synthesis, you can implement the
design using the ISE® implementation tools.

Using the Xilinx CORE Generator Tool with ChipScope Pro Cores

Before you can select the ChipScope Pro cores for generation, you must first set up a project
in the CORE Generator tool. After setting up your project with the appropriate settings,
you can find the ChipScope Pro cores in the CORE Generator tool by first clicking on the
View by Function tab in the upper left panel, then by expanding the Debug & Verification
and ChipScope Pro core sections of the browser. You can also find the ChipScope Pro cores
by using the View by Name tab.

Note: Core instantiation templates for the ChipScope Pro cores are found in the .vho file (for VHDL

language flows) and .veo file (for Verilog language flows) that are created as part of the core

generation process. Refer to the CORE Generator Help for more details.

Note: Due to the nature of the ChipScope Pro cores, core simulation files created by the Xilinx

CORE Generator tool for the ChipScope Pro cores are not valid for simulation. Empty black box entity

architectures (for VHDL) or modules (Verilog) should be used for the ChipScope Pro cores when

simulating designs that contain these cores.

Generating an ICON Core

The CORE Generator tool provides the ability to define and generate a customized ICON
(integrated controller) core to use with one or more ILA (integrated logic analyzer), VIO
(virtual input/output), or ATC2 (Agilent trace core) capture cores in HDL designs. You can
customize control ports (that is, the number of cores to be connected to the ICON core) and
customize the use of the boundary scan primitive component (for example,
BSCAN_VIRTEX5) that is used for JTAG (Joint Test Action Group, IEEE standard)
communication.

After the CORE Generator tool validates the parameters you defined, it generates a XST
netlist (*.ngc) and other files specific to the HDL language and synthesis tool associated
with the CORE Generator project. You can easily generate the netlist and code examples
for use in normal FPGA design flows.

http://www.xilinx.com

30 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 2: Using the Core Generator Tools

In the Debug & Verification > ChipScope Pro category of the Xilinx CORE Generator tool,
select the ICON (ChipScope Pro - Integrated Controller) core, and click the Customize
and Generate link in the right side of the window.

General ICON Core Parameters

The CORE Generator tool is used to set up the ICON core parameters.

Entering the Component Name

The Component Name field can consist of any combination of alpha-numeric characters in
addition to the underscore symbol. However, the underscore symbol cannot be the first
character in the component name.

Generating an Example Design

The ICON core generator normally generates standard Xilinx CORE Generator output files
only, such as netlist and instantiation template files. If, in addition, you want the Xilinx
CORE Generator tool to generate an example design that uses the ICON core, select the
Generate Example Design checkbox. The example design contains everything necessary
to implement the design, including source code and implementation script files.

Entering the Number of Control Ports

The ICON core can communicate with up to 15 ILA, VIO, and ATC2 capture core units at
any given time. However, individual capture core units cannot share their control ports
with any other unit. Therefore, the ICON core needs up to 15 distinct control ports to
handle this requirement. You can select the number of control ports from the Number of
Control Ports pull-down list.

Disabling the Boundary Scan Component Instance

The boundary scan primitive component (for example, BSCAN_VIRTEX5) is used to
communicate with the JTAG boundary scan logic of the target FPGA device. The boundary
scan component extends the JTAG test access port (TAP) interface of the FPGA device so
that up to four internal scan chains can be created. The Analyzer communicates with the
cores by using one of the internal scan chains (USER1, USER2, USER3, or USER4,
depending on the device family) provided by the boundary scan component.

Some FPGA device families (Spartan®-3, Spartan-3E, Spartan-3A, and Spartan-3A DSP)
have a single BSCAN instance with two user scan chains (USER1 and USER2). Because
ChipScope debug cores do not use both internal scan chains of the boundary scan
component, it is possible to share the boundary scan component with other elements in
your design. The boundary scan component can be shared with other parts of the design
by using one of two methods:

• Instantiate the boundary scan component inside the ICON core and include the
unused boundary scan chain signals as port signals on the ICON core interface.

• Instantiate the boundary scan component somewhere else in the design and attach
either the USER1 or USER2 scan chain signals to corresponding port signals of the
ICON core interface.

Note: This feature is only available for Spartan-3, Spartan-3E, Spartan-3A, and Spartan-3A DSP

devices.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 31

UG029 (v13.1) March 1, 2011

Generating an ICON Core

The boundary scan component is instantiated inside the ICON core by default. Use the
Disable Boundary Scan Component Instance checkbox to disable the instantiation of the
boundary scan component.

Selecting the Boundary Scan Chain

The Analyzer can communicate with the cores using either the USER1, USER2, USER3, or
USER4 boundary scan chains. If the boundary scan component is instantiated inside the
ICON core, then you can select the desired scan chain from the Boundary Scan Chain pull-
down list.

Enabling Unused Boundary Scan Ports

The boundary scan primitive for Spartan-3, Spartan-3E, Spartan-3A, and Spartan-3A DSP
devices (including the variants of these families) always has two sets of ports: USER1 and
USER2.

The boundary scan primitive for Virtex™-4, Virtex-5, Virtex-6, and Spartan-6, Artix™-7,
Kintex™-7, and Virtex-7 devices (including the variants of these families) can have only
one of four sets of ports enabled at any given time: USER1, USER2, USER3, and USER4.
These ports provide an interface to the boundary scan TAP controller of the FPGA device.

The ICON core uses only one of the USER* scan chain ports for communication purposes,
therefore, the unused USER* port signals are available for use by other design elements,
respectively. If the boundary scan component is instantiated inside the ICON core, then
selecting the Enable Unused Boundary Scan Ports checkbox provides access to the
unused USER* scan chain interfaces of the boundary scan component.

Note: The boundary scan ports should be included only if the design needs them. If they are

included and not used, some synthesis tools do not connect the ICON core properly, causing errors

during the synthesis and implementation stages of development.

Note: This feature is only available for Spartan-3, Spartan-3E, Spartan-3A, and Spartan-3A DSP

devices.

Generating the Core

After entering the ICON core parameters, click Generate to create the ICON core files.
While the ICON core is being generated, a progress indicator appears. Depending on the
host computer system, it may take several minutes for the ICON core generation to
complete. After the ICON core has been generated, a list of generated files appears in a
separate Readme <corename> window.

Using the ICON Core

To instantiate the example ICON core HDL files into your design, use the following
guidelines to connect the ICON core port signals to various signals in your design:

• Connect one of the unused CONTROL* port signals from the ICON core to a control
port of only one ILA, IVIO, or ATC2 core instance in the design.

• Do not leave any unused CONTROL* ports of the ICON core unconnected because
that causes the implementation tools to report an error. Instead, use an ICON core
with the same number of CONTROL* ports as you have ILA, VIO or ATC2 cores

http://www.xilinx.com

32 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 2: Using the Core Generator Tools

Generating an ILA Core

The CORE Generator tool provides the ability to define and generate a customized ILA
capture core to use with HDL designs. You can customize the number, width, and
capabilities of the trigger ports. You can also customize the maximum number of data
samples stored by the ILA core, and the width of the data samples (if different from the
trigger ports).

After the CORE Generator tool validates the parameters you defined, it generates a XST
netlist (*.ngc) and other files specific to the HDL language and synthesis tool associated
with the CORE Generator project. You can easily generate the netlist and code examples
for use in normal FPGA design flows.

In the Debug & Verification > ChipScope Pro IP category of the Xilinx CORE Generator
tool, select ILA (ChipScope Pro - Integrated Logic Analyzer), and click the Customize
and Generate link on the right side of the window.

ILA Core Trigger and Storage Parameters

The CORE Generator tool is used to set up the ILA core parameters, including the general
trigger and storage parameters and the trigger port parameters.

Entering the Component Name

The Component Name field can consist of any combination of alpha-numeric characters in
addition to the underscore symbol. However, the underscore symbol cannot be the first
character in the component name.

Generating an Example Design

The ILA core generator normally generates standard Xilinx CORE Generator output files
only, such as netlist and instantiation template files. If, in addition, you want the Xilinx
CORE Generator tool to generate an example design that uses the ILA core, select the
Generate Example Design checkbox. The example design contains everything necessary
to implement the design, including source code and implementation script files.

Selecting the Number of Trigger Ports

Each ILA core can have up to 16 separate trigger ports that can be set up independently.
After you choose a number from the Number of Trigger Ports pull-down list, a group of
options appears for each trigger port. The group of options associated with each trigger
port is labeled with TRIGn, where n is the trigger port number 0 to 15. The trigger port
options include trigger width, number of match units connected to the trigger port, and the
type of these match units.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 33

UG029 (v13.1) March 1, 2011

Generating an ILA Core

Enabling the Trigger Condition Sequencer

The trigger condition sequencer can be either a Boolean equation, or an optional trigger
sequencer that is controlled by the Max Sequence Levels pull-down list. A block diagram
of the trigger sequencer is shown in Figure 2-1.

The trigger sequencer is implemented as a simple cyclical state machine and can transition
through up to 16 states or levels before the trigger condition is satisfied. The transition
from one level to the next is caused by an event on one of the match units that is connected
to the trigger sequencer. Any match unit can be selected at run time on a per level basis to
transition from one level to the next. The trigger sequencer can be configured at run time to
transition from one level to the next on either contiguous or non-contiguous sequences of
match function events.

Using RPMs

The ILA core normally uses relationally placed macros (RPMs) to increase the performance
of the core. The usage of RPMs by the ILA core can be disabled by deselecting the Use
RPMs checkbox. It is recommended that the Use RPMs checkbox remain enabled.

Enabling the Trigger Output Port

The output of the ILA trigger condition module can be brought out to a port signal by
checking the Enable Trigger Output Port checkbox. The trigger output port is used to
trigger external test equipment by attaching the port signal to a device pin in the HDL
design. The trigger output port can also be attached to other logic or cores in the design to
be used as a trigger, an interrupt, or another control signal. The shape (level or pulse) and
sense (active-High or active-Low) of the trigger output can also be controlled at run-time
using the Analyzer tool. The clock latency of the ILA trigger output port is 10 clock (CLK)
cycles with respect to the trigger input ports. The Trigger Output port is reset upon
successful uploading of ILA data and/or the re-arming of the ILA core trigger logic.

Selecting the Clock Edge

The ILA unit can use either the rising or falling edges of the CLK signal to trigger and
capture data. The Sample On pull-down list is used to select either the rising or falling
edge of the CLK signal as the clock source for the ILA core.

Selecting the Sample Data Depth

The maximum number of data sample words that the ILA core can store in the sample
buffer is controlled by the Sample Data Depth pull-down list. The sample data depth
determines the number of data width bits contributed by each block RAM unit used by the
ILA unit.

X-Ref Target - Figure 2-1

Figure 2-1: Trigger Sequencer Block Diagram (with 16 levels and 16 match units)

Match Unit 0

Match Unit 1

Match Unit 2

Match Unit 15

Level

1

Match Unit 0

Match Unit 1

Match Unit 2

Match Unit 15

Level

2

Match Unit 0

Match Unit 1

Match Unit 2

Match Unit 15

Level

16

Trigger

UG029_trig_seq_blk_diag_081903

http://www.xilinx.com

34 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 2: Using the Core Generator Tools

Enabling the Storage Qualification Condition

In addition to the trigger condition, the ILA core can also implement a storage qualification
condition. The storage qualification condition is a Boolean combination of match function
events. These are detected by the match unit comparators that are subsequently attached to
the trigger ports of the core. The storage qualification condition differs from the trigger
condition in that it evaluates trigger port match unit events to decide whether or not to
capture and store each individual data sample. The trigger and storage qualification
conditions can be used together to define when to start the capture process and what data
to capture. The storage qualification condition can be enabled by checking the Enable
Storage Qualification checkbox.

Selecting the Data Type

The data captured by the ILA trigger port can come from two different source types and is
controlled by the Data Same as Trigger checkbox:

• When the Data Same as Trigger checkbox is selected:

− The data and trigger ports are identical. This mode is very common in most logic
analyzers, since you can capture and collect any data used to trigger the core.

− Individual trigger ports can be selected to be excluded from the data port. If this
selection is made, the DATA input port is not included in the port map of the ILA
core.

− This mode conserves CLB and routing resources in the ILA core, but is limited to
a maximum aggregate data sample word width of 4,096 bits (or 256 bits for
Spartan-3, Spartan-3E, Spartan-3A, Spartan-3A DSP, and Virtex-4 devices).

• When the Data Same as Trigger checkbox is not selected

− The data port is completely independent of the trigger ports.

− This mode is useful when you want to limit the amount of data being captured.

− In the case of data not same as trigger, the Data Port Width parameter needs to be
specified.

Entering the Data Port Width

The width of each data sample word stored by the ILA core is called the data width. If the
data and trigger words are independent from each other, then the maximum allowable
data width depends on the target device type and data depth. However, regardless of these
factors, the maximum allowable data width is 4,096 bits (or 256 bits for Spartan-3,
Spartan-3E, Spartan-3A, Spartan-3A DSP, and Virtex-4 devices).

ILA Core Trigger Port Parameters

After you have set up the trigger and storage ILA core options, click Next. This takes you
to the screen in the ILA core of the CORE Generator tool that is used to set up the trigger
port options. A separate panel is used to specify the parameters for trigger port enabled
using the Number of Trigger Ports pull-down list shown in.

Entering the Width of the Trigger Ports

The individual trigger ports are buses that are made up of individual signals or bits. The
number of bits used to compose a trigger port is called the trigger width. The width of each
trigger port can be set independently using the Trigger Port Width field. The range of
values that can be used for trigger port widths is 1 to 256.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 35

UG029 (v13.1) March 1, 2011

Generating an ILA Core

Selecting the Number of Trigger Match Units

A match unit is a comparator that is connected to a trigger port and is used to detect events
on that trigger port. The results of one or more match units are combined to form what is
called the overall trigger condition event that is used to control the capturing of data. Each
trigger port TRIGn can be connected to 1 to 16 match units by using the Match Units pull-
down list.

Selecting one match unit conserves resources while still allowing some flexibility in
detecting trigger events. Selecting two or more trigger match units allows a more flexible
trigger condition equation to be a combination of multiple match units. However,
increasing the number of match units per trigger port also increases the usage of logic
resources accordingly.

Note: The aggregate number of match units used in a single ILA core cannot exceed 16, regardless

of the number of trigger ports used.

Selecting Match Unit Counter Width

The match unit counter is a configurable counter on the output of the each match unit in a
trigger port. This counter can be configured at run time to count a specific number of
match unit events. To include a match counter on each match unit in the trigger port, select
a counter width from 1 to 32. The match counter is not included on each match unit if the
Counter Width pull-down list is set to Disabled. The default counter width setting is
Disabled.

Selecting the Match Unit Type

The different comparisons or match functions that can be performed by the trigger port
match units depend on the type of the match unit. Six types of match units are supported
by the ILA cores (Table 2-1).

Table 2-1: ILA Trigger Match Unit Types

Type Bit Values (1) Match

Function
Bits Per Slice (2) Description

Basic 0, 1, X ‘=’, ‘<>’

LUT4-based: 8

Virtex-5,
Spartan-6: 19

Other LUT6-
based: 20

Can be used for comparing
data signals where
transition detection is not
important. This is the most
bit-wise economical type of
match unit.

Basic
w/edges

0, 1, X, R, F,
B, N

‘=’, ‘<>’
LUT4-based: 4

LUT6-based: 8

Can be used for comparing
control signals where
transition detection (e.g.,
low-to-high, high-to-low,
etc.) is important.

Extended 0, 1, X
‘=’, ‘<>’, ‘>’,
‘>=’, ‘<‘, ‘<=’

LUT4-based: 2

LUT6-based: 16

Can be used for comparing
address or data signals
where magnitude is
important.

http://www.xilinx.com

36 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 2: Using the Core Generator Tools

Use the Match Type pull-down list to select the type of match unit that applies to all match
units connected to the trigger port. However, as the functionality of the match unit
increases, so does the amount of resources necessary to implement that functionality. This
flexibility allows you to customize the functionality of the trigger module while keeping
resource usage in check.

Selecting the Data-Same-As-Trigger Ports

If the Data Same As Trigger checkbox is selected, then a checkbox called Exclude Trigger
Port from Data Storage appears in the trigger port options screen. Putting a check mark in
this checkbox causes the trigger port to be excluded from the aggregate data port. By
default, this checkbox is disabled, and the trigger port is included in the aggregate data
port. A maximum data width of 4,096 bits (or 256 bits for Spartan-3, Spartan-3E,
Spartan-3A, Spartan-3A DSP, and Virtex-4 devices) applies to the aggregate selection of
trigger ports.

Generating the Core

After entering the ILA core parameters, click Generate to create the ILA core files. While
the ILA core is being generated, a progress indicator appears. Depending on the host
computer system, it might take several minutes for the ILA core generation to complete.
After the ILA core has been generated, a list of generated files appears in a separate
Readme File window.

Extended
w/edges

0, 1, X, R, F,
B, N

‘=’, ‘<>’, ‘>’,
‘>=’, ‘<‘, ‘<=’

LUT4-based: 2

LUT6-based: 8

Can be used for comparing
address or data signals
where a magnitude and
transition detection are
important.

Range 0, 1, X

‘=’, ‘<>’, ‘>’,
‘>=’, ‘<‘, ‘<=’,
‘in range’, ‘not

in range’

LUT4-based: 1

LUT6-based: 8

Can be used for comparing
address or data signals
where a range of values is
important.

Range
w/edges

0, 1, X, R, F,
B, N

‘=’, ‘<>’, ‘>’,
‘>=’, ‘<‘, ‘<=’,
‘in range’, ‘not

in range’

LUT4-based: 1

LUT6-based: 4

Can be used for comparing
address or data signals
where a range of values and
transition detection are
important.

Notes:

1. Bit values:’0’ = “logical 0”; ‘1’ = “logical 1”; ‘X’ = “don’t care”; ‘R’ = “0-to-1 transition”;
‘F’ = “1-to-0 transition”; ‘B’ = “any transition”; ‘N’ = “no transition”

2. The Bits Per Slice value is only an approximation that is used to illustrate the relative resource
utilization of the different match unit types. It should not be used as a hard estimate of resource
utilization. LUT4-based device families are Spartan-3, Spartan-3E, Spartan-3A, Spartan-3A DSP, and
Virtex-4 FPGAs (and the variants of these families). LUT6-based device families are Virtex-5, Virtex-6,
Spartan-6, Artix™-7, Kintex™-7, and Virtex-7 (and the variants of these families).

Table 2-1: ILA Trigger Match Unit Types (Cont’d)

Type Bit Values (1) Match

Function
Bits Per Slice (2) Description

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 37

UG029 (v13.1) March 1, 2011

Generating the VIO Core

Using the ILA Core

To instantiate the example ILA core HDL files into your design, use the following
guidelines to connect the ILA core port signals to various signals in your design:

• Connect the CONTROL port signal from the ILA core to an unused control port of the
ICON core instance in the design.

• Connect all unused bits of the ILA core data and trigger port signals to “0”. This
prevents the mapper from removing the unused trigger and/or data signals and
avoids any DRC errors during the implementation process.

• Make sure the data and trigger source signals are synchronous to the ILA clock signal
(CLK).

Generating the VIO Core

The CORE Generator tool provides the ability to define and generate a customized VIO
core for adding virtual inputs and outputs to your HDL designs. You can customize the
virtual inputs and outputs to be synchronous to a particular clock in your design or to be
completely asynchronous with respect to any clock domain in your design. You can also
customize the number of input and output signals used by the VIO core.

After the CORE Generator tool validates the parameters you defined, it generates an XST
netlist (*.ngc) and other files specific to the HDL language and synthesis tool associated
with the CORE Generator project. You can easily generate the netlist and code examples
for use in normal FPGA design flows.

In the Debug & Verification > ChipScope Pro IP category of the Xilinx CORE Generator
tool, select VIO (ChipScope Pro - Virtual Input/Output) and click the Customize and
Generate link on the right side of the window.

General VIO Core Options

The CORE Generator tool is used to set up the general VIO core parameters.

Entering the Component Name

The Component Name field can consist of any combination of alpha-numeric characters in
addition to the underscore symbol. However, the underscore symbol cannot be the first
character in the component name.

Generating an Example Design

The VIO core generator normally generates standard Xilinx CORE Generator output files
only, such as netlist and instantiation template files. If, in addition, you want the Xilinx
CORE Generator tool to generate an example design that uses the VIO core, select the
Generate Example Design checkbox. The example design contains everything necessary
to implement the design, including source code and implementation script files.

Asynchronous Input Port

The VIO core includes an asynchronous input port when the Enable Asynchronous Input
Port check box is selected. When enabled, you can specify a port width up to 256 bits by
typing a value in the Width text field. The asynchronous input port is an input to the VIO
core and can be used to monitor any signal in your design, regardless of the clock domain.

http://www.xilinx.com

38 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 2: Using the Core Generator Tools

Asynchronous Output Port

The VIO core includes an asynchronous output port when the Enable Asynchronous
Output Port check box is selected. When enabled, you can specify a port width up to 256
bits by typing a value in the Width text field. The asynchronous output port is an output
from the VIO core and can be used to drive signals in your design, regardless of the clock
domain.

Synchronous Input Port

The VIO core includes a synchronous input port when the Enable Synchronous Input Port
check box is selected. When enabled, you can specify a port width up to 256 bits by typing
a value in the Width text field. The synchronous input port is an input to the VIO core and
can be used to monitor any signal in your design provided those signals are synchronous
to the CLK input of the VIO core.

Synchronous Output Port

The VIO core includes a synchronous output port when the Enable Synchronous Output
Port check box is selected. When enabled, you can specify a port width up to 256 bits by
typing a value in the Width text field. The synchronous output port is an output from the
VIO core and can be used to drive signals in your design provided those signals are
synchronous to the CLK input of the VIO core.

Inverting the Clock Edge

The VIO core can use either a non-inverted or inverted CLK signal to acquire and generate
data on the synchronous input and output signals, respectively. The Invert Clock Edge
checkbox is used to invert the CLK signal that is coming into the VIO core.

Note: The clock can only be inverted if synchronous inputs and/or outputs are used.

Generating the Core

After entering the VIO core parameters, click Generate to create the VIO core files. While
the VIO core is being generated, a progress indicator appears. Depending on the host
computer system, it may take several minutes for the VIO core generation to complete.
After the VIO core has been generated, a list of generated files appears in a separate
Readme File window.

Using the VIO Core

To instantiate the example VIO core HDL files into your design, use the following
guidelines to connect the VIO core port signals to various signals in your design:

• Connect the CONTROL port signal from the VIO core to an unused control port of the
ICON core instance in the design.

• Connect all unused bits of the VIO core asynchronous and synchronous input signals
to a “0”. This prevents the mapper from removing the unused trigger and/or data
signals and also avoids any DRC errors during the implementation process.

• For best results, make sure the synchronous input source signals are synchronous to
the VIO clock signal (CLK); also make sure the synchronous output sink signals are
synchronous to the VIO clock signal (CLK).

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 39

UG029 (v13.1) March 1, 2011

Generating the ATC2 Core

Generating the ATC2 Core

The CORE Generator tool provides the ability to define and generate a customized ATC2
core for adding external Agilent logic analyzer capture capabilities to your HDL designs.
You can customize the number of pins (and their characteristics) to be used for external
capture as well as how many input data ports you need. You can also customize the type of
capture mode (state or timing) to be used as well as the TDM compression mode (1x or 2x).

After the CORE Generator tool validates the parameters you defined, it generates an XST
netlist (*.ngc) and other files specific to the HDL language and synthesis tool associated
with the CORE Generator project. You can easily generate the netlist and code examples
for use in normal FPGA design flows.

In the Debug & Verification > ChipScope Pro IP category of the Xilinx CORE Generator
tool, select ATC2 (ChipScope Pro - Agilent Trace Core 2) and click the Customize and
Generate link in the right side of the window.

ATC2 Core Acquisition and State Parameters

The CORE Generator tool is used to set up the ATC2 core acquisition and state parameters.

Entering the Component Name

The Component Name field can consist of any combination of alpha-numeric characters in
addition to the underscore symbol. However, the underscore symbol cannot be the first
character in the component name.

Generating an Example Design File

The ATC2 core generator normally generates standard Xilinx CORE Generator output files
only, such as netlist and instantiation template files. If, in addition, you want the Xilinx
CORE Generator tool to generate an example design that uses the ATC2 core, select the
Generate Example Design checkbox. The example design contains everything necessary
to implement the design, including source code and implementation script files.

Selecting the Acquisition Mode

The acquisition mode of the ATC2 core can be set to either to Timing - Asynchronous
Sampling mode for asynchronous data capture or State - Synchronous Sampling mode for
synchronous data capture to the CLK input signal. In State mode, the data path through the
ATC2 core uses pipeline flip-flops that are clocked on the CLK input port signal. In Timing
mode, the data path through the ATC2 core is composed purely of combinational logic all
the way to the output pins. Also, in Timing mode, the ATCK pin is used as an extra data
pin.

Max Frequency Range

The Max Frequency Range parameter is used to specify the maximum frequency range in
which you expect to operate the ATC2 core. The implementation of the ATC2 core is
optimized for the maximum frequency range selection. The valid maximum frequency
ranges are 0-100 MHz, 101-200 MHz, 201-300 MHz, and 301-500 MHz. The maximum
frequency range selection only has an affect on core implementation when the acquisition
mode is set to State - Synchronous Sampling.

http://www.xilinx.com

40 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 2: Using the Core Generator Tools

TDM Rate

The ATC2 core does not use on-chip memory resources to store the captured trace data.
Instead, it transmits the data to be captured by an Agilent logic analyzer that is attached to
the FPGA pins using a special probe connector. The data can be transmitted out the device
pins at the same rate as the incoming DATA port (TDM Rate = 1x) or twice the rate as the
DATA port (TDM Rate = 2x). The TDM rate can be set to “2x” only when the acquisition
mode is set to State - Synchronous Sampling.

ATC2 Core Pin and Signal Parameters

After you have set up the ATC2 core acquisition and state parameters, click Next. This
takes you to the screen in the CORE Generator tool that is used to set up the ATC2 pin and
signal parameters.

Enable Auto Setup

The Enable Auto Setup option is used to enable a feature that allows the Agilent Logic
Analyzer to automatically set up the appropriate ATC2 pin to Logic Analyzer pod
connections. This feature also allows the Agilent Logic Analyzer to automatically
determine the optimal phase and voltage sampling offsets for each ATC2 pin. This feature
is enabled by default.

Enable Always On Mode

The Enable Always On Mode parameter forces an ATC2 core always to enable its internal
logic and output buffers. The “Always On” mode ensures that signal bank 0 is driven out
to the ATD pins upon FPGA device configuration. This mode makes it possible to capture
events that immediately follow device configuration without having to first set up the
ATC2 core manually. This feature is disabled by default and is only available when the
acquisition mode is set to Timing - Asynchronous Sampling mode.

ATD Pin Count

The ATC2 core can implement any number of ATD output pins in the range of 4 through
64.

Driver Endpoint Type

The Driver Endpoint Type setting is used to control whether single-ended or differential
output drivers are used on the ATCK and ATD output pins. All ATCK and ATD pins must
use the same driver endpoint type.

Pin Edit Mode

The pin edit mode is a time saving feature that allows you to change the IO Standard, Drive
and Slew Rate pin parameters on individual pins or together as a group of pins. Selecting
ATD drivers same as ATCK allows you to change the ATCK pin parameters and forces all
ATD pins to the same settings. Selecting ATD drivers different than ATCK allows you to
edit the parameters of each pin independently from one another. You must set unique pin
locations for each individual pin regardless of the Pin Edit Mode parameter setting.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 41

UG029 (v13.1) March 1, 2011

Generating the ATC2 Core

Signal Bank Count

The ATC2 core contains an internal, run-time selectable data signal bank multiplexer. The
Signal Bank Count setting is used to denote the number of data input ports or signal banks
the multiplexer implements. The valid Signal Bank Count values are 1, 2, 4, 8, 16, 32, and
64.

Signal Bank Width

The width of each input signal bank data port of the ATC2 core depends on the capture
mode and the TDM rate. In State mode, the width of each signal bank data port is equal to
(ATD pin count) * (TDM rate). In Timing mode, the width of each signal bank data port is
equal to (ATD pin count + 1) * (TDM rate) since the ATCK pin is used as an extra data pin.

ATC2 Core ATCK and ATD Pin Parameters

After you have set up the ATC2 core pin and signal parameters, click Next. This takes you
to the screen in the CORE Generator tool that is used to set up the ATCK and ATD pin
parameters.

The output clock (ATCK) and data (ATD) pins are instantiated inside the ATC2 core for
your convenience. This means that although you do not have to bring the ATCK and ATD
pins through every level of hierarchy to the top-level of your design manually; you do
need to specify the location and other characteristics of these pins in the CORE Generator.
These pin attributes are then added to the *.ncf file of the ATC2 core. Using the settings
in the Pin Parameters table, you can control the location, I/O standard, output drive and
slew rate of each individual ATCK and ATD pin.

Pin Name

The ATC2 core has two types of output pins: ATCK and ATD. The ATCK pin is used as a
clock pin when the capture mode is set to State and is used as a data pin when the capture
mode is set to Timing. The ATD pins are always used as data pins. The names of the pins
cannot be changed.

Pin Loc

The Pin Loc column is used to set the location of the ATCK or ATD pin.

IO Standard

The IO Standard column is used to set the I/O standard of each individual ATCK or ATD
pin. The I/O standards that are available for selection depend on the device family and
driver endpoint type. The names of the I/O standards are the same as those in the
IOSTANDARD section of the Constraints Guide in the Xilinx Software Documentation [See

Reference 13, p. 227].

Drive

The Drive column setting denotes the maximum output drive current of the pin driver and
ranges from 2 to 24 mA, depending on the IO Standard selection.

Slew Rate

The Slew Rate column can be set to either FAST or SLOW for each individual ATCK or
ATD pin.

http://www.xilinx.com

42 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 2: Using the Core Generator Tools

Generating the Core

After entering the ATC2 core parameters, click Finish to create the ATC2 core files. While
the ATC2 core is being generated, a progress indicator appears. Depending on the host
computer system, it might take several minutes for the ATC2 core generation to complete.
After the ATC2 core has been generated, a generated files appears in a separate Readme
File window.

Using the ATC2 Core

To instantiate the example ATC2 core HDL files into your design, use the following
guidelines to connect the ATC2 core port signals to various signals in your design:

• Connect the CONTROL port signal from the ATC2 core to an unused control port of
the ICON core instance in the design.

• Connect all unused bits of the ATC2 core asynchronous and synchronous input
signals to a “0”. This prevents the mapper from removing the unused trigger and/or
data signals and also avoids any DRC errors during the implementation process.

• For best results, make sure the State mode input data port signals are synchronous to
the ATC2 clock signal (CLK); this is not important for Timing mode input data port
signals.

Generating IBERT v1.0 Cores for Virtex-5 FPGAs

Xilinx CORE Generator provides the ability to define and generate a customized IBERT
v1.0 core for Virtex-5 FPGA GTP and GTX transceivers. When all the IBERT parameters
have been chosen, a full design is generated, including a bitstream. The IBERT core cannot
be included in your design; it can only be generated in its own stand-alone design. The ISE
tools are invoked by IBERT Core Generator to generate a bitstream file (.bit) rather than a
design netlist file (.ngc or .edn).

The first screen in the IBERT Core Generator only allows the selection of the IBERT core.
Select IBERT (Integrated Bit Error Ratio Tester) core, and click Next.

General IBERT Options

The second screen in the IBERT Core Generator is used to set up general IBERT options.

Choosing the File Destination

The destination for the IBERT bitstream file (ibert.bit) is displayed in the Output
Bitstream field. The default directory is the IBERT Core Generator install path, or you can
select a different one. When the design is generated, all implementation files automatically
appear in the specified directory.

Selecting the Target Device

When generating the IBERT core, selection of the applicable device, package, and speed
grade are required because the design is fully implemented in the ISE tools during the
course of the generation. The Virtex-5 LXT/SXT/FXT families are supported by the
ChipScope Pro IBERT Core Generator tool.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 43

UG029 (v13.1) March 1, 2011

Generating IBERT v1.0 Cores for Virtex-5 FPGAs

Selecting the Silicon Revision (Stepping Level)

In addition to selecting the device, package, and speed grade information, it is also
important for you to select the appropriate silicon revision of your Virtex-5 FPGA family.
The available silicon revisions for the Virtex-5 LXT/SXT/FXT families are shown below.

Selecting the IBERT Clocking Options

After selecting the general options for the IBERT core, click Next to view the IBERT Clock
Options.

Virtex-5 LXT/SXT/FXT Families IBERT Clock Options

The only clock options that are required for the Virtex-5 LXT/SXT/FXT families IBERT
core design are the System Clock Setting described in “System Clock Settings,” page 54.

System Clock Settings

The IBERT core requires a free-running system clock to drive the fabric portions of the
IBERT control logic. The frequencies of the system clock source are required to be between
10 MHz and 100 MHz. The clock is divided or multiplied internally, resulting in a range of
50-100 MHz.

To select the system clock options:

1. Go to the System Clock Settings section.

2. Specify the I/O Standard from a drop down list of the standards available.

3. Enter the system clock pin location into the P Source Pin text field. Note: For
differential system clock inputs, only type in the P pin location. The ISE
implementation tools automatically determine the N pin location.

4. Enter the system clock frequency in MHz in the Frequency text field.

Note: The system clock frequency must be accurate for the IBERT design to function properly.

Note: The system clock is a user-defined clock that is separate from the MGT clock selections. It is

not derived from any transceiver-related clocks.

The Virtex-5 LXT/SXT/FXT families GTP transceiver clock structure is currently fixed as
shown in Figure 2-2. The clock structure is duplicated for each GTP_DUAL/GTX_DUAL
tile enabled in the Virtex-5 LXT/SXT/FXT families IBERT core design.

Table 2-2: Silicon Revision (Stepping Level) of Virtex-5 LXT/SXT/FXT Families

Silicon Device Revision Software Silicon Revision Selection

All engineering sample (ES) revisions CES

All production revisions Production

http://www.xilinx.com

44 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 2: Using the Core Generator Tools

Selecting the MGT/GTP/GTX Options

After selecting the clock options for the IBERT core, click Next to view the IBERT
MGT/GTP/GTX Options.

Virtex-5 LXT/SXT/FXT Family IBERT GTP/GTX Options

The Virtex-5 LXT/SXT/FXT families IBERT GTP/GTX Options panel is divided into three
sections:

• Resource Usage

• Pattern Settings

• GTP/GTX Transceiver Settings

Resource Usage

The current resource usage of the IBERT core is displayed at the top of the IBERT Options
panel. Each time an GTP_DUAL/GTX_DUAL tile is checked in the table, an additional
GTP_DUAL/GTX_DUAL tile is added to the total number used. The current number of
digital clock managers (DCMs) is also displayed. The number of DCMs used cannot
exceed the maximum number of DCMs for the selected FPGA device.

Pattern Settings

The Pattern Type dictates which patterns are available for generation and detection for all
GTP_DUAL/GTX_DUAL tiles. The available pattern types are PRBS (pseudo random bit
sequence) 7-bit (X7 + X6 + 1), PRBS 7-bit Alt (X7 + X + 1), PRBS 9-bit, PRBS 11-bit, PRBS 15-
bit, PRBS 20-bit, PRBS 23-bit, PRBS 29-bit, PRBS 31-bit, User Pattern (which can be used to
generate any 20-bit data pattern, including clock patterns), Framed Counter, and Idle
Pattern. The default patterns are PRBS 7-bit, PRBS 23-bit, PRBS 31-bit, and User Pattern.

X-Ref Target - Figure 2-2

Figure 2-2: Virtex-5 LXT/SXT/FXT Families IBERT Clock Structure for Each

GTP_DUAL/GTX_DUAL Tile

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 45

UG029 (v13.1) March 1, 2011

Generating IBERT v1.0 Cores for Virtex-5 FPGAs

GTP/GTX Transceiver Settings

In the GTP/GTX Transceiver Settings section, each GTP_DUAL/GTX_DUAL tile of the
Virtex-5 LXT/SXT/FXT families device can be enabled and configured independently
from one another. If a GTP_DUAL/GTX_DUAL tile is enabled, the maximum line rate and
appropriate reference clock frequency needs to be specified. Only valid reference clock
frequencies, FB, REF, and DIVSEL PLL settings are allowed for a given maximum line rate.

Selecting the General Purpose I/O (GPIO) Options

After selecting the MGT (multi-gigabit transceiver) options for the IBERT core, click Next
to view the GPIO Options. The GPIO options currently only include VIO core-controlled
synchronous output pins that can be used to control devices outside of the FPGA (such as
SFP optical modules). These outputs are synchronous to the IBERT system clock.

Adding VIO Controlled Output Pins

You can add the VIO controlled output pins to your IBERT design by checking the Add
VIO Controlled Output Pins checkbox. This enables the other GPIO output pin settings
on this panel.

Specifying the Number of Output Pins

You can add 1 to 256 VIO controlled synchronous output pins to the design by typing a
value into the Number of Output Pins text field.

http://www.xilinx.com

46 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 2: Using the Core Generator Tools

Editing the Output Pin Parameters

You must specify the location and other characteristics of the GPIO output pins in the Core
Generator. Using the Edit Output Pin Types Individually checkbox, you can control the
location, I/O standard, output drive and slew rate of each individual GPIO_OUT pin.
Leaving the Edit Output Pin Types Individually checkbox empty allows you to specify the
IO Standard, VCCO, Drive and Slew Rate as a group of pins.

Pin Name

The IBERT core currently only supports GPIO output pins that are called GPIO_OUT[n]
(where n is the bit index into the bus called GPIO_OUT). The names of the pins cannot be
changed.

Pin Loc

The Pin Loc column is used to set the location of the GPIO_OUT pin.

IO Standard

The IO Standard column is used to set the I/O standard of each individual GPIO_OUT pin.
The IO standards that are available for selection depend on the device family. Currently,
only single-ended IO standards are supported by the IBERT GPIO output pin feature. The
names of the IO standards are the same as those in the IOSTANDARD section of the
Constraints Guide in the Xilinx Software Documentation [See Reference 13, p. 227].

VCCO

The VCCO column setting denotes the output voltage of the pin driver and depends on the
IO Standard selection.

Drive

The Drive column setting denotes the maximum output drive current of the pin driver and
ranges from 2 to 24 mA, depending on the IO Standard selection.

Slew Rate

The Slew Rate column can be set to either FAST or SLOW for each individual GPIO_OUT
pin.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 47

UG029 (v13.1) March 1, 2011

Generating IBERT v1.0 Cores for Virtex-5 FPGAs

Selecting the Example and Template Options

After selecting the GPIO options for the IBERT core, click Next to view the IBERT Example
and Template Options.

You can also create a batch mode argument example file (for example, ibert.arg) by
selecting the Generate Batch Mode Argument Example File (.arg) checkbox. The
ibert.arg file is used with the command line program called generate. The
ibert.arg file contains all the arguments necessary for generating the IBERT design
without having to use the Core Generator GUI tool.

An IBERT core can be generated by running ibertgenerate.exe <ibert_type> -
f=ibert.arg at the command prompt on Windows systems or by running
ibertgenerate.sh <ibert_type> -f=ibert.arg at the UNIX shell prompt on
Linux. Replace <ibert_type> with ibert, ibertgtp, or ibertgtx, depending on the device
family you are targeting.

The Output Log File Settings determine whether a output log file is created. In addition to
this output log file, each of the ISE implementation tools (ngdbuild, map, par) create their
own individual report files. The settings are:

• Generate Output Log File:

− If this box is checked, an output log called <design name>.log is created. This file
includes all messages printed to the message pane during the IBERT design
generation process.

− If this box is unchecked, then the output log file is not generated.

• Verbose Log File:

− If this box is checked, then all the output from the ISE implementation tools prints
to the message pane during the generation process.

− If this box is unchecked, the tool output is suppressed, which generally decreases
the generation runtime.

Generating the Design

After entering the IBERT core parameters, click Generate Design to generate and run all
the files necessary to create a fully customized FPGA design. A message window opens,
the progress information appears, and the IBERT Design Generation Completed
message signals the end of the process. You can select to either go back and specify
different options or click Start Over to generate new cores.

Note: IBERT generation entails a full run through the ISE tool suite, resulting in a substantially

longer time to generate than required by other ChipScope cores. For designs that use many MGTs,

the generate time could be many hours, depending on the speed of the computer used.

http://www.xilinx.com

48 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 2: Using the Core Generator Tools

Generating IBERT v2.0 Cores for Virtex-5 FPGA GTX Transceivers

The Xilinx CORE Generator tool provides the ability to define and generate a customized
IBERT v2.0 core for Virtex-5 GTX transceivers. When all the IBERT parameters have been
chosen, a full design is generated, including a bitstream. The IBERT core cannot be
included in your design; it can only be generated in its own stand-alone design. The ISE
tools are invoked by the Xilinx CORE Generator to generate a bitstream file (.bit) rather
than a design netlist file (.ngc or .edn).

In the Debug & Verification > ChipScope Pro category of the Xilinx CORE Generator tool,
select the IBERT Virtex5 GTX(ChipScope Pro - IBERT) core, and click the Customize link
in the right side of the window.

General IBERT Options

The first screen in the IBERT Core customization wizard is used to set up general IBERT
options.

Choosing the Component Name

The Component Name field can consist of any combination of alpha-numeric characters in
addition to the underscore symbol. However, the underscore symbol cannot be the first
character in the component name.

Selecting the Number of Line Rates (Protocols)

The IBERT Core can have multiple MGTs present, and those MGTs do not have to operate
at the same line rate, or use the same reference clock. Choose the number of distinct line
rate/reference clock rate combinations needed from the Number of Line Rates (protocols)
combo box.

Choosing the Line Rate Settings

For each line rate setting desired, choose between a custom setting (“Start from scratch”) or
a pre-defined protocol setting from the Protocol combo box. If a named protocol is chosen,
the fields for Max Rate, Data Width, and REFCLK are filled out automatically, according
to the protocol. If specifying a custom protocol, type in the values desired.

Selecting the GTX_DUALs and Reference Clocks

After selecting the protocol options for the IBERT core, click Next to view the GTX
Reference Clock Options for Line Rate 1. Once Line Rate 1 is complete, click Next to go on
to Line Rate 2, and so on, until all the line rates are completed.

Choosing GTX_DUALs

Each GTX_DUAL (also referred to as “DUAL” in this section) available is listed with its
location, each with a checkbox beside it. If the checkbox is greyed out, that means that
transceiver is already configured with a different line rate. Check the DUALs that will use
the given line rate. At generate time, transceivers within a DUAL must be configured at the
same line rate.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 49

UG029 (v13.1) March 1, 2011

Generating IBERT v2.0 Cores for Virtex-5 FPGA GTX Transceivers

Choosing REFCLK Sources

From the combo box, choose the reference clock desired to clock the MGT. One reference
clock is available from the DUAL, and reference clocks are also available from neighboring
DUALs. See the Virtex-5 FPGA GTX Transceiver User Guide [See Reference 3, p. 227] for
more information on the clocking topology.

Enabling RXRECCLK Probes

After selecting the GTX transceivers and REFCLK options for the IBERT core for all the line
rates, click Next to view the RXRECCLK options.

For each of the GTX transceivers used, it is possible to drive the RXRECCLK (recovered
clock) out to a pin for use in external measurement. To enable this, check the Enable
checkbox next to the desired recovered clock. Then specify the pin location in the Location
text field, and choose the I/O Standard from the IO Standard combo box. For differential
standards, specify the P pin location.

Choosing the System Clock Source

After selecting the RXRECCLKOUT probing options, click Next to view the System Clock
options.

IBERT needs a clock for the internal communication logic. This ideally comes from an
external pin but can also be driven from a GTX transceiver TXOUTCLK. To use a clock
from a pin, enable the Use External Clock source radio button, type the frequency in the
Frequency (MHz) field, type the pin location in the Location field, and choose the Input

Standard. For differential standards, specify the P pin location.

To specify an internal clock, enable the Use Internal REFCLK radio button and specify the
GTX transceiver in the Use REFCLK From combo box.

Generating the Design

After entering the IBERT core parameters, click Next to view the IBERT Core Summary.
This includes the GTX transceivers used, system clock, and the details of the global clock
resources used. To generate the design, click the Generate button.

http://www.xilinx.com

50 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 2: Using the Core Generator Tools

Generating IBERT v2.0 Cores for Virtex-6 FPGA GTX Transceivers

Xilinx CORE Generator provides the ability to define and generate a customized IBERT
v2.0 core for Virtex-6 LXT/SXT/CXT/HXT FPGA GTX transceivers. When all the IBERT
parameters are selected, a full design is generated, including a bitstream. The IBERT core
cannot be included in your design; it can only be generated in its own stand-alone design.
The ISE tools are invoked by the Xilinx CORE Generator tool to generate a bitstream file
(.bit) rather than a design netlist file (.ngc or .edn).

With CORE Generator, you can generate ICON (integrated controller), ILA (integrated
logic analyzer), VIO, ATC2, or IBERT cores. Select the IBERT Virtex6 GTX (ChipScope Pro
- IBERT) core and click the Customize link in the right side of the window to open the
IBERT core customization wizard.

General IBERT Options

The first screen in the IBERT core customization wizard is used to set up general IBERT
options.

Choosing the Component Name

The Component Name field can consist of any combination of alpha-numeric characters
and the underscore (“_”) symbol. However, the underscore symbol cannot be the first
character in the component name.

Selecting the Number of Line Rates (Protocols)

The IBERT core can have multiple MGTs present. They do not have to operate at the same
line rate or use the same reference clock. Choose the number of distinct line rate/reference
clock rate combinations needed from the Number of Line Rates (protocols) combo box.

Choosing the Line Rate Settings

For each line rate setting desired, choose between a custom setting (“Start from scratch”) or
a pre-defined protocol setting from the Protocol combo box. If a named protocol is selected,
the fields for Max Rate, Data Width, and REFCLK are automatically filled in according to
the protocol. If specifying a custom protocol, type in the desired values.

Selecting the GTX Transceivers and Reference Clocks

After selecting the protocol options for the IBERT core, click Next to view the GTX
transceiver and Reference Clock Options for Line Rate 1. Once Line Rate 1 is complete,
click Next to set up Line Rate 2. Repeat these steps until all line desired rates are set up.

Choosing GTXs

Each available GTX transceiver is listed with its location and a checkbox next to it. If the
checkbox is greyed out, that means that GTX is already configured with a different line
rate. Use the checkboxes to select the GTXs that will use the given line rate.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 51

UG029 (v13.1) March 1, 2011

Generating IBERT v2.0 Cores for Virtex-6 FPGA GTX Transceivers

Choosing REFCLK Sources

From the combo box, choose the desired reference clock for the GTX transceiver. Two
reference clocks are available from the QUAD tile of the GTX transceiver. Reference clocks
are also available from neighboring QUAD tiles. Refer to the Virtex-6 FPGA GTX
Transceivers User Guide [See Reference 4, p. 227] for more information on the clocking
topology.

Enabling RXRECCLK Probes

After selecting the GTX transceiver and REFCLK options for the IBERT core for all the line
rates, click Next to view the RXRECCLK (RX recovered clock) options.

For each of the GTXs used, it is possible to drive the RXRECCLK out to a pin for use in
external measurement. To enable this, check the Enable checkbox next to the desired
recovered clock. Then specify the pin location in the Location text field, and choose the
I/O Standard from the IO Standard combo box. For differential standards, specify the P
pin location (the N pin location is inferred).

Choosing the System Clock Source

After selecting the RXRECCLK probing options, click Next to view the System Clock
options.

IBERT needs a clock for the internal communication logic. This can come from an external
pin or from the TXOUTCLK of one of the GTXs enabled in the IBERT design. To use a clock
from a pin, enable the Use External Clock source radio button, type the frequency in the
Frequency (MHz) field, type the pin location in the Location field, and choose the Input

Standard. For differential standards, specify the P pin location (the N pin location is
inferred).

To specify an internal clock, enable the Use MGT TXOUTCLK radio button, and specify the
GTX transceiver in the Use TXOUTCLK from combo box.

Generating the Design

After entering the IBERT core parameters, click Next to view the IBERT Core Summary.
This includes the GTX transceivers used, system clock, and the details of the global clock
resources used. To generate the design, click the Generate button.

http://www.xilinx.com

52 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 2: Using the Core Generator Tools

Generating IBERT v2.0 Cores for Virtex-6 FPGA GTH Transceivers

Xilinx CORE Generator provides the ability to define and generate a customized IBERT
v2.0 core for Virtex-6 HXT FPGA GTH transceivers. When all the IBERT parameters have
been chosen, a full design is generated, including a bitstream. The IBERT core cannot be
included in your design; it can only be generated in its own stand-alone design. The ISE
tools are invoked by CORE Generator to generate a bitstream file (.bit) in addition to a
design netlist file (.ngc or .edn).

In the Debug & Verification > ChipScope Pro IP category of the CORE Generator tool,
select IBERT Virtex6 GTH (ChipScope Pro - IBERT) core and click the Customize link in
the right side of the window. This action opens the CORE Generator tool.

General IBERT Options

The first screen in the CORE Generator tool is used to set up general IBERT options.

Choosing the Component Name

The Component Name field can consist of any combination of alpha-numeric characters in
addition to the underscore (“_”) symbol. However, the underscore symbol cannot be the
first character in the component name.

Choosing to Generate a Bitstream

The Generate Bitstream checkbox selects whether the implementation tools suite is used
to fully implement the IBERT design when the Generate button is eventually pressed.
Unchecking this box will generate some netlist files and a script to implement the design at
a later time.

Adding RXRECCLK Probes

Checking the Add RXRECCLK probes checkbox enables a panel later in customization
process for you to choose which RXRECCLK signals to route to FPGA pins and the
parameters of those pins.

GTH Naming Style

Each GTH transceiver can be identified using two different schemes: an XY coordinate or
an GTH transceiver number. Choosing the preference in this combo box causes all future
references to GTH transceivers to use that convention.

Using an External Clock Source

The IBERT design requires use of an external clock source for the internal communication
logic. This clock must come from an external pin. To set up your external clock, type the
frequency in the Frequency (MHz) field, type the pin location in the Location field, and
choose the Input Standard. For differential standards, specify the P pin location (the N pin
location is inferred).

Setting up Protocols

After selecting the IBERT general options, click Next to view the protocol options panel.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 53

UG029 (v13.1) March 1, 2011

Generating IBERT v2.0 Cores for Virtex-6 FPGA GTH Transceivers

Selecting the Number of Protocols

The IBERT core can have multiple GTH transceivers present, and those transceivers do not
have to operate at the same line rate, or use the same reference clock. Choose the number
of distinct line rate/reference clock rate combinations needed from the Number of
Protocols combo box.

Choosing the Line Rate Settings

For each line rate setting desired, choose between a custom setting (“Name Protocol”) or a
pre-defined protocol setting from the Protocol combo box. If a named protocol is selected,
the fields for Max Rate, Data Width, and REFCLK are automatically filled in according to
the protocol. If specifying a custom protocol, type in the desired values.

Note: The IBERT v2.0 core for Virtex-6 FPGA GTH transceivers supports all protocol line rates in

the following ranges:

− 1.24 Gb/s to 1.397 Gb/s

− 2.48 Gb/s to 2.795 Gb/s

− 4.96 Gb/s to 5.591 Gb/s

− 9.92 Gb/s to 11.182 Gb/s

Refer to the Virtex-6 FPGA GTH Transceivers User Guide [See Reference 5, p. 227] for
more information.

Assigning the GTH Transceivers

After selecting the protocol options for the IBERT core, click Next to view the first GTH
Transceiver Options panel. For each transceiver you see, set the combo box to None (if the
transceiver is not used) or to any of the protocols defined on the previous panel. Click Next
to do the same on the next panel of transceivers.

Choosing REFCLK Sources

After selecting which transceivers should be enabled in the IBERT core, click Next to view
the REFCLK Source Options panel. For each transceiver you see, choose the reference clock
source from the combo box given.

Choosing RXRECCLK Probes (Optional)

After selecting the REFCLK sources for each transceiver, click Next to view the
RXRECCLK Probes option panel. This panel is displayed only if Add RXUSERCLK Probe

was checked in the first panel.

Generating the Design

After entering the IBERT core parameters, click Next to view the CORE Generator
Summary. This includes the GTX transceiver used, system clock, and the details of the
global clock resources used. To generate the design, click the Generate button.

http://www.xilinx.com

54 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 2: Using the Core Generator Tools

Generating IBERT v2.0 Cores for Spartan-6 FPGA GTP
Transceivers

Xilinx CORE Generator tool provides the ability to define and generate a customized
IBERT v2.0 core for Spartan-6 FPGA GTP transceivers. When all the IBERT parameters
have been chosen, a full design is generated, including a bitstream. The IBERT core cannot
be included in your design; it can only be generated in its own stand-alone design. The ISE
tools are invoked by Xilinx CORE Generator to generate a bitstream file (.bit) rather than a
design netlist file (.ngc or .edn).

In the Debug & Verification > ChipScope Pro IP category of Xilinx CORE Generator,

select IBERT Spartan6 GTP (ChipScope Pro - IBERT) core, and click the Customize link
in the right side of the window.

General IBERT Options

The first screen in the CORE Generator tool is used to set up general IBERT options.

Choosing the Component Name

The Component Name field can consist of any combination of alpha-numeric characters in
addition to the underscore symbol. However, the underscore symbol cannot be the first
character in the component name.

Selecting the Number of Line Rates (Protocols)

The IBERT core can have multiple MGTs present, and those MGTs do not have to operate
at the same line rate, or use the same reference clock. Choose the number of distinct line
rate/reference clock rate combinations needed from the Number of Line Rates (protocols)
combo box.

Choosing the Line Rate Settings

For each line rate setting desired, choose between a custom setting (“Start from scratch”) or
a pre-defined protocol setting from the Protocol combo box. If a named protocol is chosen,
the fields for Max Rate, Data Width, and REFCLK are automatically filled in according to
the protocol. If specifying a custom protocol, type in the values desired.

Selecting the GTPA1_DUALs and Reference Clocks

After selecting the protocol options for the IBERT core, click Next to view the GTP Duals
and select GTXs and Reference Clocks for Line Rate 1 Once Line Rate 1 is complete, click
Next to go on to Line Rate 2, etc. until all the line rates are completed.

Choosing GTPA1_DUALs

Each available GTPA1_DUAL (also referred to as “DUAL” in this section) is listed with its
location and a checkbox next to it. It is not possible to select a single transceiver within the
DUAL: both transceivers must be used. If the checkbox is greyed out, that means that
transceiver is already configured with a different line rate. Check the DUALs that will use
the given line rate. At generate time, both DUALs must be configured at the same line rate,
but that can be altered at run time.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 55

UG029 (v13.1) March 1, 2011

Generating IBERT v2.0 Cores for Spartan-6 FPGA GTP Transceivers

Choosing REFCLK Sources

From the combo box, choose the reference clock desired to clock the MGT. One reference
clock is available from the DUAL, and reference clocks are also available from neighboring
DUALs. See the Spartan-6 FPGA GTP Transceivers User Guide [See Reference 6, p. 227] for
more information on the clocking topology.

Enabling RXRECCLK Probes

After selecting the GTP transceivers and REFCLK options for the IBERT core for all the line
rates, click Next to view the RXRECCLK options.

For each of the GTP transceivers used, it is possible to drive the RXRECCLK (recovered
clock) out to a pin for use in external measurement. To enable this, check the Enable
checkbox next to the desired recovered clock. Then specify the pin location in the Location
text field, and choose the I/O Standard from the IO Standard combo box. For differential
standards, specify the P pin location.

Choosing the System Clock Source

After selecting the RXRECCLK probing options, click Next to view the System Clock
options.

IBERT needs a clock for the internal communication logic. This can come from an external
pin, or from the TXOUTCLK of one of the GTP transceivers enabled in the IBERT design.
To use a clock from a pin, enable the Use External Clock source radio button, type the
frequency in the Frequency (MHz) field, type the pin location in the Location field, and
choose the Input Standard. For differential standards, specify the P pin location.

To specify an internal clock, enable the Use internal REFCLK radio button, and specify the
GTP transceiver in the Use REFCLK from combo box.

Generating the Design

After entering the IBERT core parameters, click Next to view the CORE Generator
Summary. This includes the GTP transceivers used, system clock, and the details of the
global clock resources used. To generate the design, click the Generate button.

http://www.xilinx.com

56 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 2: Using the Core Generator Tools

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 57

UG029 (v13.1) March 1, 2011

Chapter 3

Using the ChipScope Pro Core Inserter

Core Inserter Overview

The ChipScope™ Pro Core Inserter is a post-synthesis tool used to generate a netlist that
includes your design as well as parameterized ICON (integrated controller), ILA
(integrated logic analyzer), and ATC2 (Agilent trace core) cores as needed. The Core
Inserter gives you the flexibility to quickly and easily use the debug functionality to
analyze an already synthesized design and to do so without any HDL instantiation.

Note: The VIO (virtual input/output) and IBERT (internal bit error ratio) cores are not supported in

the Core Inserter tool.

Using the Core Inserter with PlanAhead

The Core Inserter tool is not intended for use with the PlanAhead™ software. Instead,
debug core insertion functionality has been incorporated into the PlanAhead software
environment. To make it easier to migrate from the Core Inserter tool to the ISE®
PlanAhead software environment, a CDC import command is provided in PlanAhead.
This allows the importing of the Core Inserter CDC project file into a PlanAhead project.
For more details on the ChipScope core insertion capabilities of PlanAhead, please refer to
the PlanAhead User Guide [See Reference 16, p. 227].

Using the Core Inserter with ISE Project Navigator

This section is provided for users of the Windows or Linux versions of ChipScope Pro and
ISE tools.

The Core Inserter .cdc file can be added as a new source file to the Project Navigator source
file list. In addition to this, the Project Navigator tool recognizes and invokes the Core
Inserter tool during the appropriate steps in the implementation flow. For more
information on how the Project Navigator and the Core Inserter are integrated, refer to the
Project Navigator section of the ISE Software Documentation [See Reference 13, p. 227].

http://www.xilinx.com

58 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 3: Using the ChipScope Pro Core Inserter

ChipScope Definition and Connection Source File

To use the Core Inserter tool to insert cores into a design processed by Project Navigator:

1. Add the definition and connection file (.cdc) to the project and associate it with the
appropriate design module.

a. To create a new .cdc file, select Project > New Source, then select ChipScope
Definition and Connection File and give the file a name. Click Next to advance to
the Summary panel, then click Finish to create the file.

Note: The ChipScope Definition and Connection File source type is only listed if Project

Navigator detects a ChipScope Pro installation (software versions must match).

b. To add an existing .cdc file, select Project > Add Source or Project > Add Copy of
Source, then browse for the existing .cdc file.

After selecting the .cdc file in the file browser, click Open and then click OK on the
Adding Source Files dialog box. The .cdc file should now be displayed in the
Sources in Project window underneath the associated design module.

2. To create the cores and complete the signal connections, double-click the .cdc file in the
Design panel. This runs the Synthesis (if applicable) and Translate processes, as
necessary, and then opens the .cdc file in the Core Inserter tool.

3. Modify the cores and connections in the Core Inserter tool as necessary (as shown in
“ChipScope Pro Core Inserter Features,” page 62), then close the Core Inserter tool.

4. When the associated top-level design is implemented in Project Navigator, the cores
are automatically inserted into the design netlist as part of the Translate phase of the
flow. There is no need to set any properties to enable this to happen. The .cdc is in the
project and associated with the design module being implemented and causes the
cores to be inserted automatically.

Useful Project Navigator Settings

The following Project Navigator settings help you implement a design with cores:

1. If you use the XST synthesis tool, set the Keep Hierarchy option to Yes or Soft to
preserve the design hierarchy and prevent the XST tool from optimizing across all
levels of hierarchy in your design. Using the Keep Hierarchy option preserves the
names of nets and other recognizable components during the core insertion stage of
the flow. If you do not use the Keep Hierarchy option, some of your nets and/or
components can be combined with other logic into new components or otherwise
optimized away. To keep the design hierarchy:

a. Right-click on the Synthesize - XST process and select Process Properties.

a. In the Synthesis Options category, make sure the Keep Hierarch property is set to
Soft or Yes and click OK.

2. Prior to using the Analyzer to download your bitstream into your device, make sure
the bitstream generation options are set properly:

a. In the Project Navigator, right-click on the Generate Programming File process
and select Process Properties.

b. Select the Startup Options category.

c. Set the FPGA Start-Up Clock dropdown to JTAG Clock.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 59

UG029 (v13.1) March 1, 2011

Using the Core Inserter with Command Line Implementation

Using the Core Inserter with Command Line Implementation

Command Line Flow Overview

The Core Inserter supports a basic command line for batch core insertion. As shown in
Figure 3-1, the Core Inserter command line flow consists of three steps:

1. Creating a CDC Project

2. Editing the CDC Project

3. Inserting Cores

The Core Inserter is invoked prior to calling ngdbuild to instantiate debug cores in the
design. Nets are selected for debug using the Edit CDC Project mode to display the GUI
and save net selections to the project. After successfully implementing the design and
configuring the Xilinx® device with the resulting bitstream, the Analyzer is used for
in-circuit design debug and verification. To change debug net selections or core settings
after configuration, iterate back to the Edit CDC Project step and proceed through the flow
to create a new bitstream for further debug and verification.

X-Ref Target - Figure 3-1

Figure 3-1: Command Line Core Inserter Flow

Start

Done

Design Entry

Design Synthesis

Device Programming

ChipScope Pro Core Inserter

Create CDC Project

ChipScope Pro Core

In-Circuit Verification

ChipScope Pro Core Inserter

Edit CDC Project

ChipScope Pro Core Inserter

Insert Cores

ngdbuild

map

par

bitgen

Design Implementation

inserter_cmd_line_flow_ch3_03_121306

http://www.xilinx.com

60 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 3: Using the ChipScope Pro Core Inserter

Create CDC Project Step

The Create CDC Project step of the command line Core Inserter flow is used to create an
empty skeleton CDC project file, as shown in Figure 3-2. The command line signature for
this step is:

inserter -create <project.cdc>

Note: This step does not bring up the Core Inserter graphical user interface (GUI).

Edit CDC Project Step

The Edit CDC Project step of the command line Core Inserter flow is used to bring up the
Core Inserter GUI to edit an existing CDC project (see Figure 3-3). The ngcbuild tool is
called during this step with the specified arguments following the -ngcbuild argument.
The ngcbuild tool combines all netlists associated with the design into a single complete
NGC netlist file. This allows the Core Inserter tool to provide full debug access to all levels
and nodes in the design.

The command line signature for this step is:

inserter -edit <project.cdc> -ngcbuild [-p <partname>] [{-sd
<source_dir>}] [-dd <output_dir>] [-i] <inputdesign.{edn|ngc}>
<outputdesign.ngc>

X-Ref Target - Figure 3-2

Figure 3-2: Create CDC Project Step

inserter_create_mode_ch3_04_121306

ChipScope Pro

Core Inserter Project.cdc

X-Ref Target - Figure 3-3

Figure 3-3: Edit CDC Project Step

inserter_edit_mode_ch3_05_121306

ChipScope Pro

Core Inserter Project.cdc

Project.cdc

InputDesign

Project.cdc

Project.cdcCores

OutputDesign

Cores

ngcbuild

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 61

UG029 (v13.1) March 1, 2011

Using the Core Inserter with Command Line Implementation

Insert Cores Step

The Insert Cores step of the command line Core Inserter flow is used to insert cores into a
design based on an existing CDC project (see Figure 3-4). The ngcbuild tool is called during
this step with the specified arguments following the -ngcbuild argument. The ngcbuild
tool combines all netlists associated with the design into a single complete NGC netlist file.
The cores are inserted into this single complete netlist.

The command line signature for this step is:

inserter -insert <project.cdc> -ngcbuild [-p <partname>] [{-sd
<source_dir>}] [-dd <output_dir>] [-i] <inputdesign.{edn|ngc}>
<outputdesign.ngc>

X-Ref Target - Figure 3-4

Figure 3-4: Insert Cores Step

inserter_insert_mode_ch3_06_121306

ChipScope Pro

Core Inserter

Project.cdc

InputDesign

Project.cdc

Project.cdcCores

OutputDesign

+

Cores

+

ChipScope

Cores

http://www.xilinx.com

62 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 3: Using the ChipScope Pro Core Inserter

ChipScope Pro Core Inserter Features

Working with Projects

Projects saved in the Core Inserter hold all relevant information about source files,
destination files, core parameters, and core settings. This allows you to store and retrieve
information about core insertion between sessions. The project file (.cdc extension) can
also be used as an input to the Analyzer to import signal names.

When the ChipScope Core Inserter is first opened, all the relevant fields are completely
blank. Using the command File > New also results in this condition.

Opening an Existing Project

To open an existing project, select it from the list of recently opened projects, or select File >
Open Project, and Browse to the project location. After you locate the project, you can
either double-click on it or click Open.

Saving Projects

If a project has changed during the course of a session, you are prompted to save the
project upon exiting the Core Inserter. You can also save a project by selecting File > Save.
To rename the current project or save it to another filename, select File > Save As, type in
the new name, and click Save.

Refreshing the Netlist

The Core Inserter automatically reloads the design netlist if it detects that the netlist has
changed since the last time it was loaded. However, you can force the Core Inserter to
refresh the netlist by selecting File > Refresh Netlist.

Inserting and Removing Units

You can insert new units into the project by selecting Edit > New ILA Unit or Edit > New
ATC2 Unit. You can remove a unit by selecting Edit > Remove Unit after choosing which
unit to delete.

Setting Preferences

You can set the ChipScope Core Inserter project preferences by selecting Edit >
Preferences. They are organized into three categories: Tools, ISE Integration, and
Miscellaneous. Refer to “Managing Project Preferences,” page 72 for more information
about setting these preferences.

Inserting the Cores

ICON, ILA, and ATC2 cores are inserted when the flow is completed, or by selecting Insert
> Insert Core. If all channels of all the capture cores are not connected to valid signals, an
error message results.

Exiting the Core Inserter

To exit the ChipScope Core Inserter, select File > Exit.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 63

UG029 (v13.1) March 1, 2011

ChipScope Pro Core Inserter Features

Specifying Input and Output Files

The ChipScope Core Inserter works in a step-by-step process.

1. Specify the Input Design Netlist.

2. Click Browse to navigate to the directory where the netlist resides.

3. Modify the Output Design Netlist and Output Directory fields as needed. (These fields
are automatically filled in initially.)

Note: When the Core Inserter is invoked from the Project Navigator tool, the Input Design Netlist,

Output Design Netlist, Output Directory and Device Family fields are automatically filled in. In this

case, these fields can only be changed by the Project Navigator tool and cannot be modified directly

in the Core Inserter.

Project Level Parameters

Three project level parameters (device family, SRL usage, and RPM usage) must be
specified for each project.

Selecting the Target Device Family

The target FPGA device family is displayed in the Device Family field. The structure of the
ICON and capture cores are optimized for the selected device family. Use the pull-down
selection to change the device family to the desired architecture.

The default target device family is Virtex®-5.

Using SRLs

The Use SRLs checkbox determines whether or not the cores are generated using SRL16
and SRL16E components. If the checkbox is not selected, the SRL16 components are
replaced with flip-flops and multiplexers, which affects the size and performance of the
generated cores.

The Use SRL16s checkbox is checked by default to generate cores that use the optimized
SRL16 technology.

Using RPMs

The Use RPMs checkbox is used to select whether the individual cores should be
relationally placed macros (RPMs). This option places restraints on the place-and-route tool
to optimize placement of all the logic for the core in one area. If your design uses most of
the resources in the device, these placement constraints might not be met. The Use RPMs
checkbox is checked by default in order to generate cores that are optimized for placement.
When this step is completed, click Next.

Core Utilization

The Core Utilization panel on the left side of the Core Inserter tool main window displays
an estimated count of the look-up table (LUT), flip-flop (FF), and block RAM (BRAM)
resources that are consumed by the ChipScope cores that are being inserted into the design
netlist. The core resource utilization counts are updated based on the selection of various
core parameters that affect the makeup of the cores being inserted into the design netlist.

Note: The LUT Count and FF Count core utilization features are only available for the Spartan®-3,

Spartan-3E, Spartan-3A, Spartan-3A DSP, and Virtex-4 device families (and the variants of these

families). The BRAM Count core utilization feature is available for all supported device families.

http://www.xilinx.com

64 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 3: Using the ChipScope Pro Core Inserter

Choosing ICON Options

The first options that must be specified are for the ICON core. The ICON core is the
controller core that connects all ILA and ATC2 cores to the JTAG (Joint Text Action Group,
IEEE standard) boundary scan chain.

Selecting the Boundary Scan Chain

The Analyzer can communicate with the cores using either the USER1, USER2, USER3, or
USER4 boundary scan chains. You can select the desired scan chain from the Boundary
Scan Chain pull-down list. This option is not available when targeting the Spartan-3,
Spartan-3E, Spartan-3A, or Spartan-3A DSP device families (or the variants of these
families).

Choosing ILA Trigger Options and Parameters

A new ILA unit is created in the device hierarchy on the left when the New ILA Unit
button is clicked. The next step is to set up the ILA unit. The first ILA core tab panel sets up
the trigger options for the ILA core.

Selecting the Number of Trigger Ports

Each ILA core can have up to 16 separate trigger ports that can be set up independently.
After you select the number of trigger ports from the Number of Input Trigger Ports pull-
down list, a group of options appears for each of these ports. The group of options
associated with each trigger port is labeled with TRIGn, where n is the trigger port number
0 to 15. The trigger port options include trigger width, number of match units connected to
the trigger port, and the type of these match units.

Entering the Width of the Trigger Ports

The individual trigger ports are buses that are made up of individual signals or bits. The
number of bits used to compose a trigger port is called the trigger width. The width of each
trigger port can be set independently using the TRIGn Trigger Width field. The range of
values that can be used for trigger port widths is 1 to 256.

Selecting the Number of Trigger Match Units

A match unit is a comparator that is connected to a trigger port and is used to detect events
on that trigger port. The results of one or more match units are combined together to form
the overall trigger condition event that is used to control data capture. Each trigger port
TRIGn can be connected to 1 to 16 match units by using the # Match Units pull-down list.

Selecting one match unit conserves resources while still allowing some flexibility in
detecting trigger events. Selecting two or more trigger match units allows a more flexible
trigger condition equation to be a combination of multiple match units. However,
increasing the number of match units per trigger port also increases the usage of logic
resources accordingly.

Note: The aggregate number of match units used in a single ILA core cannot exceed 16, regardless

of the number of trigger ports used.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 65

UG029 (v13.1) March 1, 2011

ChipScope Pro Core Inserter Features

Selecting the Match Unit Type

The different comparisons or match functions that can be performed by the trigger port
match units depend on the type of the match unit. Six types of match units are supported
by the ILA core (Table 3-1).

Use the TRIGn Match Type pull-down list to select the type of match unit that will apply to
all match units connected to the trigger port. However, as the functionality of the match
unit increases, so does the amount of resources necessary to implement that functionality.
This flexibility allows you to customize the functionality of the trigger module while
keeping resource usage in check.

Table 3-1: ILA Trigger Match Unit Types

Type
Bit

Values1
Match

Function
Bits Per Slice2 Description

Basic 0, 1, X ‘=’, ‘<>’

LUT4-based: 8

Virtex-5, Spartan-6: 19

Other LUT6-based: 20

Can be used for comparing data
signals where transition
detection is not important. This
is the most bit-wise economical
type of match unit.

Basic
w/edges

0, 1, X,
R, F, B,

N
‘=’, ‘<>’

LUT4-based: 4

LUT6-based: 8

Can be used for comparing
control signals where transition
detection (e.g., low-to-high,
high-to-low, etc.) is important.

Extended 0, 1, X
‘=’, ‘<>’,
‘>’, ‘>=’,
‘<‘, ‘<=’

LUT4-based: 2

LUT6-based: 16

Can be used for comparing
address or data signals where
magnitude is important.

Extended
w/edges

0, 1, X,
R, F, B,

N

‘=’, ‘<>’,
‘>’, ‘>=’,
‘<‘, ‘<=’

LUT4-based: 2

LUT6-based: 8

Can be used for comparing
address or data signals where a
magnitude and transition
detection are important.

Range 0, 1, X

‘=’, ‘<>’,
‘>’, ‘>=’,
‘<‘, ‘<=’,

‘in range’,
‘not in
range’

LUT4-based: 1

LUT6-based: 8

Can be used for comparing
address or data signals where a
range of values is important.

Range
w/edges

0, 1, X,
R, F, B,

N

‘=’, ‘<>’,
‘>’, ‘>=’,
‘<‘, ‘<=’,

‘in range’,
‘not in
range’

LUT4-based: 1

LUT6-based: 4

Can be used for comparing
address or data signals where a
range of values and transition
detection are important.

Notes:

1. Bit values: ’0’ = “logical 0”; ‘1’ =“logical 1”; ‘X’ =“don’t care”; ‘R’= “0-to-1 transition”; ‘F’= “1-to-0
transition”; ‘B’= “any transition”; ‘N’ = “no transition”.

2. The Bits Per Slice value is only an approximation that is used to illustrate the relative resource
utilization of the different match unit types. It should not be used as a hard estimate of resource
utilization. LUT4-based device families are Spartan-3, Spartan-3E, Spartan-3A, Spartan-3A DSP, and
Virtex-4 FPGAs (and the variants of these families). LUT6-based device families are Virtex-5, Virtex-6,
Spartan-6,, Artix™-7, Kintex™-7, and Virtex®-7 FPGAs.

http://www.xilinx.com

66 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 3: Using the ChipScope Pro Core Inserter

Selecting Match Unit Counter Width

The match unit counter is a configurable counter on the output of the each match unit in a
trigger port. This counter can be configured at run time to count a specific number of
match unit events. To include a match counter on each match unit in the trigger port, select
a counter width from 1 to 32. The match counter is not included on each match unit if the
Counter Width combo box is set to Disabled. The default Counter Width setting is
Disabled.

Enabling the Trigger Condition Sequencer

The trigger condition sequencer is a standard Boolean equation trigger condition that can be
augmented with an optional trigger sequencer by checking the Enable Trigger Sequencer
checkbox. A block diagram of the trigger sequencer is shown in Figure 3-5.

The trigger sequencer is implemented as a simple cyclical state machine and can transition
through up to 16 states or levels before the trigger condition is satisfied. The transition
from one level to the next is caused by an event on one of the match units that is connected
to the trigger sequencer. Any match unit can be selected at run time on a per level basis to
transition from one level to the next. The trigger sequencer can be configured at run time to
transition from one level to the next on either contiguous or non-contiguous sequences of
match function events.

Enabling the Storage Qualification Condition

In addition to the trigger condition, the ILA core can also implement a storage qualification
condition. The storage qualification condition is a Boolean combination of match function
events. These match function events are detected by the match unit comparators that are
subsequently attached to the trigger ports of the core. The storage qualification condition
differs from the trigger condition in that it evaluates trigger port match unit events to
decide whether or not to capture and store each individual data sample. The trigger and
storage qualification conditions can be used together to define when to start the capture
process and what data to capture. The storage qualification condition can be enabled by
checking the Enable Storage Qualification checkbox.

Enabling the Trigger Output Port

The trigger output port of the ILA core trigger condition module cannot be enabled in the
Core Inserter tool. It can only be enabled by using the CORE Generator™ tool (see
“Generating an ILA Core,” page 32).

X-Ref Target - Figure 3-5

Figure 3-5: Trigger Sequencer Block Diagram with 16 Levels and 16 Match Units

Match Unit 0

Match Unit 1

Match Unit 2

Match Unit 15

Level

1

Match Unit 0

Match Unit 1

Match Unit 2

Match Unit 15

Level

2

Match Unit 0

Match Unit 1

Match Unit 2

Match Unit 15

Level

16

Trigger

UG029_trig_seq_blk_diag_081903

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 67

UG029 (v13.1) March 1, 2011

ChipScope Pro Core Inserter Features

Choosing ILA Core Capture Parameters

The second tab in the Core Inserter is used to set up the capture parameters of the ILA core.

Selecting the Data Depth

The maximum number of data sample words that the ILA core can store in the sample
buffer is called the data depth. The data depth determines the number of data width bits
contributed by each block RAM unit used by the ILA unit. The CORE Generator and Core
Inserter have a resource utilization estimator feature that indicates exactly how many
block RAM resources are used for a given combination of data width and data depth
parameters.

Entering the Data Width

The width of each data sample word stored by the ILA core is called the data width. If the
data and trigger words are independent from each other, then the maximum allowable
data width depends on the target device type and data depth. However, regardless of these
factors, the maximum allowable data width is 4,096 bits (or 256 bits for Spartan-3,
Spartan-3E, Spartan-3A, Spartan-3A DSP, and Virtex-4 devices).

Selecting the Data Type

The data captured by the ILA trigger port can come from two source types:

• Data Separate from Trigger

− The data port is completely independent of the trigger ports

− This mode is useful when you want to limit the amount of data being captured

• Data Same as Trigger

− The data and trigger ports are identical. This mode is very common in most logic
analyzers, since you can capture and collect any data that is used to trigger the
core.

− Individual trigger ports can be selected to be included in the data port. If this
selection is made, then the DATA input port is not included in the port map of the
ILA core.

− This mode conserves CLB and routing resources in the ILA core, but is limited to
a maximum aggregate data sample word width of 4,096 bits (or 256 bits for
Spartan-3, Spartan-3E, Spartan-3A, Spartan-3A DSP, and Virtex-4 devices).

Selecting the Data-Same-As-Trigger Ports

If the Data Same As Trigger checkbox is selected, then a checkbox for each TRIGn port
appears in the data options screen. These checkboxes should be used to select the
individual trigger ports that will be included in the aggregate data port. A maximum data
width of 4,096 bits (or 256 bits for Spartan-3, Spartan-3E, Spartan-3A, Spartan-3A DSP, and
Virtex-4 devices) applies to the aggregate selection of trigger ports.

http://www.xilinx.com

68 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 3: Using the ChipScope Pro Core Inserter

Choosing ATC2 Data Capture Settings

If you are inserting an ATC2 core, the following sections describe the ATC2 data capture
settings.

Capture Mode

The Capture Mode setting of the ATC2 core can be set to either STATE mode for
synchronous data capture to the CLK input signal or to TIMING mode for asynchronous
data capture. In STATE mode, the data path through the ATC2 core uses pipeline flip-flops
that are clocked on the CLK input port signal. In TIMING mode, the data path through the
ATC2 core is composed purely of combinational logic all the way to the output pins. Also,
in TIMING mode, the ATCK pin is used as an extra data pin.

Max Frequency Range

The Max Frequency Range parameter is used to specify the maximum frequency range in
which you expect to operate the ATC2 core. The implementation of the ATC2 core is
optimized for the maximum frequency range selection. The valid maximum frequency
ranges are 0-100 MHz, 101-250 MHz, 251-300 MHz, and 301-500 MHz. The maximum
frequency range selection only has an affect on core implementation when the Capture
Mode is set to STATE mode.

Enable Auto Setup

The Enable Auto Setup option is used to enable a feature that allows the Agilent Logic
Analyzer to automatically set up the appropriate ATC2 pin to Logic Analyzer pod
connections. This feature also allows the Agilent Logic Analyzer to automatically
determine the optimal phase and voltage sampling offsets for each ATC2 pin. This feature
is enabled by default.

Enable "Always On" Mode

The Enable "Always On" Mode option is used to force an ATC2 core to always enable its
internal logic and output buffers. The "Always On" mode ensures that signal bank 0 is
driven out to the ATD pins upon FPGA device configuration. This mode makes it possible
to capture events that immediately follow device configuration without having to first set
up the ATC2 core manually. This feature is disabled by default and is only available when
the capture mode is set to TIMING mode.

Pin Edit Mode

The Pin Edit Mode parameter is a time saving feature that allows you to change the IO
Standard, Drive, and Slew Rate pin parameters on individual pins or together as a group of
pins. Setting the Pin Edit Mode to Individual allows you to edit the parameters of each pin
independently from one another. Setting the mode to Same as ATCK allows you to change
the ATCK pin parameters and forces all ATD pins to the same settings. You must set
unique pin locations for each individual pin regardless of the Pin Edit Mode.

ATD Pin Count

The ATC2 core can implement any number of ATD output pins in the range of 4 through
64.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 69

UG029 (v13.1) March 1, 2011

ChipScope Pro Core Inserter Features

Endpoint Type

The Endpoint Type setting is used to control whether single-ended or differential output
drivers are used on the ATCK and ATD output pins. All ATCK and ATD pins must use the
same driver endpoint type.

Signal Bank Count

The ATC2 core contains an internal, run-time selectable data signal bank multiplexer. The
Signal Bank Count setting is used to denote the number of data input ports or signal banks
the multiplexer will implement. The valid Signal Bank Count values are 1, 2, 4, 8, 16, 32,
or 64.

TDM Rate

The time division multiplexing (TDM) rate is used to increase the amount of data transmitted
over each data pin by as much as 200 percent. The ATC2 core does not use on-chip memory
resources to store the captured trace data. Instead, it transmits the data to be captured by
an Agilent logic analyzer that is attached to the FPGA pins using a special probe connector.
The data can be transmitted out the device pins at the same rate as the incoming DATA
port (TDM rate = 1x) or twice the rate as the DATA port (TDM rate = 2x). The TDM rate can
be set to “2x” only when the capture mode is set to STATE.

Data Width

The width of each input data port of the ATC2 core depends on the capture mode and the
TDM rate. In STATE mode, the width of each data port is equal to (ATD pin count) * (TDM
rate). In TIMING mode, the width of each data port is equal to (ATD pin count + 1) * (TDM
rate) since the ATCK pin is used as an extra data pin.

Pin Parameters

The settings in the Individual Pin Settings table control the location, I/O standard, output
drive and slew rate of each individual ATCK and ATD pin. The output clock (ATCK) and
data (ATD) pins are instantiated inside the ATC2 core for your convenience. This means
that although you do not have to bring the ATCK and ATD pins through every level of
hierarchy to the top-level of your design manually; you do need to specify the location and
other characteristics of these pins in the CORE Generator. These pin attributes are then
added to the *.ncf file of the ATC2 core.

Pin Name

The ATC2 core has two types of output pins: ATCK and ATD. The ATCK pin is used as a
clock pin when the capture mode is set to STATE and is used as a data pin when the
capture mode is set to TIMING. The ATD pins are always used as data pins. The names of
the pins cannot be changed.

Pin Loc

The Pin Loc column is used to set the location of the ATCK or ATD pin.

http://www.xilinx.com

70 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 3: Using the ChipScope Pro Core Inserter

IO Standard

The IO Standard column is used to set the I/O standard of each ATCK or ATD pin. The I/O
standards that are available for selection depend on the device family and driver endpoint
type. The names of the I/O standards are the same as those in the IOSTANDARD section
of the Constraints Guide in the Xilinx Software Documentation [See Reference 13, p. 227].

VCCO

The VCCO column setting denotes the output voltage of the pin driver and depends on the
IO Standard selection.

Drive

The Drive column setting denotes the maximum output current drive of the pin driver and
ranges from 2 to 24 mA, depending on the IO Standard selection.

Slew Rate

The Slew Rate column can be set to either FAST or SLOW for each ATCK or ATD pin.

Core Utilization

The ATC2 Core Generator has a core resource utilization monitor that estimates the
number of look-up tables (LUTs) and flip-flops (FF) used by the ATC2 core, depending on
the parameters used. The ATC2 core never uses block RAM or additional clock resources
(for example, BUFG or DCM components).

Choosing Net Connections for ILA Signals

The Net Connections tab allows you to choose the signals to connect to the ILA core. If
trigger is separate from data, then the clock, trigger, and data ports must be specified. When
trigger equals data, only the clock and trigger/data ports must be specified. Double-click
on the CLOCK PORT label or click on the plus sign (+) next to it to expand. No connection
has been made, so the connection appears in red.

The ATC2 Net Connections tab allows you to choose the signals to connect to the ATC2
core. The clock and data ports must be specified. Expand the Clock Net label. No
connection has been made, so the connection appears in red.

To change any core connection, select Modify Connections. The Select Net dialog box now
appears. This dialog box provides an easy interface to choose nets to connect to the ILA or
ATC2 cores. The hierarchical structure of the design can be traversed using the
Structure/Nets pane on the upper left of the Select Net dialog box. All the nets for the
selected structure hierarchy level of the design appear in the table on the lower left pane of
the Select Net dialog box. The following net information is displayed in this table:

• Net Name: The name of the net as it appears in the EDIF netlist. The net name might
be different than the corresponding signal name in the HDL source due to renaming
and other optimizations during synthesis.

• Source Instance: The instance name of the lower-level hierarchical component from
which the net at the current level of hierarchy is driven. The source instance does not
necessarily describe the originating driver of the net.

• Source Component: The type of component described by the Source Instance.

• Base Type: The type of the lowest level driving component of the net. The base type is
either a primitive or black box component.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 71

UG029 (v13.1) March 1, 2011

ChipScope Pro Core Inserter Features

All the net identifiers described above can be filtered for key phrases using the Pattern text
box and Filter button. Also, nets can be sorted in ascending and descending order based on
the various net identifiers by selecting the appropriate net identifier button in the column
headers of the net selection table.

Note: The net names are sorted in alpha-numeric or “bus element” order whenever possible.

Common delimiters such as “[“, “(“, etc., are used to identify possible bus element nets.

The tabs for clock, data, and trigger inputs of the ILA core appear in the pane at the upper
right of the Select Net dialog box. If you are selecting nets for an ATC2 core, only the Clock
and Data input port categories appear at the upper right of the Select Net dialog box. If
multiple trigger or data ports exist, there are multiple sub-tabs on the bottom of the Net
Selections pane, respectively. Nets that are selected at a given level of hierarchy can be
connected to inputs of the ILA or ATC2 capture cores by following these steps:

1. In the lower-left table of the Select Net dialog box, select the net(s) that you want to
connect to the capture core.

Note: You can select multiple nets to connect to an equivalent number of capture core input

connections. Hold down the Shift key and use the left mouse button to select contiguous nets.

Use a combination of the Ctrl key and left mouse button to select non-contiguous nets. You can

also connect a single net to multiple capture core input signals by selecting a single net and

multiple capture core port signals.

2. In the upper-right tabbed panel of the Select Net dialog box, select the desired capture
core input category: Clock Signals, Trigger Signals (trigger port tab if applicable), Data
Signals (or Trigger/Data Signals, if trigger is same as data).

3. In the right-hand table of capture core inputs, select the channel(s) that you want to
connect to the selected net(s).

Note: You can select multiple capture core inputs to connect to an equivalent number of nets.

Hold down the Shift key and use the left mouse button to select contiguous ILA core inputs. Use

a combination of the Ctrl key and left mouse button to select non-contiguous ILA core inputs.

You can also connect a single net to multiple capture core input signals by selecting a single net

and multiple capture core port signals.

4. In the lower-right part of the Select Net dialog box, click the Make Connections button
to make a connection between the selected nets and capture core inputs.

Use the Remove Connections button to remove any existing connections. Use the Move
Nets Up and Move Nets Down buttons to reorder the position of any selected connection.
Once the desired net connections have been made, click OK to return to the main Core
Inserter window.

All the trigger and data nets must be chosen in this fashion. After you have chosen all the
nets for a given bus, the ILA or ATC2 bus name changes from red to black.

After specifying the clock, trigger, and data nets, click Insert.

If you are using the Core Inserter in stand-along mode, a dialog box appears asking if you
want to proceed with Core Insertion. If Yes, the cores are generated, inserted into the
netlist, and an NGO file is created with the EDIF2NGD tool. Details of this process can be
viewed in the Messages pane at the bottom of the window. A Core Generation
Complete message in the Messages pane indicates successful insertion of ChipScope
cores.

If you are using the Core Inserter as part of the Project Navigator mode, a dialog box
appears asking if you want to return to Project Navigator. If Yes, the Core Inserter settings
are saved and you are returned to the Project Navigator tool. The actual core generation
and insertion processes take place in the proper sequence as deemed necessary by the
Project Navigator tool.

http://www.xilinx.com

72 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 3: Using the ChipScope Pro Core Inserter

Adding Units

Each device can support up to 15 ILA or ATC2 units, depending on block RAM availability
and unit parameters.

• To add another ILA unit to the project, select Edit > New ILA Unit, or go to the ICON
Options window by clicking on ICON in the tree on the left pane and clicking the
New ILA Unit button.

• To add another ATC2 unit to the project, select Edit > New ATC2 Unit, or go to the
ICON Options window by clicking on ICON in the tree on the left pane and clicking
the New ATC2 Unit button.

You can set up the parameters for the additional units by using the same procedure as
described above.

Inserting Cores into Netlist

The core insertion step can be invoked by selecting the Insert > Insert Core Into Design
menu option or by clicking Insert Core on the toolbar.

Note: If you are using the Core Inserter flow in the ISE Project Navigator tool, click Return to Project

Navigator instead of selecting the Insert > Insert Core option. The insertion of the cores happens

automatically as part of the Translate process in the Project Navigator tool. Refer to “Using the Core

Inserter with ISE Project Navigator,” page 57 for details.

Managing Project Preferences

The preference settings are organized into three categories: Tools, ISE Integration, and
Miscellaneous.

The Tools section contains settings for the command line arguments used by the Core
Inserter to launch the EDIF2NGD tool.

The ISE Integration section contains settings that affect how the Core Inserter integrates
with the ISE Project Navigator tool. When ISE integration is enabled (the default), the Core
Inserter automatically searches the current working directory for ISE temporary netlist
directory called _ngo. If a valid ISE _ngo directory is found, the Core Inserter project is
automatically set up to overwrite the intermediate NGD files of the ISE project with those
produced by the Core Inserter. You can set the ISE Integration preferences to prompt you
before overwriting any intermediate NGD files.

The Miscellaneous preferences section contains other settings that affect how the Core
Inserter operates. For example, you can set up the Core Inserter to display the ports in the
Select Net dialog box. This might be desired if the cores are being inserted into a lower-
level EDIF netlist, instead of the top level. These port nets are shown in gray in the Select
Net dialog box. The Core Inserter can also be set up to display nets that are illegal for
connection in the Select Net dialog box. When this preference option is enabled, any illegal
nets are shown in red in the Select Net dialog box.

Also, you can set up the Core Inserter to disable the display of source component instance
names, source component types, and base net driver types in the Select Net dialog box. You
can reset the Core Inserter project preferences to the installation defaults by clicking the
Reset button.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 73

UG029 (v13.1) March 1, 2011

Chapter 4

Using the ChipScope Pro Analyzer

Analyzer Overview

The ChipScope™ Pro Analyzer tool interfaces directly to the ICON (integrated controller),
ILA (integrated logic analyzer), VIO (virtual input/output), and IBERT (internal bit error
ratio) cores, collectively called the ChipScope Pro logic analyzer cores.

Note: Even though the Analyzer tool detects the presence of an ATC2 (Agilent trace core), an

Agilent Logic Analyzer attached to a JTAG (Joint Test Action Group, IEEE standard) cable is required

to control and communicate with the ATC2 core.

You can configure your device, choose triggers, setup the console, and view the results of
the capture on the fly. The data views and triggers can be manipulated in many ways,
providing an easy and intuitive interface to determine the functionality of the design.

The Analyzer tool is made up of two distinct applications: the server and the client. The
Analyzer server is a command line application that connects to the JTAG chain of the target
system using any of the supported JTAG download cables shown in Table 1-10, page 27.
The Analyzer client is a graphical user interface (GUI) application that allows you to
interact with the devices in the JTAG chain and the cores that are found in those devices.

The Analyzer server and client can be running on the same machine (local host mode) or
on different machines (remote mode). Remote mode is useful when you must:

• Debug a system that is in a different location

• Share a single system resource with other team members

• Demonstrate a problem or feature to someone who is not at your location

http://www.xilinx.com

74 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

Analyzer Server Interface

If you desire to debug a target system that is connected directly to your local machine via
a JTAG download cable, then you do not need to start the server manually. You must only
start the server application manually when you desire to interact with the server from a
remote client.

Note: The Analyzer server application can handle only one client connection at a time.

The server can be started as follows:

• The Analyzer server is started on 32-bit Windows machines by executing

<XILINX_ISE_INSTALL>\bin\nt\cse_server.exe <command line options>

• The Analyzer server is started on 64-bit Windows machines by executing

<XILINX_ISE_INSTALL>\bin\nt64\cse_server.exe <command line options>

• The Analyzer server is started on 32-bit Linux machines by executing

<XILINX_ISE_INSTALL>/bin/lin/cse_server <command line options>

• The Analyzer server is started on 64-bit Linux machines by executing

<XILINX_ISE_INSTALL>/bin/lin64/cse_server <command line options>

Note that <XILINX_ISE_INSTALL> is the location at which the Xilinx® ISE® Design
Suite tools are installed. The Analyzer server application has several <command line
options> that are described in Table 4-1. You can customize the server scripts as needed.

See “Setting up a Server Host Connection,” page 82 for more information on how to
connect to the server application from the Analyzer client application.

Table 4-1: ChipScope Pro Analyzer Server Command Line Options

Command Line Option Description

-port <portnumber>
Used to specify the TCP/IP port number that is used by the client
and server to establish a connection. The default port number is
50001.

-password <password>
Used to protect the server from unauthorized access. No
password is set by default.

-l <logfile>

Used to specify the location of the log file. The default log file
location is:

$HOME/.chipscope/cs_analyzer_<portnumber>.log

where $HOME is your home directory and <portnumber> is the
TCP/IP port number used by the server.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 75

UG029 (v13.1) March 1, 2011

Analyzer Client Interface

Analyzer Client Interface

The Analyzer client interface consists of four parts:

• Project tree in the upper part of the split pane on the left side of the window

• Signal browser in the lower part of the split pane on the left side of the window

• Message pane at the bottom of the window

• Main window area

Both the project tree/signal browser split pane and the Message pane can be hidden by
deselecting those options in the View menu. Additionally, the size of each pane can be
adjusted by dragging the bar located between the panes to a new location. Each pane can
be maximized or minimized by clicking on the arrow buttons on the pane separator bars.

Project Tree

The project tree is a graphical representation of the JTAG chain and the cores in the devices
in the chain. Although all devices in the chain are displayed in the tree, only valid target
devices and cores and can be operated upon. Leaf nodes in the tree appear when further
operations are available. For instance, a leaf node for each unit appears when that device is
configured with a core-enabled bitstream. Context-sensitive menus are available for each
level of hierarchy in the tree. To access the context-sensitive menu, right-click on the node
in the tree. Device and unit renaming, child window opening, device configuration, and
project operations can all be done through these menus.

To rename a device or core unit node in the project tree, right-click on the node and select
Rename. To end the editing, press Enter or the up or down arrow key, or click on another
node in the tree.

Signal Browser

The signal browser displays all the signals for the ILA or VIO core selected in the project
tree. Signals can be renamed, grouped into buses, and added to the various data views
using context-sensitive menus in the signal browser.

Renaming Signals, Buses, and Triggers Ports

To rename a signal, bus, or trigger port name in the signal browser, double-click on it, or
right-click and select Rename. To end the editing, press Enter or the up or down arrow key,
or click on another node in the tree.

Adding/Removing Signals from Views

To remove all the signals from either the waveform or listing view, right-click on any data
signal or bus in the signal browser and select Clear All > Waveform or Clear All > Listing.
In the case of a VIO core, to remove all the signals from the VIO console, right-click on any
signal or bus, and select Clear All > Console. Similarly, all signals and buses can be added
to the views through the Add All to View menu options. Selected signals and buses can be
added through the Add to View menu options.

To select a contiguous group of signals and buses, click on the first signal, hold down the
Shift key, and click on the last signal in the group. To select a non-contiguous group of
signals and buses, click on each of the signals/buses in turn while holding down the Ctrl
key. When you use this method, the order of the signals in the bus are in the order in which
you select them.

http://www.xilinx.com

76 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

Combining and Adding Signals Into Buses

For ILA cores, only data signals can be combined into buses. For VIO cores, signals of a
particular type can be grouped together to form buses. To combine signals into buses,
select the signals using the Shift or Ctrl keys as described above. When the Shift key is
used, the uppermost signal in the tree is the LSB once the bus is created. If the Ctrl key is
used, the order of signals in the bus matches the order in which the signals are clicked, the
first signal being the LSB.

After you have selected the signals, right click on any selected signal and select Move to
Bus > New Bus. A new bus is created at the top of the Data Signals and Buses sub-tree (in
the case of ILA cores) or at the top of that particular sub-tree (in the case of VIO). To add a
signal or signals into an existing bus, select the signals and select Move to Bus, and then
the bus name in the following submenu. Added signals always go on the MSB-end of the
bus. The Move to Bus operation removes the signal(s) from the list of individual signals
when they are combined into the bus. The Copy to Bus operation is the same as Move to
Bus except the signals remain as individual signals in the list.

Reverse Bus Ordering

To reverse the order of the bits in a bus (i.e. make the LSB the MSB), right click on the bus
and select Reverse Bus Order. The signal browser and all data views that contain that bus
are immediately updated and the bus values recalculated.

Bus Radices

Each bus can be displayed in the data views in any one of the following radices:

• ASCII

• Binary

• Hexadecimal

• Octal

• Signed decimal

• Token

• Unsigned decimal

ASCII is only available if the number of bits in the bus is evenly divisible by 8. Changing
the radix changes the bus radix in every data view in which it appears.

Signed and Unsigned Decimal

It is possible to replace the value of a bus with either a signed or unsigned decimal value
that is modified using the following equations:

Bus Value = (<scale factor> * Data) + <offset>

Precision = <precision>

Whether the selected bus radix is Signed Decimal or Unsigned Decimal, a dialog box
appears, allowing you to specify three parameters: <scale factor>, <offset>, and <precision>.

• Scale Factor

The first text field that precedes the *Data text in the dialog box is a constant scale
factor used to multiply the Data value. The default <scale factor> value is 10.

• Offset

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 77

UG029 (v13.1) March 1, 2011

Analyzer Client Interface

The second text field following the "+" text in the dialog box is the constant offset that
is added to the scaled Data value.

• Precision

The third text field in the dialog box is the <precision>, which specifies the number of
decimal places after the decimal point. The default <precision> value is 0.

For example, if you wanted to display down to 10 decimal places a 16-bit bus that
represents a sine wave which ranges from -0.5 to +1.5, you would set the three parameters
as follows:

<scale factor> = 3.0517578125E-5 (which is the same as 1/215)

<offset> = 0.5

<precision> = 10

Token

Tokens are string labels that are defined in a separate ASCII file and can be assigned to a
particular bus value. These labels can be useful in applications such as address decoding
and state machines. The token file (.tok extension) has a very simple format, and can be
created or edited in any text editor. Tokens are in the form NAME=VALUE where NAME
is the token name and VALUE is the token value (hex, binary, or decimal). Values are hex
by default. To specify a radix for the value, append \b (binary), \u (unsigned decimal), \h
(hex) to the value.

A default token can be used to set a default token value when no other VALUE matches are
found. The @DEFAULT_TOKEN key can be used to set the default token name. The token
name "HEX" is used if no @DEFAULT_TOKEN line is used. The comment character in a
token file is "#". The first non-comment line of the token file must be
"@FILE_VERSION=1.0.0".

Note: The "=" sign is a reserved character and cannot be part of the TOKEN string.

Below is an example token file:

#File version
@FILE_VERSION=1.0.0

Default token value
@DEFAULT_TOKEN=ERROR

Explicit token values
ZERO=00
ONE=01
TWO=02
THREE=11\b
FOUR=4\h
FIVE=101\b
SIX=6
SEVEN=111\b
EIGHT=1000\b
NINE=9\h
TEN=A\h

Tokens are chosen by selecting a bus, then choosing Bus Radix > Token from the
right-click menu. A dialog box opens and you can choose the token file. If the bus is wider
than the token values (for example, the bus is 8 bits wide while the specified tokens are
only 4 bits wide), the tokens are padded to equal the width of the bus, using zeroes in the
most-significant bit positions.

http://www.xilinx.com

78 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

Deleting Buses

To delete a bus, right click on it and select Delete Bus. The bus is immediately deleted in
every data view it is resident.

Type and Persistence (VIO only)

VIO signals have two additional properties: Type and Persistence. See “VIO Bus/Signal
Activity Persistence,” page 99 for explanations of these properties.

Message Pane

The Message pane displays a scroll list of status messages. Error messages appear in red.
The Message pane can be resized by dragging the split bar above it to a new location. This
also changes the height of the project tree/signal browser split pane.

Main Window Area

The main window area can display multiple child windows (such as Trigger, Waveform,
Listing, Plot windows) at the same time. Each window can be resized, minimized,
maximized, and moved as needed.

Analyzer Features

Working with Projects

Projects hold important information about the Analyzer program state, such as signal
naming, signal ordering, bus configurations, and trigger conditions. They allow you to
conveniently store and retrieve this information between Analyzer sessions

When you first run the Analyzer tool, a new project is automatically created and is titled
new project. To open an existing project, select File > Open Project, or select one of the
recently used projects in the File menu. The title bar of the Analyzer and the project tree
displays the project name. If the new project is not saved during the course of the session,
a dialog box appears when the Analyzer is about to exit, asking you if you wish to save the
project.

Creating and Saving A New Project

To create a new project, select File > New Project. A new project called new project is
created and made active in the Analyzer. To save the new project under a different name,
select File > Save Project. The project file has a .cpj extension.

Saving Projects

To rename the current project, or to save a copy to another filename, select File > Save
Project As, type the new name in the File name dialog box, and click Save.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 79

UG029 (v13.1) March 1, 2011

Analyzer Features

Printing Waveforms

One of the features of ChipScope Pro is the ability to print a captured data waveform by
using the File > Print menu option. Selecting the File > Print menu option starts the Print
Wizard.

The Print Wizard consists of three consecutive windows:

1. (1 of 3) is the Print options and settings window

2. (2 of 3) is the Print waveform printout preview navigator window

3. (3 of 3) is the Print confirmation window

Print Wizard (1 of 3) Window

The first Print Wizard window is used to set up various waveform printing options. The
following sections describe these waveform printing options in more detail.

Horizontal Scaling

You can control the amount of waveform data that prints to each column of pages using
one of two methods:

• Fit To: Fit the waveform to one or more columns of pages

• Fixed: Fit a specific number of waveform samples on each column of pages

The default fits the entire waveform printout to a single column of pages wide.

Signal/Bus Selection

You can control which signals and buses are present in the waveform printout using one of
three methods:

• Current View: Print waveform data for all the signals and buses in the current view of
the waveform window

• All: Print waveform data for all the signals and buses available in the entire core unit

• Selected: Print waveform data for only those signals and buses that are currently
selected in the waveform window

The default prints waveform data using the Current View method.

Time/Sample Range

You can control the range of time units or number of samples printed using one of four
methods:

• Current View: Print waveform data using the same range of samples that is present in
the current waveform view

• Full Range: Print waveform data using a range of samples consisting of all samples in
the entire sample buffer

• Between X/O Cursors: Print waveform data using a range of samples starting with the
X cursor and ending with the O cursor (or vice versa)

• Custom View: Print waveform data using a range of samples defined by:

− The starting window number

− The sample number within that starting window

− The ending window number

http://www.xilinx.com

80 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

− The sample number within the ending window

The default prints waveform data using the Current View method.

Print Signal Names

You can choose to print the signal names on each page or only on the first page. When
Show Cursor Values is enabled, this value also affects the display of the X/O cursor
values.

X/O Cursor Values

You can choose whether or not to include the X/O cursor values in the waveform printout.
If you choose to display the X/O cursor values in the waveform printout, they appear on
each page or only on the first page, depending on the Print Signal Names setting (see
“Print Signal Names”).

Footer

You can enable or disable the inclusion of a footer at the bottom of each page by selecting
the Show Footer checkbox. The footer contains useful information including the Analyzer
project name, waveform settings, print settings, and page numbers.

Navigation Buttons

The buttons at the bottom of the Print Wizard (1 of 3) window are defined as follows:

• Page Setup: Opens the page setup window

• Next: Opens the Print Wizard (2 of 3) window

• Cancel: Closes the Print Wizard window without printing

Clicking on the Next button takes you to the Print Wizard (2 of 3) window.

Print Wizard (2 of 3) Window

The second Print Wizard window shows a preview of the waveform printout.

Page Preview Buttons

The buttons at the top of the page control which page of the waveform printout is being
previewed as follow:

• The << and >> buttons go to the first and last preview pages, respectively

• The < and > buttons go to the previous and next preview pages, respectively

• The text box in the middle can be used to go to a specific preview page

Navigation Buttons

The buttons at the bottom of the Print Wizard (2 of 3) window are defined as follows:

• Back: Returns to the Print Wizard (1 of 3) window

• Send to PDF: Opens the Print Wizard (3 of 3) window for writing directly to a PDF File

• Send to Printer: Opens the Print Wizard (3 of 3) window for sending to a printer

• Close: Closes the Print Wizard window without printing

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 81

UG029 (v13.1) March 1, 2011

Analyzer Features

Bus Expansion and Contraction

You can manipulate the waveform by expanding and contracting the buses in the print
preview window. For example, if you expand a bus in such that it pushes other
signals/buses to another page, the total print preview page count at the top changes
accordingly.

Print Wizard (3 of 3) Window

In the Print Wizard (2 of 3) window, clicking on the Send to PDF button goes to the Print
Wizard (3 of 3) PDF confirmation window. Clicking on the Yes button causes the waveform
printout to be written to the specified PDF file while clicking on the No button returns you
to the Print Wizard (2 of 3) window. Clicking on Change File opens a file browser window
that allows you to select or create a new PDF file.

In the Print Wizard (2 of 3) window, clicking on the Send to Printer button goes to the Print
Wizard (3 of 3) Printer confirmation window. Clicking on the Yes button causes the
waveform printout to be sent to the printer while clicking on the No button returns you to
the Print Wizard (2 of 3) window.

Page Setup

The Page Setup window can be invoked either from the Print Wizard (1 of 3) window or by
using the File > Page Setup menu option.

Note: In the ChipScope Pro Analyzer program, you can print only to the default system printer.

Changing the target printer in the print setup window does not have any effect. To change printers,

you must close the Analyzer program, change your default system printer, and restart the Analyzer

program.

Importing Signal Names

At the start of a project, all the signals in every core have generic names. You can rename
the signals individually as described in “Renaming Signals, Buses, and Triggers Ports,”
page 75 or import a file that contains all the names of all the signals in one or more cores.
The CORE Generator™, Core Inserter, Synplicity Certify, and the FPGA Editor tools can
create such files. To import signal names from a file, select File > Import. A Signal Import
dialog box appears.

To select the signal import file, choose Select New File. A file dialog box appears, allowing
you to navigate and specify the signal import file. After you choose the file, the
Unit/Device combo box is populated according to the core types specified in the signal
import file. If the signal import file contains signal names for more than one core, the
combo box displays device numbers for those devices containing only ChipScope Pro
capture cores.

If the signal import file contains signal names for only one core, the combo box is
populated with names of the individual cores matching the type specified in the signal
import file. If the import file is a file from Synplicity Certify, you also have the option to
choose a device name from the Certify file as well as the device in the JTAG chain.

To import the signal names, click OK. If the parameters in the file do not match the
parameters of the target core or cores, a warning message is displayed. If you choose to
proceed, the signal names are applied to the cores as applicable.

http://www.xilinx.com

82 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

Exporting Data

Captured data from an ILA core can be exported to a file, for future viewing or processing.
To export data, select File > Export. The Export Signals dialog box appears.

Three formats are available: value change dump (VCD) format, tab-delimited ASCII format, or
the Agilent Technologies Fast Binary Data Format (FBDF). To select a format, click its radio
button. To select the target core to export, select it from the core combo box.

Different sets of signals and buses are available for export. Use the Signals to Export combo
box to select all:

• Signals and buses for that particular core

• Signals and buses present in the waveform viewer for the core

• Signals and buses in the listing viewer for the core

• Signals and buses in the bus plot viewer for the core

To export the signals, click Export. A dialog box appears from which you can specify the
target directory and filename.

Closing and Exiting the Analyzer

To exit the Analyzer, select File > Exit. The current active project is automatically saved
upon exit.

Viewing Options

You can hide or display the split pane on the left of the Analyzer window and the Message
pane at the bottom of the window. By default, both are displayed the first time the
Analyzer is launched. To hide the project tree/signal browser split pane, uncheck it under
View > Project Tree. To hide the Message pane, uncheck it under View > Messages.

Setting up a Server Host Connection

The Analyzer client GUI application requires a connection to the Analyzer server
application that is running on either the local or a remote system. Select JTAG Chain >
Server Host Setting. This pops up the server settings dialog.

For local mode operation, the server Host setting should always be set to localhost. The
Port setting can be set to any unused TCP/IP port number. The default Port number is
50001.

Note: In local mode, the server starts automatically and you should leave the password setting

blank.

For remote mode operation, the server Host setting should be set to an IP address or
appropriate system name. The Port and Password settings should be set to the same port
that was used when the server was started on the remote system. In remote mode, the
connection is not actually established until you open a connection to a JTAG download
cable, as described in the subsequent sections of this document.

Note: In remote mode, the server needs to be started manually, as described in “Analyzer Server

Interface,” page 74.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 83

UG029 (v13.1) March 1, 2011

Analyzer Features

Opening a Parallel Cable Connection

To open a connection to the parallel cable, make sure the cable is connected to one of the
parallel ports on your computer. Select JTAG Chain > Xilinx Parallel Cable. This pops up
the Parallel Cable Selection configuration dialog box. You can choose the Parallel Cable III,
Parallel Cable IV, or have the Analyzer autodetect the cable type.

If the Parallel Cable IV or Auto Detect Cable Type option is selected, you can choose the
speed of the cable; the choices are 10 MHz, 5 MHz, 2.5 MHz (default), 1.25 MHz, or
625 KHz. Choose the speed that makes the most sense for the board under test. Type the
printer port name in the Port selection box (usually the default LPT1 is correct) and click
OK. If successful, the Analyzer queries the boundary scan chain to determine its
composition (see “Setting Up the Boundary Scan (JTAG) Chain,” page 85).

If the Analyzer returns the error message Failed to Open Communication Port,
verify that the cable is connected to the correct LPT port. If you have not installed the
Parallel Cable driver, follow the instructions in the ChipScope Pro software installation
program to install the required device driver software.

Opening a Platform Cable USB Connection

To open a connection to the Parallel Cable, make sure the cable is connected to one of the
parallel ports on your computer. Selecting the JTAG Chain > Xilinx Platform USB Cable
menu option pops up a dialog window.

Platform Cable USB Clock Speeds

You can choose the speed of the cable from any of the settings: 12 MHz, 6 MHz, 3 MHz
(default), 1.5 MHz, or 750 KHz. Choose the speed that makes the most sense for the board
under test.

Platform Cable USB Port Number

You can also choose the USB port from a selection of port enumerations in the range of
USB2<n>, where <n> is an integer value is 1 through 127. The default port setting is
USB21. The USB port enumeration number is based on the order in which the Platform
Cable USB download cables are plugged into USB ports of the system. For instance, the
first Platform Cable USB download cable plugged into the system is assigned the port
enumeration of USB21, the second cable is assigned USB22, and so on.

Note: The enumerations are not necessarily preserved when the system is power cycled. Also,

there is currently no way to identify a particular Platform Cable USB other than by physically plugging

the cables into the system in a particular order.

http://www.xilinx.com

84 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

Using Multiple Platform Cable USB Connections

To use the ChipScope Pro Analyzer with multiple cables, you need three things:

1. Multiple Xilinx JTAG cables connected to one machine

2. Multiple instances of the cs_server application running on one machine, each one
listening to a different port

3. Multiple instances of ChipScope Pro Analyzer running on that same machine, or a
different machine (via the remote server feature)

Connecting Multiple Xilinx JTAG Cables to One Machine

To interact with multiple JTAG cables connected to the same machine, you must first be
able to connect multiple Platform Cable USB, Parallel Cable III, or Parallel Cable IV cables
to the machine. For Platform Cable USB cables, you might need to use one or more USB
hubs depending on how many cables you need. For PC3/PC4, you may need one or more
parallel port extender cards.

Note: Currently, enumerations are not associated with a particular physical Platform Cable USB

cable. This means that rebooting your machine might result in different associations between

enumerations and physical cables. One work-around is to unplug all cables and re-plug them in the

order you wish for them to be enumerated.

Setting Up ChipScope Pro Analyzer to Use Multiple Instances of cs_server

Set up the ChipScope Pro Analyzer to use multiple cables first by starting multiple
instances of the cs_server.exe Windows application or cs_server.sh Linux
application on the same machine using different ports. For example, to start up two servers
on different ports on Linux, use:

cs_server.sh -port 50001
cs_server.sh -port 50002

Starting and Configuring Multiple Instances of ChipScope Pro Analyzer

Start and configure multiple ChipScope Pro Analyzer client instances (see Table 4-2). Each
instance of the Analyzer connects to a different cs_server and cable enumeration.

Table 4-2: Configuration of Multiple Client Instances

Analyzer Instance # Server Host Setting Platform Cable USB Port #

1 <IP Address>:50001 USB21

2 <IP Address>:50002 USB22

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 85

UG029 (v13.1) March 1, 2011

Analyzer Features

Opening a JTAG Chain Plug-in Connections

The Analyzer supports select JTAG chain plug-in connections that can be opened using the
JTAG Chain > Open Plugin menu option. Each JTAG chain plug-in has specific
parameters that can be entered into the Plug-in Parameters field of the Open Plug-in dialog
box (consult with the plug-in provider for details). Once the plug-in parameters are
entered, click OK to open a connection to the JTAG plug-in.

Polling the Auto Core Status

When the cores are armed, the interface cable queries the cores on a regular basis to
determine the status of the capture. If other programs are using the cable at the same time
as the Analyzer, it can often be beneficial to turn this polling off. This can be done in the
JTAG Chain menu by un-checking JTAG Chain > Auto Core Status Poll. If this option is
unchecked, when the Run or Trigger Immediate operation is performed, the Analyzer does
not query the cores automatically to determine the status.

Note that this does not completely disable communication with the cable; it only disables
the periodic polling when cores are armed. If one or more cores trigger after the polling has
been turned off, the capture buffer is not downloaded from the device and displayed in
any of the data viewer(s) until the Auto Core Status Poll option is turned on again.

Configuring the Target Device(s)

You can use the Analyzer software with one or more valid target devices. The first step is
to set up all the devices in the boundary scan chain.

Setting Up the Boundary Scan (JTAG) Chain

After the Analyzer has successfully communicated with a download cable, it
automatically queries the boundary scan (JTAG) chain to find its composition. All Xilinx
FPGA, CPLD, PROM, and System ACE™ devices are automatically detected. The entire
IDCODE can be verified for valid target devices. To view the chain composition, select
JTAG Chain > JTAG Chain Setup. A dialog box appears with all detected devices in order.

For devices that are not automatically detected, you must specify the IR (Instruction
Register) length to insure proper communication to the cores. This information can be
found in the BSDL file for the device. USERCODEs can be read out of the ChipScope Pro
target FPGA devices by selecting Read USERCODEs.

The Analyzer tool automatically keeps track of the test access port (TAP) state of the
devices in the JTAG chain, by default. If the Analyzer is used in conjunction with other
JTAG controllers (such as the System ACE CF controller or processor debug tools), then the
actual TAP state of the target devices can differ from the tracking copy of the Analyzer. In
this case, the Analyzer should always put the TAP controllers into a known state (for
example, the Run-Test/Idle state) before starting any JTAG transaction sequences. Clicking
on the Advanced button on the JTAG Chain Device Order dialog box reveals the
parameters that control the start and end states of JTAG transactions. Use the Start
transactions in Test-Logic/Reset, End in Run-Test/Idle selection if the JTAG chain is
shared with other JTAG controllers.

Device Configuration

The Analyzer can configure target FPGA devices using the following download cables in
JTAG mode only: Platform Cable USB, Parallel Cable III, Parallel Cable IV.

http://www.xilinx.com

86 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

If the target device is to be programmed using a download cable by way of the JTAG port,
select the Device menu, select the device you wish to configure, and select the Configure
menu option. Only valid target devices can be configured and are, therefore, the only
devices that have the Configure option available. Alternatively, you can right-click on the
device in the project tree to get the same menu as Device.

After selecting the configuration mode, the JTAG Configuration dialog box opens. This
dialog box has two sections: the first for selection of the JTAG device configuration file and
the second for selection of a design-level CDC file. To select the configuration file to
download into the device, click on Select New File in the JTAG Configuration section. The
Open Configuration File dialog box opens. Using the browser, select the device
configuration file you want to use to configure the target device. Once you locate and select
the proper BIT file, click Open to return to the JTAG Configuration dialog box. You can also
clear your existing project settings before configuring the device by selecting the Clean
previous project setting check box.

Note: Selecting the Clean previous project setting check box removes all signal names, buses, and

other settings from your project. This operation cannot be undone.

Note: It is important to select a BIT file generated with the proper BitGen settings. Specifically, make

sure the -g StartupClk:JtagClk option is used in BitGen for JTAG configuration to be successful.

To select a design-level CDC file that was generated either by the Core Inserter or
PlanAhead™ tools, click on the Import Design-level CDC File check box, then click on
Select New File in the Design-level CDC File section. The Open CDC File dialog box
opens. Using the browser, select the CDC file you want to use with the target device. Once
you locate and select the proper CDC file, click Open to return to the JTAG Configuration
dialog box. You can also automatically create buses from the signal names found in the
CDC file by selecting the Auto-create buses check box. The Analyzer uses an algorithm to
recognize bus elements where the element number is found at the end of the signal name
and is surrounded by (), [], or {} or is separated from the base name by an underscore.

Note: The CDC file is automatically selected if a design-level CDC file is found in the same directory

as the configuration BIT file.

Once the BIT and optional CDC files have been selected, click OK to configure the device.

Observing Configuration Progress

While the device is being configured, the status of the configuration is displayed at the
bottom of the Analyzer window. If the DONE status is not displayed, a dialog box opens,
explaining the problem encountered during configuration. If the download is successful,
the target device is automatically queried for ChipScope Pro cores, and the project tree is
updated with the number of cores present. A folder is created for each core unit found and
various leaf nodes appear under each ChipScope Pro unit.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 87

UG029 (v13.1) March 1, 2011

Analyzer Features

Displaying JTAG User and ID Codes

One method of verifying that the target device was configured correctly is to upload the
device and user-defined ID codes from the target device. The user-defined ID code is the
8-digit hexadecimal code that can be set using the BitGen option -g UserID.

To upload and display the user-defined ID code for a particular device, select the Show
USERCODE option from the Device menu for a particular device. Select the Show
IDCODE option from the Device menu to display the fixed device ID code for a particular
device. The results of these queries are displayed in the Messages pane. The IDCODE and
USERCODE are also displayed in the JTAG Chain Setup dialog box (JTAG Chain > JTAG
Chain Setup).

Displaying Configuration Status Information

The 32-bit configuration status register contains information such as status of the
configuration pins and other internal signals. If configuration problems occur, select Show
Configuration Status from the Device menu for a particular target device to display this
information in the messages pane.

Note: All target devices contain two internal registers that contain status information: 1) the

Configuration Status register (32 bits) and 2) the JTAG Instruction register (variable length,

depending on the device). Only valid target devices have a Configuration Status register. Although all

devices have a JTAG Instruction register that can be read, the implementation of that particular

device determines whether any status information is present. Refer to the configuration

documentation for the particular FPGA device for information on the definition of each specific

configuration status bit.

For some devices, the JTAG Instruction register also contains status information. Use
Device > Show Instruction Register to display this information in the messages pane for
any device in the JTAG chain.

Trigger Setup Window

To set up the trigger for an ILA core, select Window > New Unit Windows and the core
desired. A dialog box is displayed for that core, and you can select the Trigger Setup,
Waveform, Listing, Bus Plot and/or Console window(s) in any combination. Windows
cannot be closed from this dialog box.

The same operation can by achieved by double-clicking on the Trigger Setup leaf node in
the project tree, or by right-clicking on the Trigger Setup leaf node and selecting Open
Trigger Setup.

Each ILA core has its own Trigger Setup window which provides a graphical interface for
you to set up triggers. The trigger mechanism inside each core can be modified at run-time
without having to re-compile the design. The following sections describe how to modify
the three components of the trigger mechanism:

• Match Functions: Defines the match or comparison value for each match unit

• Trigger Conditions: Defines the overall trigger condition based on a binary equation or
sequence of one or more match functions

• Capture Settings: Defines how many samples to capture, how many capture windows,
and the position of the trigger in those windows

Each component is expandable and collapsible in the Trigger Setup window. To expand,
click on the desired tab/button at the bottom of the window. To collapse, click on the
tab/button to the left of the expanded section you wish to collapse.

http://www.xilinx.com

88 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

Capture Settings

The capture settings section of the Trigger Setup window defines the number of windows,
and where the trigger event occurs in each window. A window is a contiguous sequence of
samples containing one (and only one) trigger event. If an invalid number is entered for
any parameter, the text field turns red and an error displays in the Messages pane.

Type

The Type combo box in the capture settings defines the type of windows to use. If Window
is selected, the number of samples in each window must be a power of two. However, the
trigger can be in any position in the window. If N Samples is selected, the buffer has as
many windows as possible with the defined samples per trigger. The trigger is always the
first sample in the window if N Samples is selected.

Windows

The Windows text field is only available when Window is selected in the Type combo box.
The number of windows is specified in this field and can be any positive integer from 1 to
the depth of the capture buffer.

Depth

The Depth combo box is only available when Window is selected in the Type combo box.
The Depth combo box defines the depth of each capture window. It is automatically
populated with valid selections when values are typed into the Windows text field. Only
powers of two are available.

Note: When the overall trigger condition consists of at least one match unit function that has a

counter that is set to either Occurring in at least n cycles or Lasting for at least n consecutive

cycles, the Window Depth or Samples Per Trigger setting cannot be less than eight samples. This is

due to the pipelined nature of the trigger logic inside the ILA core.

Position

The Position text field is only available when Window is selected in the Type combo box.
The Position field defines the position of the trigger in each window. Valid values are
integers from 0 to the depth of the capture buffer minus 1.

Samples Per Trigger

The Sample Per Trigger text field is only available when N Samples is selected in the Type
combo box. Samples per trigger defines how many samples to capture once the trigger
condition occurs. Valid values are any positive integer from 1 to the depth of the capture
buffer. The trigger mark always appears as sample 0 in the window. As many sample
windows as possible are captured, given the overall sample depth.

Note: When occurring in at least n cycles or occurring for at least n consecutive cycles is selected

for a match unit, and that match unit is a part of the overall trigger condition, the Window Depth or

Samples Per Trigger cannot be less than 8. This is due to pipeline effects inside the ILA core.

Storage Qualification Condition

The storage qualification condition is a Boolean combination of events that are detected by the
match unit comparators that are subsequently attached to the trigger ports of the core. The
storage qualification condition evaluates trigger port match unit events to decide whether
or not to capture and store each individual data sample. The trigger and storage
qualification conditions can be used together to define when to start (or finish) the capture
process and what data is captured, respectively.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 89

UG029 (v13.1) March 1, 2011

Analyzer Features

The Storage Condition dialog box has a table of all the match units. Each match unit
occupies a row in the table. The Enable column indicates if that match unit is part of the
trigger condition. The Negate column indicates if that match unit should be individually
negated (Boolean NOT) in the trigger condition.

The storage qualification condition can be configured to capture all data, or it can be set up
to capture data that satisfies a Boolean AND or OR combination of all the enabled match
units. The overall Boolean equation can also be negated, selectable using the Negate
Whole Equation checkbox above the table. The resulting equation appears in the Storage
Condition Equation pane at the bottom of the window.

Match Functions

A match function is a definition of a trigger value for a single match unit. All the match
functions are defined in the Match Functions section of the Trigger Setup window. One or
more match functions can be defined in an equation or sequence in the Trigger Conditions
section to specify the overall trigger condition of the core.

Match Unit

The Match Unit field indicates which match unit the function applies to. Clicking on the
+ symbol next to the match unit number (or double clicking on the field) expands that
match unit, so it is displayed as individual trigger port bits in at tree structure. Individual
values for each bit can then be viewed and set.

Function

The Function combo box selects which type of comparison is done. Only those
comparators that are allowed for that match unit are listed.

Value

The Value field selects exactly which trigger value to apply to a specific match unit. It is
displayed according to the Radix field. Double-clicking on the field makes it editable. Place
the cursor before the value you want to change, and type a valid trigger character to
overwrite that character. Or, select the field by single-clicking, and proceed by typing the
trigger characters. Valid characters for the different radices are:

• Hex: X, 0-9, and A-F. X indicates that all four bits of that nibble are don’t cares. The “?”
character indicates that the nibble consists of a mixture of 1s, 0s, Xs, Rs, Fs, and Bs
(where appropriate)

• Octal: X, ?, 0-7

• Binary: X (don’t care), 0, 1, R (rising), F (falling), B (either transition), and N (no
transitions). R, F, B, and N are only available if the match unit can detect transitions
(Basic w/edges, Extended w/edges, Range w/edges)

• Unsigned: 0-9 (0 to 2n-1 for an n-bit bus)

• Signed: 0-9 (-2n-1 to 2n-1 - 1 for an n-bit bus)

When Bin is chosen as the radix, positioning the mouse pointer over a specific character
displays a tool-tip, indicating the name and position of that bit.

Radix

The Radix combo box selects which radix to display in the Value field. Values are Hex,
Octal, Bin, Signed (not allowed for In Range and Out of Range comparisons), and
Unsigned.

http://www.xilinx.com

90 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

Counter

If the match counter is present for a particular match unit, the text in the Counter column
is black. If the counter is not present in the core, the text in that column is grayed out. To
change the value of the match counter, click the counter cell to bring up the match unit
counter dialog box.

The Counter field selects the number of match function events that must occur for the
function to be satisfied.

• If occurring in exactly n clock cycles is selected, then n contiguous or n noncontiguous
events satisfies the match function counter condition.

• If occurring in at least n clock cycles is selected, then n contiguous or n noncontiguous
events satisfies the match function counter condition, and it remains satisfied until the
overall trigger condition is met.

• If occurring for at least n consecutive cycles is selected, then n contiguous events
satisfies the match function counter condition, it remains satisfied until the overall
trigger condition is met or the match function value is no longer satisfied.

Note: When the overall trigger condition consists of at least one match unit function that has a

counter set to either Occurring in at least n cycles or Lasting for at least n consecutive cycles,

the Window Depth or Samples Per Trigger setting cannot be less than eight samples. This is due to

the pipelined nature of the trigger logic inside the ILA core.

Trigger Conditions

A trigger condition is a Boolean equation or sequence of one or more match functions. The
core captures data based on the trigger condition. More than one trigger condition can be
defined. To add a new trigger condition, click the Add button. To delete a trigger condition,
highlight any cell in the row and click Del. Although many trigger conditions can be
defined for a single core, only one trigger condition can be chosen (active) at any one time.

Active

The Active field is a radio button that indicates which trigger condition is the currently
active one.

Trigger Condition Name Field

The Trigger Condition Name field provides a mnemonic for a particular trigger condition.
Trigger Condition n is used by default.

Trigger Condition Equation

The Condition Equation field displays the current Boolean equation or state sequence of
match functions that make up the overall trigger condition. By default, a logical AND of all
the match functions present (one match function for each match unit) is the trigger
condition. To change the trigger condition, click on the Condition Equation field, which
brings up the Trigger Condition dialog box.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 91

UG029 (v13.1) March 1, 2011

Analyzer Features

Trigger Condition Editor Dialog Box

If a trigger sequencer is present in the core, the Trigger Condition dialog has two tabs:
Boolean and Sequencer. When the Boolean tab is active, the trigger condition is a Boolean
equation of the available match units. When the Sequencer tab is active, the trigger
condition is a state machine, where each state transition is triggered by a match function
being satisfied.

The Boolean tab of the Trigger Condition dialog box has a table of all the match units.
Each match unit occupies a row in the table. The Enable column indicates if that match unit
is part of the trigger condition. The Negate column indicates if that match unit should be
individually negated (Boolean NOT) in the trigger condition.

All the enabled match units can be combined in a Boolean AND or OR operation,
selectable using the radio buttons below the match unit table. The overall equation can also
be negated, selectable using the Negate checkbox below the table. The resulting equation
appears in the Trigger Condition Equation pane at the bottom of the window.

The Sequencer tab of the Trigger Condition dialog box has a combo box from which you
can select the number of levels in the trigger sequence and a table listing all the levels. The
sequencer begins at Level 1 and proceeds to Level 2 when the match unit specified in
Level 1 has been satisfied. The number of levels available is a parameter of the core, up to
a maximum of 16 levels. Each level can look for a match unit being satisfied or not satisfied.
To negate a level (for instance, to look for the absence of a particular match function) check
the Negate cell for that level. A representation of the sequence appears in the Trigger
Condition Equation pane at the bottom of the window.

A trigger sequence defined as M0 => M1 => M3 can be satisfied by the eventual occurrence
of match unit events M0 followed by M1 followed by M3 (with any occurrence or non-
occurrence of events in between). Enable the Use Contiguous Match Events Only
checkbox if you desire the trigger sequence to be satisfied only upon contiguous
transitions from M0 to M1 to M3 (and not, for instance, the transitions of M0 followed by
M1 followed by !M1 followed by M3).

Output Enable

If the trigger output is present in the core, a column named Output Enable becomes
available. This cell is a combo box that allows you to select which type of signal is driven
by the trig_out port of the ILA core.

• Disabled: The output is a constant 0.

• Pulse (High): The output is a single clock cycle pulse of logic 1, 10 cycles after the
trigger event.

• Pulse (Low): The output is a single clock cycle pulse of logic 0, 10 cycles after the
trigger event.

• Level (High): The output transitions from a 0 to a 1, 10 cycles after the trigger event.

• Level (Low): The output transitions from a 1 to a 0, 10 cycles after the trigger event.

http://www.xilinx.com

92 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

Saving and Recalling Trigger Setups

All the information in the Trigger Setup window can be saved to a file for recall later with
the current project or other projects. To save the current trigger settings, select Trigger
Setup > Save Trigger Setup. A Save Trigger Setup As File dialog box opens, and the
trigger settings can be saved in any location, with a .ctj extension. To load a trigger settings
file into the current project, select Trigger Setup > Read Trigger Setup. A Read Trigger
Setup file dialog box opens, and you can navigate to the folder where the trigger settings
file (with a.ctj extension) exists. Once the trigger setting file is chosen, select Open, and
those settings are loaded into the Trigger Settings window.

Running/Arming the Trigger

After setting up the trigger, select Trigger Setup > Run to arm it. The trigger stays armed
until the trigger condition is satisfied or you disarm the trigger. Once the trigger condition
is satisfied, the core captures data according to the capture settings. When the sample
buffer is full, the core stops capturing data. The data is then uploaded from the core and is
displayed in the Waveform and/or Listing windows.

To force the trigger, select Trigger Setup > Trigger Immediate. This causes the unit to
ignore the trigger and storage qualification conditions and trigger immediately using a
single sample window with the trigger position set to sample 0. After the sample buffer
fills with data, the trigger disarms and the captured data appears in the Waveform and/or
Listing window(s).

Stopping/Disarming the Trigger

To disarm the trigger, select Trigger Setup > Stop Acquisition. Subsequent selections of
Trigger Setup > Run cause the trigger to re-arm.

Note: Stopping the data acquisition disarms the active trigger and any data captured up to that point

in time is lost.

Trigger Run Modes

The Analyzer tool supports three trigger run modes for the ILA core:

• Single

• Repetitive

• Startup

The trigger run mode is selected by using either the Trigger Setup > Trigger Run Mode
menu option or the Trigger Run Mode toolbar button (enabled only when the Trigger
Setup window is active).

Single Trigger Run Mode

The single trigger run mode is used to arm the ILA core trigger and capture data as
specified in the Trigger Setup window, upload and display the captured data, and stop.
After stopping, only your interaction causes the trigger to become re-armed to repeat the
process.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 93

UG029 (v13.1) March 1, 2011

Analyzer Features

Repetitive Trigger Run Mode

The repetitive trigger run mode is similar to the single trigger run mode, with one
following exception:

In repetitive trigger run mode, instead of stopping after triggering and
uploading/displaying captured data, the Analyzer automatically re-arms the ILA core
trigger. The captured data from the previous trigger event continues to be displayed in the
data viewers (waveform, listing, bus plot) as long as the subsequent trigger has not
occurred. Once the subsequent trigger occurs and the data capture buffer becomes full, the
data viewers update to show this new data. This process repeats until the you manually
stop the trigger.

Repetitive Trigger Logging

The captured data from each repetitive trigger run can be logged to a file. To do this, select
Trigger Setup > Setup Repetitive Trigger Logging to open the setup dialog window. Use
the Browse button to select the location for the log files. Each file created by the Analyzer
includes a sequence number that corresponds to the repetitive trigger run iteration. Use
the Overwrite any existing files check box to overwrite previous data log files.

The format for the data log files can be set to one of three available formats: value change
dump (VCD) format, tab-delimited text format (ASCII), or the Agilent Technologies Fast
Binary Data Format (FBDF). To select a format, click its radio button.

Use the Signals to Export combo box to select the set of signals and/or buses to export. The
signals that can be exported include all:

• Signals and buses for that particular core

• Signals and buses present in the waveform viewer for the core

• Signals and buses in the listing viewer for the core

• Signals and buses in the bus plot viewer for the core

Logging or exporting of signals during Single Trigger Run Mode is described in the Exporting Data

section of this user guide.

Startup Trigger Run Mode

The startup trigger run mode allows you to set up the ILA core to trigger on events that
occur after FPGA device startup without having to use the Analyzer tool to arm the ILA
core. Using the Startup Trigger Run Mode requires you to follow three steps:

1. Specify the trigger settings and save the startup trigger setup (CTJ) and design
constraint (UCF) files.

2. Re-implement your design with the startup trigger setup design constraint file.

3. Use the Analyzer in Startup Trigger Run Mode to configure the device then upload
and display the data that was captured after the trigger occurred.

To specify the trigger settings for use with trigger run mode, you must first set the Trigger
Run Mode to Single. You then set up the match functions, trigger condition, and capture
setup to your desired settings. Once you have your trigger settings the way you want
them, you use the Trigger Setup > Save Trigger Startup Files menu option to specify the
required files:

• The NGD design file that corresponds to the design that is currently running in the
FPGA device under test.

If using Project Navigator, the NGD design file is typically found in the same directory
as the BIT file you used to configure the FPGA device under test.

http://www.xilinx.com

94 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

If using PlanAhead, the location of the NGD design file is typically found under your
project directory location in the sub-directory
<project>.runs/<implementation run name>(where <project> is called
"project_1" by default, and <implementation run name> is called "impl_1" by
default).

• CTJ file that contains your trigger settings.

• A UCF file that contains ILA core initialization settings that correspond to your
desired trigger settings.

Note: If you use PlanAhead to implement your design, make sure you do not save your CTJ or UCF

in the implementation run directory since PlanAhead deletes all files in this directory before re-

implementing your design.

Once you save your trigger startup files, the Analyzer automatically converts the CTJ
trigger settings into UCF design constraints that must be applied to your design. This
requires you to add this new UCF file to your project and re-implement your design using
either Project Navigator or PlanAhead.

Note: The startup trigger UCF file should be added to your project in addition to your original UCF

design constraint files. Only one startup trigger UCF file per ILA core should be added to your design.

After you re-implement your design and create a new BIT file, configure the device with
this BIT file using the Analyzer tool. To see if your startup trigger condition has occurred,
first change the Trigger Run Mode to Startup. The software prompts you to specify the
startup trigger files that were used during the implementation process to create the BIT
file. In Startup Trigger Run Mode, the Apply Settings and Arm Trigger and Stop
Acquisition toolbar buttons are highlighted in yellow, and the Trigger Immediate button
is disabled. Also, the Trigger Setup window is disabled to prevent inadvertent changes to
the trigger settings that do not match those saved in the BIT file.

Click the Run toolbar button to check the status of the ILA core. If the ILA core has
triggered, and the data capture buffer is full, the Analyzer uploads and displays the
captured data. If the ILA core has not triggered or if it has not completely filled the data
capture buffer, the ILA core status is displayed at the bottom of the trigger setup window.

Note: The startup trigger mode is armed immediately only after the FPGA device emerges from the

"startup" state. To re-arm the trigger, you would need to re-configure the device. To change the

startup trigger settings, you must change the Trigger Run Mode to Single and repeat the steps

described in this section.

Trigger and Capture Status

The status of the trigger logic for each ILA core is shown in the status bar at the bottom of
the Trigger Setup window corresponding to the core. The following information is shown:

• Trigger state such as “Waiting for trigger”, “Capture started”, or “Slow or stopped
clock” is shown in the lower-left status bar.

• Capture buffer state indicating how many samples have been captured is also shown
in the lower-left status bar.

• Trigger modes, such as SINGLE RUN, REPETITIVE RUN, and IDLE are shown in
the lower-right status box.

An icon that changes to indicate the state of the trigger and capture logic for the ILA core
is also provided.

• A spinning, partially filled pie icon indicates that the trigger and/or capture logic is
active

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 95

UG029 (v13.1) March 1, 2011

Analyzer Features

• A solidly filled pie icon indicates the capture buffer is full and the trigger logic is idle.

The trigger status icon also appears in the title bar of the minimized trigger setup window.
This is useful for monitoring the trigger status of multiple ILA cores.

Detailed trigger and capture status information also appears in the Messages pane (or
console window).

Waveform Window

To view the waveform for a particular ILA core, select Window > New Unit Windows, and
the core desired. A dialog box appears for that ChipScope Pro core unit, and you can select
the Trigger Setup, Waveform, Listing, and/or Bus Plot window, or any combination.
Windows cannot be closed from this dialog box. The same operation can be achieved by
double-clicking on the Waveform leaf node in the project tree, or right-clicking on the
Waveform leaf node and selecting Open Waveform.

The Waveform window displays the sample buffer as a waveform display, similar to many
modern simulators and logic analyzers. All signal browser operations can also be
performed in the waveform window, such as bus creation, radix selection, and renaming.
To perform a signal operation, right-click on a signal or bus in the Bus/Signal column.

Bus and Signal Reordering

Buses and signals can be reordered in the Waveform window. Select one or more signals
and buses, and drag it to its new location. A red line shows the potential drop location.

Note: Signals can be moved within a bus by first selecting one or more signals within the bus, then

by using the Alt-UpArrow and Alt-DownArrow keystroke combinations.

Cut/Copy/Paste/Delete Signals and Buses

Signals and buses can be cut, copied, pasted, or deleted using right-click menus. Select one
or more signals and/or buses, right click on a selected signal or bus, and select the
operation desired. Alternatively, the standard Windows key combinations are available
(Ctrl+X for cut, Ctrl+C for copy, Ctrl+V for paste, Del for delete).

Zooming In and Out

Select Waveform > Zoom > Zoom In to zoom in to the center of the waveform display, or
right-click in the waveform section and select Zoom > Zoom In. To zoom out from a
waveform, use Waveform > Zoom > Zoom Out, or right-click in the waveform and select
Zoom > Zoom Out.

To view the entire waveform display select Waveform > Zoom > Zoom Fit, or right click in
the waveform and select Zoom > Zoom Fit.

To zoom into a specific area, just use the left mouse button to drag a rectangle in the
waveform display. Once the drag is complete, a popup appears. Select Zoom Area to
perform the zoom.

To zoom in to the space marked by the X and O cursors, select Waveform > Zoom > Zoom
X, O, or right-click in the waveform and select Zoom > Zoom X, O. Other zoom features
include zooming to the previous zoom factor by selecting Zoom > Zoom Previous,
zooming to the next zoom factor by selecting Zoom > Zoom Forward, and zoom to a
specific range of samples by selecting Zoom > Zoom Sample.

http://www.xilinx.com

96 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

Centering the Waveform

There are two ways to center the waveform display around a specific point:

• Select Waveform > Go To, and center the waveform display around the X and O
markers as well as the previous or next trigger position

• Right-click in the waveform and select Go To.

Cursors

Two cursors are available in the Waveform window: X and O. To place a cursor, right-click
anywhere in the waveform section, and select Place X Cursor or Place O Cursor. A colored
vertical line appears, indicating the position of the cursor. Additionally, the status of all the
signals and buses at that point is displayed in the X or O column. The position of both
cursors, and the difference in position of the cursors appears at the bottom of the
Waveform window. Both cursors are initially placed at sample 0.

To move a cursor, either right-click in a new location in the waveform, or drag the cursor
using the handles (X or O labels) in the waveform header, or drag the cursor-line itself in
the waveform. Special drag icons appear when the mouse pointer is over the cursor.

Sample Display Numbering

The horizontal axis of the waveform can be displayed as the sample number relative to the
sample window (default) or by the overall sample number in the buffer. To display the
sample number starting over at 0 for each window, select Ruler > Sample # in Window in
the right-click menu. To display the sample number as an overall sample count in the
buffer, select Ruler > Sample # in Buffer in the right-click menu. Select Ruler > Negative
Time/Samples in the right-click menu to toggle between a negative and/or positive range
of samples.

Displaying Markers

A static red vertical bar is displayed at each trigger position. A static black bar is displayed
between two windows to indicate a period of time where no samples were captured. To not
display either of these markers, un-check them on the right-click menu under Markers >
Window Markers or Markers > Trigger Markers.

Data Capture Time Stamp

A time stamp indicating the date and time that the captured data was uploaded and
displayed is shown in the lower-left corner of the Waveform window. If repetitive trigger
run mode is enabled, a sequence number is also shown indicating how many times the ILA
core has triggered and uploaded data successfully.

Listing Window

To view the Listing window for a particular ILA core, select Window > New Unit
Windows, and the core desired. A dialog box displays for that ChipScope Pro Unit, in
which you can select any combination of Trigger Setup, Waveform, Listing, and/or Bus
Plot windows. Windows cannot be closed from this dialog box. The same operation can be
achieved by double-clicking on the Listing leaf node in the project tree, or right-clicking on
the Listing leaf node and selecting Open Listing.

The Listing window displays the sample buffer as a list of values in a table. Individual
signals and buses are columns in the table. All signal browser operations can also be

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 97

UG029 (v13.1) March 1, 2011

Analyzer Features

performed in the listing window, such as bus creation, radix selection, and renaming. To
perform a signal operation, right-click on a signal or bus in the column heading.

Bus and Signal Reordering

Buses and signals can be reordered in the Listing window. Simply click on a signal or bus
heading in the table, and drag it to a new location.

Removing Signals/Buses

Individual signals and buses can be removed from the Listing window by right-clicking
anywhere in the signal column and selecting Remove. If you select Remove All , all signals
and buses are removed.

Cursors

Cursors are available in the Listing window the same way as in the Waveform window. To
place a cursor, right-click in the data section of the Listing window, and select either Place
X Cursor or Place O Cursor. That color of the line in the table is the same as the color of the
cursor. To move the cursor to a different position in the table, right-click in the new location
and repeat operation as before, or right-click on the cursor handle in the first column, and
drag it to the new location.

Go to Cursors

To automatically scroll the listing view to a cursor, right-click and select Go To > Go To X
Cursor or Go To > Go To O Cursor.

Bus Plot Window

To view the Bus Plot window for a particular set of ILA buses, select Window > New Unit
Windows and the core desired. A dialog box displays for that ChipScope Pro Unit, on
which you can select any combination of Trigger Setup, Waveform, Listing, and /or Bus
Plot window, or any combination. Windows cannot be closed from this dialog box. The
same operation can be achieved by double-clicking on the Bus Plot in the project tree, or
right-clicking on Bus Plot and selecting Open Bus Plot.

Any buses for a particular core can be displayed in the Bus Plot window. The Bus Plot
window displays buses as a graph of the values for a bus over time, or the values of one
bus as opposed to another’s.

Plot Type

Plot types are chosen in the upper left group of radio buttons. There are two plot types:
data vs. time and data vs. data. When data vs. time is chosen, any number of buses can be
displayed at once. When data vs. data is chosen, two buses must be selected and:

• Each point in the x coordinate of the plot equals the value of one of the buses at a
particular time.

• The y coordinate equals the value of the other bus at the same time.

Each bus is displayed in a unique color and according to its radix. (Hexadecimal, binary,
octal, token and ASCII radices are displayed as unsigned decimal values with scale factor
= 1.0, precision = 0.)

http://www.xilinx.com

98 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

Display Type

The bus plot can be displayed using lines, points, or lines and points. The display type
affects all bus values being displayed.

Bus Selection

The bus selection control allows you to select the individual buses to plot (in data vs. time
mode) or the buses to plot against one another (in data vs. data mode). The color of each
bus can be changed by clicking on the colored button next to the bus name.

Min/Max

The Min/Max display is used to show the maximum and minimum values of the axis in
the current view of the bus plot.

Cursor Tracking

The X: and Y: displays at the bottom of the bus plot indicate the current X and Y
coordinates of the mouse cursor when it is present in the bus plot view.

VIO Console Window

To open the Console window for a VIO core, select Window > New Unit Windows, and
the core desired. A dialog box is displayed for that ChipScope Pro Unit, and you can select
the Console window. (Windows cannot be closed from this dialog box.)

The Console window is for VIO cores only. To open the Console for a particular VIO core,
double-click on the Console leaf node in the project tree. Here, you can see the status and
activity of the VIO core input signals and modify the status of the VIO core output signals.

In the VIO Console window, you can perform all signal browser operations, such as bus
creation, radix selection, and renaming, by right-clicking on a signal or bus in the column
heading. The VIO Console window has a table with two columns: Bus/Signal and Value.

Bus/Signal Column

The Bus/Signal column contains the name of the bus or signal in the VIO core. If it is a bus,
it can be expanded or contracted to view or hide the constituent signals in the bus. In
addition to all the operations available in the signal manager, two additional parameters
can be set through the right-click menus: type and activity persistence.

VIO Bus/Signal Type

The signal type determines how a signal is displayed in the Value column of the VIO
console. Different types are available depending on the type of VIO signal:

• VIO input signals have the following display types:

− Text: ASCII characters

− LEDs

- Choose between red, blue, and green LEDs

- Either active-High or active-Low

• VIO input buses have only one valid display type: Text

• VIO output signals have the following control types:

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 99

UG029 (v13.1) March 1, 2011

Analyzer Features

− Text: ASCII text field

− Push button (either active-High or active-Low)

− Toggle button

− Pulse train (synchronous outputs only)

− Single pulse (synchronous outputs only)

• VIO output buses have two valid control types:

− Text

− Pulse train (synchronous output buses only)

VIO Bus/Signal Activity Persistence

The persistence of a signal indicates how long the activity is displayed in the Value column
(see “Value Column,” page 99 for a description of signal activity).

If the persistence is:

• Infinite: The activity is displayed in the column forever.

• Long: The activity is displayed in the column for 80 times the sample period

• Short: The activity is displayed in the column for 8 times the sample period

When the time limit on the persistence expires, a new activity is displayed. If no activity
occurred in the last sample cycle, no activity is displayed in the Value column.

Bus and Signal Reordering

Buses and signals can be reordered in the Waveform window. Click on a signal or bus, and
drag it to its new location. A red line then appears in the Bus/Signal column indicating the
potential drop location.

Cut/Copy/Paste/Delete Signals and Buses

Individual signals and buses can be cut, copied, pasted, or deleted using right-click menus.
Either right-click on a signal or bus and select the operation desired, or use the standard
Windows key combinations (Ctrl+X for cut, Ctrl+C for copy, Ctrl+V for paste, Del for
delete).

Value Column

The Value column displays the current value of each of the signals in the console. In the
case of VIO core inputs, those cells are non-editable. Buses are displayed according to their
selected radix. The VIO core inputs are updated periodically by default, according to a
drop down combo box at the bottom of the console. Each of the VIO core inputs captures,
along with the current value of the signal, activity information about the signal since the
last time the input was queried. At high design speeds, it is possible for a signal to be
sampled as a 0, then have the signal transition from a 0 to a 1, then back to a 0 again before
the signal is sampled again.

In the case of synchronous inputs, the activity is also detected with respect to the design
clock. This can be useful in detecting glitches. If a 0 to 1 transition is detected, an up arrow
appears alongside the value. If a 1 to 0 transition is detected, a down arrow appears. If both
are detected, a two-headed arrow is displayed. The length of time the activity is displayed
in the table is called the persistence. The persistence is also individually selectable via the
right-click menu.

http://www.xilinx.com

100 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

Note: The activity arrow is displayed in black if the activity is synchronous and red if it is

asynchronous.

You can choose the VIO signal/bus value type by right-clicking on the signal or bus and
selecting the Type menu choice.

Text Field

When the Text Field type is selected, a text field is available for input using only the
following valid characters:

• 0 and 1 for individual signals and binary buses

• 0-9, A-F for hex buses

• 0-7 for octal buses

• Valid signed and unsigned integers

Push Button

The Push Button type simulates an actual push button on a PCB. The inactive value is set
when the button is not pressed in (0 for active-High, 1 for active-Low). As long as the
button is pressed in, the active value is output from the VIO core.

Toggle Button

The Toggle Button type switches between a 1 and a 0 with a single click.

Pulse Train (Synchronous outputs only)

The Pulse Train output type provides a control for synchronous outputs. A pulse train is a
16-cycle train of 1’s and 0’s that you define. To edit the pulse train, click Edit. This brings
up the Pulse Train dialog box. One text field is available for each cycle in the pulse train.
The text fields are populated by default according to the last value of the bus or signal. For
buses, the fields are always displayed in binary to allow explicit control over each of the
individual signals.

When Run is clicked, the pulse train is executed one time. This allows fine control over the
output with respect to the design clock.

Single Pulse (Synchronous Outputs Only)

The Signal Pulse control is a special kind of push button. When the button is pressed,
instead of the core driving a constant active value for the duration of the button being
pressed, a pulse train with a single high cycle is executed exactly once.

VIO Core Menu and Toolbar Controls

When the VIO console is in focus, the VIO core-specific menu and toolbar controls can be
used to change the behavior of the VIO core inputs or outputs, as applicable. The toolbar
controls are described from left-to-right in the following sections.

JTAG Scan Rate

The JTAG Scan Rate at which the VIO core inputs are read is selectable via a combo box.
The default scan rate is 250 ms. You can also set the sample period to 500 ms, 1s, 2s, or
Manual Scan. When Manual Scan is chosen, the Sample Once (S!) button becomes
enabled. At that point, the VIO core inputs are only read by pressing the Sample Once
toolbar button or by selecting the VIO > Sample Once menu option.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 101

UG029 (v13.1) March 1, 2011

Analyzer Features

Update Static Outputs

By default, when one VIO core output is changed, information is immediately sent to the
VIO core to set up that particular output. To update all non-pulse train outputs at once,
click Update Static Outputs (U!) toolbar button or select the VIO > Update Static Outputs
menu option.

Reset All Outputs

To reset all outputs to their default state (0 for text fields and toggle buttons, all 0 pulse
train for pulse trains) click the Reset All Outputs toolbar button or select the VIO > Reset
All Outputs menu option.

Clear All Activity

At some point, it might be desirable to reset the activity display for all VIO core inputs. To
do so, press the Clear All Activity toolbar button or select the VIO > Clear All Activity
menu option. All input activity is reset, regardless of the selected persistence.

System Monitor

Virtex®-5 and Virtex-6 devices include a feature called a System Monitor. This feature is
built around a 10-bit, 200-kSPS (kilo samples per second) analog-to-digital (ADC)
converter. When combined with a number of on-chip sensors, the ADC can measure FPGA
physical operating parameters, including on-chip power supply voltages and die
temperature. For more information, see Virtex-5 FPGA System Monitor User Guide [See
Reference 21, p. 227] and Virtex-6 FPGA System Monitor User Guide [See Reference 22, p.
227].

The Analyzer provides real-time JTAG access to the on-chip voltage and temperature
sensors of the System Monitor primitive. All the on-chip sensors are available before and
after the Virtex-5 or Virtex-6 device has been configured with a valid bitstream. The System
Monitor functionality does not require that you instantiate a System Monitor primitive
block into your design. The only requirement is that the System Monitor-specific pins of
the Virtex-5 device are properly connected on the system board.

In the Analyzer project tree, each Virtex-5 and Virtex-6 device in the JTAG chain has a
System Monitor Console node. Right-clicking on the System Monitor node in the project
tree shows an option for opening the System Monitor viewer. Left-clicking on the System
Monitor node in the project tree shows the various sensors in the signal browser. In the
signal (or sensor) browser, you can rename or change the display units of the various
sensors.

System Monitor Console

Each System Monitor sensor value can be displayed in a System Monitor Console history
window or written to a log file. You can enable the following display values for each
sensor:

• Current value that is read directly from the System Monitor sensor

• Device maximum and minimum values that are read directly from the System
Monitor sensor peak detectors

• Sampled maximum and minimum values that are derived from all sensor values that
have been collected by the Analyzer since opening a JTAG cable connection (or the
last System Monitor reset)

http://www.xilinx.com

102 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

• Windowed average, maximum, and minimum values that are calculated over a
sliding window of sensor values that have been collected by the Analyzer since
opening a JTAG cable connection (or the last System Monitor reset)

The sampled and windowed values that are calculated by the System Monitor viewer can be
reset by clicking on the Reset button on the toolbar.

Note: If the System Monitor is not reporting valid sensor data, the System Monitor Console displays

an Invalid Data banner message across the window.

System Monitor Console Toolbar

The System Monitor Console toolbar and right-click menu options provide a means to
customize and interact with the System Monitor Console.

JTAG Scan Rate

The JTAG Scan Rate at which the System Monitor sensor data is read is selectable via a
combo box. The default scan rate is 1s. You can also set the sample period to 1s, 2s, 5s, 10s,
30s, 1min, or Manual Scan. When Manual Scan is chosen, the Sample Once (S!) button
becomes enabled. At that point, the System Monitor data is only read by pressing the
Sample Once toolbar button or by selecting the System Monitor > Sample Once menu
option.

Window Depth

The depth of the window used in the sliding window calculations in the System Monitor
viewer can be set using the Window Depth combo box on the toolbar or in the System
Monitor > Window Depth menu. The depth of the sampling window can be set to 2, 4, 8,
16, 32, 64, or 128 samples.

External Input

The System Monitor component monitors voltage levels on external sensors. You can view
any external sensor input one at a time by using the External Input option. Valid External
Input selections include:

• Any of the 16 user-defined VAUXP/VAUXN external sensors

• The V_P/V_N dedicated external sensors

• The V_REFP reference voltage input

• The V_REFN reference voltage input

Select No Input to disable the viewing of the external input (default).

Reset

The Reset button resets the System Monitor Console display.

Enable Logging

The Enable Logging toolbar button and System Monitor > Enable Logging menu option
enables the file logging feature that saves the System Monitor sensor data in a text file for
use in offline analysis.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 103

UG029 (v13.1) March 1, 2011

Analyzer Features

System Monitor Data Logging

The System Monitor > Setup Logging menu option opens the dialog window. The
settings in this window are used to customize the logging feature.

Log File

The Browse button is used to select the location of the System Monitor log file. The default
location is <CHIPSCOPE_INSTALL>/bin/<PLATFORM>/system_monitor.log,
where <CHIPSCOPE_INSTALL> is the installation directory and <PLATFORM> is the
operating system platform (nt, nt64, lin, lin64, or sol).

Log File Format

The System Monitor log file is a text file that can be formatted in two different ways:
comma-separated value (CSV) file for machine processing or as a human-readable
formatted file.

Log File Limit

The System Monitor logging system can generate a lot of data that consumes a large
amount of disk space. To alleviate the problem, the log data can be split across multiple
separate files based on a log file limit. The log file limit can be based on a specific number
of samples or by file size (in kilobytes).

IBERT Console Window for Virtex-5 FPGA GTP and GTX Transceivers

To open the console for an IBERT core for Virtex-5 FPGA GTP and GTX transceivers, select
Window > New Unit Windows and the core desired. A dialog box displays for that core,
and you can select the IBERT Console. Windows cannot be closed from this dialog box.

The same operation can by achieved by double-clicking on the IBERT Console leaf node in
the project tree, or by right-clicking on the IBERT Console leaf node and selecting Open
IBERT Console.

The IBERT Console for Virtex-5 FPGA GTP and GTX transceivers is composed of: “Clock
Settings Panel”, “MGT/BERT Settings Panel,” page 105, and “Sweep Test Settings Panel,”
page 109.

Clock Settings Panel

The Clock Settings panel contains a table that is made up of one or more vertical columns
and horizontal rows. Each column represents a specific active GTP_DUAL/GTX_DUAL.
Each row represents a specific GTP_DUAL/GTX_DUAL control or status setting.

CLKP/CLKN Settings

The CLKP/CLKN settings are related to the reference clock pins of a particular
GTP_DUAL/GTX_DUAL.

The GTP_DUAL/GTX_DUAL Alias setting is initially set to the MGT (multi-gigabit
transceiver) number of the GTP_DUAL/GTX_DUAL, but can be changed by selecting the
field and typing in a new value.

The GTP_DUAL/GTX_DUAL Location setting denotes the X/Y coordinate of the
GTP_DUAL/GTX_DUAL in the device.

The GTP_DUAL/GTX_DUAL Power setting is used to control the power of the reference
clock circuitry of the GTP_DUAL/GTX_DUAL. This power control needs to be set to On to

http://www.xilinx.com

104 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

enable any GTP_DUAL/GTX_DUAL functionality. Also, this power control needs to be
On for any GTP_DUAL/GTX_DUAL that is participating in reference clock sharing (either
as a reference clock source or an intermediate pass-through tile).

The CLKP/CLKN Coupling setting controls the type of coupling used by the
GTP_DUAL/GTX_DUAL reference clock pins. The valid settings are AC or DC.

The CLKP/CLKN Freq (MHz) denotes the frequency of the reference clock source that is
connected to the CLKP and CLKN pins of the particular GTP_DUAL/GTX_DUAL
component. The default value is the reference clock frequency that was specified during
IBERT core generation. The frequency value can be changed by selecting the cell in the
table and typing in a new value.

REFCLK Settings

The REFCLK settings are related to the reference clock input source and other related
parameters of a particular GTP_DUAL/GTX_DUAL.

The REFCLK Input setting allows you to select the reference clock source for a particular
GTP_DUAL/GTX_DUAL from any of the valid GTP_DUALs/GTX_DUALs in the system.
The following rules apply when selecting reference clock inputs:

1. The reference clock source needs to originate from a GTP_DUAL/GTX_DUAL that is
no more than three tiles above or below the destination GTP_DUAL/GTX_DUAL. For
instance, the reference clock for GTP_DUAL_X0Y5 can be GTP_DUAL_X0Y2 (which is
three tiles away), but cannot be GTP_DUAL_X0Y1 (which is four tiles away).

2. The reference clock source GTP_DUAL/GTX_DUAL, destination
GTP_DUAL/GTX_DUAL, and all GTP_DUALs/GTX_DUALs in between must use
the same REFCLK Input selection. For instance, in order for GTP_DUAL_X0Y2 to use
GTP_DUAL_X0Y0 as the reference clock input source, GTP_DUAL_X0Y1 must also
use GTP_DUAL_X0Y0 as the reference clock input source.

3. The GTP_DUAL/GTX_DUAL Power setting for the reference clock source
GTP_DUAL/GTX_DUAL, destination GTP_DUAL/GTX_DUAL, and all
GTP_DUALs/GTX_DUALs in between must be set to On.

The GTP_DUAL/GTX_DUAL PLL Status indicator shows the lock status of the PLL that
is inside of the GTP_DUAL/GTX_DUAL component. The valid states of this status
indicator are LOCKED (green) or NOT LOCKED (red).

The REFCLKOUT Freq (MHz) indicator shows the approximate clocking frequency (in
MHz) of the REFCLKOUT port of the GTP_DUAL/GTX_DUAL. The accuracy of this
status indicator depends on the frequency of the system clock that was specified at
compile-time.

CH0 Clock Status

The CH0 Clock Status indicators are related to the status of the various TX and RX clock
outputs of channel 0 of a particular GTP_DUAL/GTX_DUAL.

The TXOUTCLK0 DCM Status indicator shows the lock status of the DCM that is
connected to the TXOUTCLK0 port of the GTP_DUAL/GTX_DUAL. The valid states of
this status indicator are LOCKED (green) or NOT LOCKED (red).

The TXOUTCLK0 Freq (MHz) indicator shows the approximate clocking frequency (in
MHz) of the TXOUTCLK0 port of the GTP_DUAL/GTX_DUAL. The accuracy of this
status indicator depends on the frequency of the system clock that was specified at
compile-time.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 105

UG029 (v13.1) March 1, 2011

Analyzer Features

The TXUSRCLK0 Freq (MHz) indicator shows the approximate clocking frequency (in
MHz) of the TXUSRCLK0 port of the GTP_DUAL/GTX_DUAL. The accuracy of this
status indicator depends on the frequency of the system clock that was specified at
compile-time.

The TXUSRCLK20 Freq (MHz) indicator shows the approximate clocking frequency (in
MHz) of the TXUSRCLK20 port of the GTP_DUAL/GTX_DUAL. The accuracy of this
status indicator depends on the frequency of the system clock that was specified at
compile-time.

The RXRECCLK0 DCM Status indicator shows the lock status of the DCM that is
connected to the RXRECCLK0 port of the GTP_DUAL/GTX_DUAL. The valid states of
this status indicator are LOCKED (green) or NOT LOCKED (red).

The RXRECCLK0 Freq (MHz) indicator shows the approximate clocking frequency (in
MHz) of the RXRECCLK0 port of the GTP_DUAL/GTX_DUAL. The accuracy of this
status indicator depends on the frequency of the system clock that was specified at
compile-time.

The RXUSRCLK0 Freq (MHz) indicator shows the approximate clocking frequency (in
MHz) of the RXUSRCLK0 port of the GTP_DUAL/GTX_DUAL. The accuracy of this
status indicator depends on the frequency of the system clock that was specified at
compile-time.

The RXUSRCLK20 Freq (MHz) indicator shows the approximate clocking frequency (in
MHz) of the RXUSRCLK20 port of the GTP_DUAL/GTX_DUAL. The accuracy of this
status indicator depends on the frequency of the system clock that was specified at
compile-time.

CH1 Clock Status

The CH1 Clock Status indicators are related to the status of the various RX clock outputs
of channel 1 of a particular GTP_DUAL/GTX_DUAL.

The RXRECCLK1 DCM Status indicator shows the lock status of the DCM that is
connected to the RXRECCLK1 port of the GTP_DUAL/GTX_DUAL. The valid states of
this status indicator are LOCKED (green) or NOT LOCKED (red).

The RXRECCLK1 Freq (MHz) indicator shows the approximate clocking frequency (in
MHz) of the RXRECCLK1 port of the GTP_DUAL/GTX_DUAL. The accuracy of this
status indicator depends on the frequency of the system clock that was specified at
compile-time.

The RXUSRCLK1 Freq (MHz) indicator shows the approximate clocking frequency (in
MHz) of the RXUSRCLK1 port of the GTP_DUAL/GTX_DUAL. The accuracy of this
status indicator depends on the frequency of the system clock that was specified at
compile-time.

The RXUSRCLK21 Freq (MHz) indicator shows the approximate clocking frequency (in
MHz) of the RXUSRCLK21 port of the GTP_DUAL/GTX_DUAL. The accuracy of this
status indicator depends on the frequency of the system clock that was specified at
compile-time.

MGT/BERT Settings Panel

The MGT/BERT Settings panel contains a table that is made up of one or more vertical
columns and horizontal rows. Each column represents a specific active GTP/GTX
transceiver channel. Each row represents a specific GTP/GTX or
GTP_DUAL/GTX_DUAL control or status setting.

http://www.xilinx.com

106 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

MGT Settings

The MGT Settings control and status indicators are related to the various settings for a
particular GTP_DUAL/GTX_DUAL channel.

The MGT Alias setting is initially set to the MGT and channel number of the GTP/GTX
transceiver channel, but can be changed by selecting the field and typing in a new value.

The GTP_DUAL/GTX_DUAL Location setting denotes the X/Y coordinate of the
GTP_DUAL/GTX_DUAL in the device.

The MGT Link Status indicator is displays the status of the link detection logic that is
connected to the receiver of a particular GTP/GTX transceiver channel. The valid states of
this status indicator are LOCKED (green) and NOT LOCKED (red).

The REFCLKOUT PLL Status indicator shows the lock status of the PLL that is connected
to the REFCLKOUT port of the GTP_DUAL/GTX_DUAL. The valid states of this status
indicator are LOCKED (green) or NOT LOCKED (red).

The Loopback Mode setting is used to control the loopback mode of a particular
GTP/GTX transceiver channel. The valid choices for loopback mode are:

• None: No feedback path is used.

• Near-End PCS (physical cooling subsystem): The circuit is wholly contained within
the near-end GTP/GTX transceiver channel. It starts at the TX fabric interface, passes
through the PCS, and returns immediately to the RX fabric interface without ever
passing through the PMA side of the GTP/GTX transceiver channel.

• Near-End PMA (physical medium attachment): The circuit is wholly contained within
the near-end GTP/GTX transceiver channel. It starts at the TX fabric interface, passes
through the PCS, through the PMA, back through the PCS, and returns to the RX
fabric interface.

• Far-End PMA: The circuit originates and ends at some external channel endpoint (for
example, a piece of test equipment or another device) but passes through the part of
the GTP/GTX transceiver channel. For this GTP/GTX transceiver loopback mode, the
signal comes into the RX pins, passes through the PMA circuitry, and returns
immediately to the TX pins.

• Far-End PCS: The circuit originates and ends at some external channel endpoint (for
example, a piece of test equipment or another device) but passes through part of the
GTP/GTX transceiver channel. For this GTP/GTX transceiver loopback mode, the
signal comes into the RX pins, passes through the PMA, through the PCS, back
through the PMA, and returns to the TX pins.

• Far-End Fabric: The circuit originates and ends at some external channel endpoint (for
example, a piece of test equipment or another device) but passes through the entire
GTP/GTX transceiver channel and related fabric logic. For this GTP/GTX transceiver
loopback mode, the signal comes into the RX pins, passes through the PMA and PCS,
through a shallow fabric-based FIFO, back through the PCS and PMA, and finally
returns to the TX pins.

The Channel Reset button resets the GTP/GTX transceiver channel by clearing and
resetting all internal PMA and PCS circuitry as well as the related fabric interfaces.

All the attributes for an MGT can be viewed or changed via the Dynamic Reconfiguration
Port (DRP). Click on the Edit DRP button to bring up that GTP_DUAL/GTX_DUAL Edit
DRP dialog.

In the By Attribute Name tab, you can choose the attribute you wish to view or change
using the Attribute Name combo box. The attributes are organized alphabetically. After an

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 107

UG029 (v13.1) March 1, 2011

Analyzer Features

attribute is chosen, the DRP is read at that moment, and the current value for that attribute
is displayed in the Current Value field. The radio buttons near the bottom of the dialog
indicate the radix of the two value fields. To specify a new value, select the radix type
(Binary Value, Hex Value, or UCF Value), enter text into the New Value field, and click the
Apply button.

To modify a specific DRP address, and not a specific attribute, click the By DRP Address
tab. This tab is recommended for advanced users.

Choose the address you want to modify in the Address combo box. The current value
displays in Hex or Binary, according to the radio buttons. To change the value, type in a
new value in the New Value field, and click Apply to enter the changes. To dismiss the
dialog, click Close.

The Show Settings button displays the current settings of all pertinent GTP/GTX
transceiver channel ports and DRP attribute settings. The Export Settings button allows
you to export these settings to a file.

The TX/RX Termination setting is used to select the termination of the GTP transceiver
channel. The valid settings are 50Ω and 75Ω. The TX/RX Termination setting is only
available for the Virtex-5 LXT/SXT family GTP transceiver. It is not available for the Virtex-
5 FXT family GTX transceiver component.

The Edit Line Rate button is used to specify the various parameters that relate to the line
rate and various PLL settings for the GTP_DUAL/GTX_DUAL. When editing the line rate,
the settings are applied to both of the channels within the GTP_DUAL/GTX_DUAL
component. The GTP_DUAL/GTX_DUAL combo box is used to select the
GTP_DUAL/GTX_DUAL component. The REFCLK Input Freq (MHz) is a read-only field
that indicates the frequency of the input reference clock. The Internal Data Width field is
currently fixed at 10 bit for the GTP_DUAL component and 20 bit for the GTX_DUAL
component. The Target Line Rate (Mb/s) combo box contains all valid line rates and
related PLL settings (FB, REF, and DIVSEL) that are derived from the REFCLK input
frequency. The PLL VCO Freq (MHz) field shows the output frequency of the voltage-
controlled oscillator (VCO) of the PLL. The table at the bottom of the Edit Line Rate
window shows all line rate-related attributes for the GTP_DUAL/GTX_DUAL.

The Coding combo box is used to select the type of encoding and decoding used by the TX
and RX sides of the GTP/GTX transceiver channel, respectively. The valid selections are
None and 8B/10B.

Note: If 8B/10B coding is enabled, the only valid patterns that can be used are the Framed Counter

and Idle Patterns.

TX Settings

The TX Settings control and status indicators are related to the various TX settings for a
particular GTP/GTX transceiver channel.

The TXOUTCLK DCM Status indicator shows the lock status of the DCM that is
connected to the TXOUTCLK0 port of the GTP_DUAL/GTX_DUAL. The valid states of
this status indicator are LOCKED (green) or NOT LOCKED (red).

The Invert TX Polarity setting controls the polarity of the data sent out of the TX pins of the
GTP/GTX transceiver channel. To flip the polarity of the TX side of the GTP/GTX
transceiver, check the Invert TX Polarity box.

The Inject TX Bit Error button inverts the polarity of a single bit in a single transmitted
word. The receiver endpoint of the channel that is connected to this transmitter should
detect a single bit error.

http://www.xilinx.com

108 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

The TX Diff Boost combo box controls the state of the TX_DIFF_BOOST attribute that is
used to enhance the TX Diff Output Swing (also known as the transmitter differential
output swing controlled by the TXDIFFCTRL and TXBUFDIFFCTRL ports) and TX Pre-
Emphasis (also known as the transmitter pre-emphasis controlled by the
TXPREEMPHASIS ports) port settings of the GTP/GTX transceiver channel. The TX Diff
Boost control is only available for the Virtex-5 LXT/SXT family GTP transceiver
component. It is not available for the Virtex-5 FXT family GTX transceiver component. For
valid combinations of values for these settings, refer to the Virtex-5 FPGA RocketIO GTP
Transceiver User Guide [See Reference 2, p. 227] or the Virtex-5 FPGA RocketIO GTX
Transceiver User Guide [See Reference 3, p. 227].

RX Settings

The RX Settings control and status indicators are related to the various RX settings for a
particular GTP/GTX transceiver channel.

The RXOUTCLK DCM Status indicator shows the lock status of the DCM that is
connected to the RXOUTCLK port of the GTP/GTX transceiver channel. The valid states of
this status indicator are LOCKED (green) or NOT LOCKED (red).

The Invert RX Polarity setting controls the polarity of the data received from the RX pins
of the GTP/GTX channel. To flip the polarity of the RX side of the GTP/GTX, check the
Invert RX Polarity box.

The RX Coupling and RX Termination Voltage settings work together to control the
coupling and termination networks of the GTP/GTX channel receiver. For valid
combinations of values for these two settings, refer to the Virtex-5 FPGA RocketIO GTP
Transceiver User Guide [See Reference 2, p. 227] or the Virtex-5 FPGA RocketIO GTX
Transceiver User Guide [See Reference 3, p. 227].

The Enable RX EQ check box enables the receiver equalization of the GTP/GTX channel.
If receive equalization is enabled, then you can use the RX EQ WB/HP Ratio and RX EQ
HP Pole Loc settings to control the wide-band/high-pass filter ratio and high-pass filter
pole location of the GTP/GTX channel receiver, respectively. For valid combinations of
values for these two settings, refer to the Virtex-5 FPGA RocketIO GTP Transceiver User
Guide [See Reference 2, p. 227] or the Virtex-5 FPGA RocketIO GTX Transceiver User Guide
[See Reference 3, p. 227].

The RX Sampling Point slider controls horizontal sampling point of the clock/data
recovery (CDR) unit of the transceiver by changing the PMA_CDR_SCAN attribute. The
integer value on the slider control represents the current setting and can have a value of 0
to 127, where 0 represents the left-most sample position in the unit interval (UI) and 127
represents the right-most sample position in the UI. The position in the UI is also displayed
to the right of the slider control.

Note: The RX Sampling Point control is only enabled when the PLL_RXDIVSEL_OUT attribute for

the GTP_DUAL/GTX_DUAL channel is set to 1. Use the Edit Line Rate control to view the

PLL_RXDIVSEL_OUT attribute setting.

BERT Settings

The BERT Settings control and status indicators are related to the various bit-error ratio
settings for a particular GTP/GTX transceiver channel.

The TX/RX Data Pattern setting is used to select the data pattern that is used by the
transmit pattern generator and receive pattern checker for the GTP/GTX transceiver
channel. The available pattern types depend on what patterns were enabled during IBERT
core generation, but may include PRBS (pseudo random bit sequence) 7-bit (X7 + X6 + 1),
PRBS 7-bit Alt (X7 + X + 1), PRBS 9-bit, PRBS 11-bit, PRBS 15-bit, PRBS 20-bit, PRBS 23-bit,

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 109

UG029 (v13.1) March 1, 2011

Analyzer Features

PRBS 29-bit, PRBS 31-bit, User Pattern (which can be used to generate any 20-bit data
pattern, including clock patterns), Framed Counter, and Idle Pattern.

Note: If 8B/10B coding is enabled, the only valid patterns that can be used are the Framed Counter

and Idle Patterns.

The RX Bit Error Ratio field contains the currently calculated bit error ratio for the
GTP/GTX transceiver channel. It is expressed as an exponent. For instance, 1.000E-12
means that one bit error happens (on average) for every trillion bits received.

The RX Line Rate status is the calculated line rate for the GTP/GTX transceiver channel. It
uses the system clock to time the design, so an inaccurate or unstable system clock causes
this number to be inaccurate or fluctuate. If there is no link, the RX Line Rate field displays
N/A.

The RX Received Bit Count field contains a running tally of the number of bits received.
This count resets when the BERT Reset button is pushed.

The RX Bit Error Count field contains a running tally of the number of bit errors detected.
This count resets when the BERT Reset button is pushed.

The BERT Reset button resets the bit error and received bit counters. It is appropriate to
reset the BERT counters after the GTP/GTX transceiver channel is linked and stable.

Sweep Test Settings Panel

The Sweep Test Settings panel is used to set up a channel test that sweeps through various
Virtex-5 FPGA GTP and GTX transceiver settings. Sweeping through both TX and RX
settings only works if the transceiver is set to one of the near-end or external loopback
modes. Sweeping through RX parameters only can be performed when the corresponding
TX endpoint for the link resides in a different device or a different transceiver in the same
device.

The Sweep Test Settings tabbed panel consists of two sections: the Sweep Test Setup and
Sweep Test Results sub-panels.

Sweep Test Setup

Setting up the sweep test involves selecting parameters to sweep through, setting up the
sweep test result file, and selecting the time per sweep iteration.

Setting Up Sweep Parameters

The transceiver parameters that are available for sweep include the following:

• TX Diff Boost (available for GTP only)

• TX Diff Output Swing

• TX Pre-Emphasis

• RX EQ Enable

• RX EQ WB/HP Ratio

• RX EQ HP Pole Loc

• RX Sampling Point

The sweep parameters can be initialized in one of two ways:

• Click the Clear All Parameters button to clear all parameters to the Select… option.

• Click the Set Parameters to Current Values button to set the parameters to their
current values on the MGT/BERT Settings panel.

http://www.xilinx.com

110 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

The order of the parameters in the Sweep Parameter table dictates how the parameters are
swept. The values of the parameters near the top of the table are swept less frequently than
the parameters near the bottom of the table. In other words, the parameters near the top of
the table are in the outer loops of the sweep algorithm while the parameters near the
bottom of the table are in the inner loops of the sweep algorithm. The order of the
parameters in the table cannot be changed.

Each parameter must be set up with a start and end value. The order of the parameter
values cannot be changed. Once you select the start value, the end values available for
selection change automatically to include only valid selections. If you do not want to
sweep through a parameter, set the start and end values for that parameter to the same
value. The Sweep Value Count column indicates how many values are swept through for
a particular parameter. Once all sweep parameters have valid start and end values, the
total number of sweep iterations are shown in the Total Iterations field.

Setting Up Sweep Test Result File

The results from a sweep test are displayed in the Sweep Test Status panel and are also sent
to a sweep test result file. Clicking on the Sweep Test Result File Settings button brings up
the dialog window.

You can set both the location of the file and the number of sweep iterations stored in each
file. If the total number of sweep iterations exceeds the file limit, multiple files with starting
iteration number appended to the base file name are created in the same directory as the
initial result file.

Sweep Test Results

After the sweep test has been set up, the test can be started by clicking the Start button.
Once the Start button is clicked, the sweep parameter table are disabled, and the test starts
running.

As the sweep test runs, the current sweep result file, current iteration, elapsed time, and
estimated time remaining status indicators are displayed. The sweep results are shown in
the text area near the bottom of the screen. The sweep test can be paused by clicking on the
Pause button or stopped completely by clicking on the Reset button.

IBERT Toolbar and Menu Options

Reset All

To reset all the channels in the IBERT core, use IBERT_V5GTP/GTX > Reset All or click
the Reset All button in the toolbar.

JTAG Scan Rate and Scan Now

The JTAG Scan Rate toolbar and IBERT_V5GTP/GTX > JTAG Scan Rate menu options
are used to select how frequently the Analyzer software queries the IBERT core for status
information. The default is 1s between queries, but it can be set to 250 ms, 500 ms, 1s, 2s, 5s,
or Manual Scan. When Manual Scan is selected, use IBERT_V5GTP/GTX > Scan Now or
the Scan Now (or S!) toolbar button to query the IBERT core.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 111

UG029 (v13.1) March 1, 2011

Analyzer Features

IBERT v2.0 Console for Virtex-5 FPGA GTX Transceivers

To open the console for a ChipScope Pro IBERT v2.0 core for Virtex-5 FPGA GTX
transceivers, select Window> New Unit Windows and the core desired. A dialog box
displays for that core, and you can select the IBERT V5 GTX Console. Windows cannot be
closed from this dialog box.

The same operation can by achieved by double-clicking on the IBERT V5 GTX Console
leaf node in the project tree, or by right-clicking on the IBERT V5 GTX Console leaf node
and selecting Open IBERT V5 GTX Console.

The IBERT v2.0 Console for Virtex-5 FPGA GTX transceivers is composed of:

• MGT/BERT Settings Panel

• DRP Settings Panel

• Port Settings Panel

• Sweep Test Settings Panel

• IBERT v2.0 Virtex-5 FPGA GTX Transceiver Toolbar and Menu Options

MGT/BERT Settings Panel

The MGT/BERT Settings panel contains a table that is made up of one or more vertical
columns and horizontal rows. Each column represents a specific active GTX transceiver.
Each row represents a specific control or status setting.

MGT Settings

The MGT Alias setting is initially set to the MGT number of the GTX transceiver, but can
be changed by selecting the field and typing in a new value.

The Tile Location setting denotes the X/Y coordinate of the GTX transceiver in the device.

The MGT Link Status indicator is displays the status of the link detection logic that is
connected to the receiver of a particular GTX transceiver channel. If the channel is linked
(green), the measured line rate is displayed. If the channel isn’t linked, it displays NOT
LOCKED (red).

The Edit Line Rate button is used to specify the various parameters that relate to the line
rate and various PLL settings for the GTX transceiver, and is label with the current settings,
given the known REFCLK frequency and internal PLL divider settings. When editing the
line rate, the settings are applied to both TX and RX of the MGT. The MGT combo box is
used to select the GTX transceiver component. The REFCLK Input Freq (MHz) is a read-
only field that indicates the frequency of the input reference clock. The Target Line Rate
(Mbps) combo box contains all valid line rates and related PLL settings (FB, REF, and
DIVSEL) that are derived from the REFCLK input frequency. The table at the bottom of the
Edit Line Rate window shows all line rate-related attributes for the GTX transceiver.

The PLL Status indicator shows the lock status of the PLL that is connected to the GTX
transceiver. The valid states of this status indicator are LOCKED (green) or NOT LOCKED
(red).

http://www.xilinx.com

112 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

The Loopback Mode setting is used to control the loopback mode of a particular GTX
transceiver channel. The valid choices for loopback mode are:

• None: No feedback path is used.

• Near-End PCS: The circuit is wholly contained within the near-end GTX transceiver
channel. It starts at the TX fabric interface, passes through the PCS, and returns
immediately to the RX fabric interface without ever passing through the PMA side of
the GTX channel.

• Near-End PMA: The circuit is wholly contained within the near-end GTX transceiver
channel. It starts at the TX fabric interface, passes through the PCS, through the PMA,
back through the PCS, and returns to the RX fabric interface.

• Far-End PMA: The circuit originates and ends at some external channel endpoint (for
example, external test equipment or another device) but passes through the part of the
GTX transceiver channel. For this GTX transceiver loopback mode, the signal comes
into the RX pins, passes through the PMA circuitry, and returns immediately to the TX
pins.

• Far-End PCS: The circuit originates and ends at some external channel endpoint (for
example, external test equipment or another device) but passes through part of the
GTX transceiver channel. For this GTX loopback mode, the signal comes into the RX
pins, passes through the PMA, through the PCS, back through the PMA, and returns
to the TX pins.

The DUAL Reset button resets both GTX transceivers in the DUAL by clearing and
resetting all internal PMA and PCS circuitry as well as the related fabric interfaces.

The Channel Reset button resets the GTX transceiver channel by clearing and resetting all
internal PMA and PCS circuitry as well as the related fabric interfaces.

The TX Polarity Invert setting controls the polarity of the data sent out of the TX pins of the
GTX transceiver channel. To change the polarity of the TX side of the GTX transceiver,
check the TX Polarity Invert box.

The TX Bit Error Inject button inverts the polarity of a single bit in a single transmitted
word. The receiver endpoint of the channel that is connected to this transmitter should
detect a single bit error.

The TX Diff Output Swing combo box controls the differential swing of the transmitter.
Change the value in the combo box to change the swing.

The TX Pre-Emphasis combo box controls the amount of pre-emphasis on the transmitted
signal. Change the value in the combo box to change the emphasis.

The RX Polarity Invert setting controls the polarity of the data received by the RX pins of
the GTX channel. To change the polarity of the RX side of the GTX transceiver, check the
RX Polarity Invert box.

The RX AC Coupling Enabled setting controls whether the built-in AC coupling
capacitors are enabled or not.

The RX Termination Voltage setting controls which supply is used in the RX termination
network.

The RX Equalization setting controls the internal RX equalization circuit.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 113

UG029 (v13.1) March 1, 2011

Analyzer Features

BERT Settings

The TX Data Pattern and RX Data Pattern settings are used to select the data pattern that
is used by the transmit pattern generator and receive pattern checker, respectively. These
patterns include PRBS 7, 15, 23, and 31, and Clk 2x and 10x.

The RX Bit Error Ratio field contains the currently calculated bit error ratio for the GTX
transceiver channel. It is expressed as an exponent. For instance, 1.000E-12 means that one
bit error happens (on average) for every trillion bits received.

The RX Received Bit Count field contains a running tally of the number of bits received.
This count resets when the BERT Reset button is clicked.

The RX Bit Error Count field contains a running tally of the number of bit errors detected.
This count resets when the BERT Reset button is clicked.

The BERT Reset button resets the bit error and received bit counters. It is appropriate to
reset the BERT counters after the GTX channel is linked and stable.

Clocking Settings

The TX DCM Reset button resets the DCM that uses the TXOUTCLK output to generate
the TXUSRCLK and TXUSRCLK2 clocks.

The RX DCM Reset button resets the DCM that controls uses the RXRECCLK output to
generate the RXUSRCLK and RXUSRCLK2 clocks.

The TXUSRCLK Freq (MHz) indicator shows the approximate clocking frequency (in
MHz) of the TXUSRCLK port of the GTX transceiver. The accuracy of this status indicator
depends on the frequency of the system clock that was specified at compile-time.

The TXUSRCLK2 Freq (MHz) indicator shows the approximate clocking frequency (in
MHz) of the TXUSRCLK2 port of the GTX transceiver. The accuracy of this status indicator
depends on the frequency of the system clock that was specified at compile-time.

The RXUSRCLK Freq (MHz) indicator shows the approximate clocking frequency (in
MHz) of the RXUSRCLK port of the GTX transceiver. The accuracy of this status indicator
depends on the frequency of the system clock that was specified at compile-time.

The RXUSRCLK2 Freq (MHz) indicator shows the approximate clocking frequency (in
MHz) of the RXUSRCLK2 port of the GTX transceiver. The accuracy of this status indicator
depends on the frequency of the system clock that was specified at compile-time.

DRP Settings Panel

The DRP Settings panel contains a table that is made up of one or more vertical columns
and horizontal rows. Each column represents a specific active GTX transceiver. Each row
represents a specific DRP attribute or address.

When the radio button at the bottom of the panel is set to View By Attribute Name, all the
DRP attributes are displayed in alphabetical order. The Radix combo lets you choose
between Hex (hexadecimal) and Bin (binary). To change a value, just click in the text field
where the value is, type in a new value, and press Enter. The new value is immediately set
in the MGT.

When the radio button at the bottom of the panel is set to View By Address, the raw
address are displayed in numerical order with their contents. The Radix combo lets you
choose between Hex (hexadecimal) and Bin (binary). To change a value, just click in the
text field where the value is, type in a new value, and press Enter. The new value is
immediately set in the MGT.

http://www.xilinx.com

114 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

Port Settings Panel

The Port Settings panel contains a table that is made up of one or more vertical columns
and horizontal rows. Each column represents a specific active GTX transceiver. Each row
represents a specific MGT port. Not all ports are displayed because some are used in the
IBERT design to send and receive data.

The Radix combo lets you choose to display the value in either Hex (hexadecimal) or Bin
(binary). Some ports are read-only, and not editable. Those cells in the table look like labels.
The ports in the table that are editable look like text-fields, and placing the cursor in those
fields, typing a new value, and pressing Enter write the new value to the MGT
immediately.

Sweep Test Settings Panel

The Sweep Test Settings panel is used to set up a channel test that sweeps through various
transceiver settings. The TX and RX settings are for the same GTX transceiver. Sweeping
through both TX and RX settings only work if the transceiver is set to one of the near end
or external loopback modes. Sweeping through RX parameters only can be performed
when the corresponding TX endpoint for the link resides in a different device or a different
transceiver in the same device.

The Sweep Test Settings tabbed panel consists of four sections: the Parameter Settings
section, the Sampling Point Region Section, the Test Controls section, and the Test Results
Section.

Parameter Settings

Setting up the sweep test first involves setting up the sweep parameters.

The GTX transceiver parameters that are available for sweep default to the following:

• TX Diff Swing

• TX Pre-Emphasis

• RX EQ

• DFETAP1

• DFETAP2

The sweep parameters can be initialized in one of two ways:

• Click the Clear All Parameters button to clear all parameters to the Select option.

• Click the Set Parameters to Current Values button to set the parameters to their
current values on the MGT/BERT Settings panel.

The order of the parameters in the Sweep Parameter table dictates how the parameters are
swept. The values of the parameters near the top of the table are swept less frequently than
the parameters near the bottom of the table. In other words, the parameters near the top of
the table are in the outer loops of the sweep algorithm while the parameters near the
bottom of the table are in the inner loops of the sweep algorithm.

Each parameter must be set up with a start and end value. The order of the parameter
values cannot be changed. Once you select the start value, the end values available for
selection change automatically to include only valid selections. If you do not want to
sweep through a parameter, set the start and end values for that parameter to the same
value. The Sweep Value Count column indicates how many values are swept through for
a particular parameter. Once all sweep parameters have valid start and end values, the
total number of sweep iterations are shown in the Total Iterations field.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 115

UG029 (v13.1) March 1, 2011

Analyzer Features

To add or remove items in the table, click the Add/Remove Parameters button. This opens
a dialog box with all available ports/attributes on the left, and the ones to sweep on the
right. To add new parameters to sweep, click it in the left hand list, and click the > arrow
button. To remove a parameter to sweep, click it in the right-hand list, and click the < arrow
button. To specify the sweep order of the parameters, click it in the right hand list, and then
the Up or Down buttons. To revert the sweep attributes and their order to the default
setting, click the Reset to Default button. Click OK to apply the settings, or Cancel to exit
without saving.

Sampling Point Region

The sampling point is the horizontal point within the eye to sample. Visualize on transition
region at the far left, and the next at the far right. The RX Sampling Point is one of 128
discrete sampling positions. In the Sampling Point Region section, choose the left and right
edges of the sampling region.

Test Controls

After the sweep test has been set up, the test can be started by clicking the Start button.
Once the Start button is clicked, the sweep parameter table are disabled, and the test starts
running.

As the sweep test runs, the current sweep result file, current iteration, elapsed time, and
estimated time remaining status indicators are displayed. The sweep results are shown in
the text area near the bottom of the screen. The sweep test can be paused by clicking on the
Pause button or stopped completely by clicking on the Reset button.

The results from a sweep test are displayed in the Test Results panel and are also sent to a
sweep test result file. Clicking on the Log File Settings button brings up the dialog
window.

You can set the location of the file and the number of sweep iterations stored in each file. If
the total number of sweep iterations exceeds the file limit, multiple files with the starting
iteration number appended to the base file name are created in the same directory as the
initial result file.

Test Results

The Test Results panel shows which is the current run, the elapsed time, and the estimated
time remaining. Below this status information is a running log of the sweep test results.
These results are also saved to the Log File.

http://www.xilinx.com

116 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

IBERT v2.0 Virtex-5 FPGA GTX Transceiver Toolbar and Menu Options

IBERT Console Options

The IBERT Console Options dialog allows you to select which columns and rows to
display in the IBERT Console. The left-hand panel selects the MGTs by location. Use the
Check All and Uncheck All buttons to select all or none of the MGTs.

The right-hand panel selects which rows are displayed in the MGT/BERT settings. Use the
Check All and Uncheck All buttons to select all or none of the rows. The Default button
sets up the console to display the basic set of rows needed to determine the health of the
channels.

Import/Export Dialog

In the Import/Export dialog box, you can save and recall settings from a specific MGT, or
apply the setting of one MGT to others in the design. To import or export settings, use
IBERT_V5GTX > Import/Export Wizard or click the Import/Export Wizard button in the
toolbar.

The first screen of the wizard chooses the source of the MGT settings- either MGT or File.
If MGT is selected, choose among the available MGTs in the combo box. For File, click
Browse and navigate to the settings file. Click Next to go to the next screen.

The second screen is the destination screen. Any combination of the MGTs in the IBERT
design and a file are available. If File is enabled, click Browse to specify the file destination.

The third screen is the confirmation screen, summarizing the source and destination(s) for
the settings. Click Apply to execute the import or export. This operation cannot be undone.

Reset All

To reset all the channels in the IBERT core, use IBERT_V5GTX >Reset All or click the
Reset All button in the toolbar.

JTAG Scan Rate and Scan Now

The JTAG Scan Rate toolbar and IBERT_V5GTX >JTAG Scan Rate menu options are used
to select how frequently the Analyzer software queries the IBERT core for status
information. The default is 1s between queries, but it can be set to 250 ms, 500 ms, 1s, 2s, 5s,
or Manual Scan. When Manual Scan is selected, use IBERT_V5GTX >Scan Now or the
Scan Now (or S!) toolbar button to query the IBERT core.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 117

UG029 (v13.1) March 1, 2011

Analyzer Features

IBERT Console Window for Virtex-6 FPGA GTX Transceivers

To open the console for a ChipScope Pro IBERT core for Virtex-6 LXT/SXT/CXT families,
select Window > New Unit Windows and the core desired. A dialog box displays for that
core, and you can select the IBERT V6 GTX Console. Windows cannot be closed from this
dialog box.

The same operation can by achieved by double-clicking on the IBERT V6 GTX Console
leaf node in the project tree, or by right-clicking on the IBERT V6 GTX Console leaf node
and selecting Open IBERT V6 GTX Console.

The IBERT Console for Virtex-6 LXT/SXT/CXT families GTX transceivers is composed of:
“MGT/BERT Settings Panel”, “DRP Settings Panel,” page 119, “Port Settings Panel,”
page 120, and “IBERT Virtex-6 FPGA GTX Transceiver Toolbar and Menu Options,”
page 123.

MGT/BERT Settings Panel

The MGT/BERT Settings panel contains a table that is made up of one or more vertical
columns and horizontal rows. Each column represents a specific active GTX transceiver.
Each row represents a specific control or status setting.

MGT Settings

The MGT Alias setting is initially set to the MGT number of the GTX transceiver, but can
be changed by selecting the field and typing in a new value.

The Tile Location setting denotes the X/Y coordinate of the GTX transceiver in the device.

The MGT Link Status indicator is displays the status of the link detection logic that is
connected to the receiver of a particular GTX transceiver channel. If the channel is linked
(green), the measured line rate is displayed. If the channel isn’t linked, it displays NOT
LOCKED (red).

The Edit Line Rate button is used to specify the various parameters that relate to the line
rate and various PLL settings for the GTX transceiver, and is label with the current settings,
given the known REFCLK frequency and internal PLL divider settings. When editing the
line rate, the settings are applied to both TX and RX of the MGT. The MGT combo box is
used to select the GTX transceiver component. The REFCLK Input Freq (MHz) is a read-
only field that indicates the frequency of the input reference clock. The Target Line Rate
(Mbps) combo box contains all valid line rates and related PLL settings (FB, REF, and
DIVSEL) that are derived from the REFCLK input frequency. The table at the bottom of the
Edit Line Rate window shows all line rate-related attributes for the GTX transceiver.

The TX PLL Status indicator shows the lock status of the TX PLL that is connected to the
GTX transceiver. The valid states of this status indicator are LOCKED (green) or NOT
LOCKED (red).

The RX PLL Status indicator shows the lock status of the RX PLL that is connected to the
GTX transceiver. The valid states of this status indicator are LOCKED (green) or NOT
LOCKED (red).

http://www.xilinx.com

118 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

The Loopback Mode setting is used to control the loopback mode of a particular GTX
transceiver channel. The valid choices for loopback mode are:

• None: No feedback path is used.

• Near-End PCS: The circuit is wholly contained within the near-end GTX transceiver
channel. It starts at the TX fabric interface, passes through the PCS, and returns
immediately to the RX fabric interface without ever passing through the PMA side of
the GTX channel.

• Near-End PMA: The circuit is wholly contained within the near-end GTX transceiver
channel. It starts at the TX fabric interface, passes through the PCS, through the PMA,
back through the PCS, and returns to the RX fabric interface.

• Far-End PMA: The circuit originates and ends at some external channel endpoint (for
example, external test equipment or another device) but passes through the part of the
GTX transceiver channel. For this GTX transceiver loopback mode, the signal comes
into the RX pins, passes through the PMA circuitry, and returns immediately to the TX
pins.

• Far-End PCS: The circuit originates and ends at some external channel endpoint (for
example, external test equipment or another device) but passes through part of the
GTX transceiver channel. For this GTX loopback mode, the signal comes into the RX
pins, passes through the PMA, through the PCS, back through the PMA, and returns
to the TX pins.

• Far-End Fabric: The circuit originates and ends at some external channel endpoint (for
example, external test equipment or another device) but passes through the entire
GTX transceiver channel and related fabric logic. For this GTX transceiver loopback
mode, the signal comes into the RX pins, passes through the PMA and PCS, through a
shallow fabric-based FIFO, back through the PCS and PMA, and finally returns to the
TX pins.

The Channel Reset button resets the GTX transceiver channel by clearing and resetting all
internal PMA and PCS circuitry as well as the related fabric interfaces.

The TX Polarity Invert setting controls the polarity of the data sent out of the TX pins of the
GTX transceiver channel. To change the polarity of the TX side of the GTX transceiver,
check the TX Polarity Invert box.

The TX Bit Error Inject button inverts the polarity of a single bit in a single transmitted
word. The receiver endpoint of the channel that is connected to this transmitter should
detect a single bit error.

The TX Diff Output Swing combo box controls the differential swing of the transmitter.
Change the value in the combo box to change the swing.

The TX Pre-Emphasis combo box controls the amount of pre-emphasis on the transmitted
signal. Change the value in the combo to change the emphasis.

The RX Polarity Invert setting controls the polarity of the data received by the RX pins of
the GTX channel. To change the polarity of the RX side of the GTX transceiver, check the
RX Polarity Invert box.

The RX AC Coupling Enabled setting controls whether the built-in AC coupling
capacitors are enabled or not.

The RX Termination Voltage setting controls which supply is used in the RX termination
network.

The RX Equalization setting controls the internal RX equalization circuit.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 119

UG029 (v13.1) March 1, 2011

Analyzer Features

BERT Settings

The TX/RX Data Pattern settings are used to select the data pattern that is used by the
transmit pattern generator and receive pattern checker, respectively. These patterns
include PRBS 7, 15, 23, and 31, and Clk 2x and 10x.

The RX Bit Error Ratio field contains the currently calculated bit error ratio for the GTX
transceiver channel. It is expressed as an exponent. For instance, 1.000E-12 means that one
bit error happens (on average) for every trillion bits received.

The RX Received Bit Count field contains a running tally of the number of bits received.
This count resets when the BERT Reset button is clicked.

The RX Bit Error Count field contains a running tally of the number of bit errors detected.
This count resets when the BERT Reset button is clicked.

The BERT Reset button resets the bit error and received bit counters. It is appropriate to
reset the BERT counters after the GTX channel is linked and stable.

Clocking Settings

The TXOUTCLK Freq (MHz) indicator shows the approximate clocking frequency (in
MHz) of the TXOUTCLK0 port of the GTX transceiver. The accuracy of this status indicator
depends on the frequency of the system clock that was specified at compile-time.

The TXUSRCLK Freq (MHz) indicator shows the approximate clocking frequency (in
MHz) of the TXUSRCLK port of the GTX transceiver. The accuracy of this status indicator
depends on the frequency of the system clock that was specified at compile-time.

The TXUSRCLK2 Freq (MHz) indicator shows the approximate clocking frequency (in
MHz) of the TXUSRCLK2 port of the GTX transceiver. The accuracy of this status indicator
depends on the frequency of the system clock that was specified at compile-time.

The RXUSRCLK Freq (MHz) indicator shows the approximate clocking frequency (in
MHz) of the RXUSRCLK port of the GTX transceiver. The accuracy of this status indicator
depends on the frequency of the system clock that was specified at compile-time.

The RXUSRCLK2 Freq (MHz) indicator shows the approximate clocking frequency (in
MHz) of the RXUSRCLK2 port of the GTX transceiver. The accuracy of this status indicator
depends on the frequency of the system clock that was specified at compile-time.

DRP Settings Panel

The DRP Settings panel contains a table that is made up of one or more vertical columns
and horizontal rows. Each column represents a specific active GTX transceiver. Each row
represents a specific DRP attribute or address.

When the radio button at the bottom of the panel is set to View By Attribute Name, all the
DRP attributes are displayed in alphabetical order. The Radix combo lets you choose
between Hex (hexadecimal) and Bin (binary). To change a value, just click in the text field
where the value is, type in a new value, and press Enter. The new value is immediately set
in the MGT.

When the radio button at the bottom of the panel is set to View By Address, the raw
address are displayed in numerical order with their contents. The Radix combo lets you
choose between Hex (hexadecimal) and Bin (binary). To change a value, just click in the
text field where the value is, type in a new value, and press Enter. The new value is
immediately set in the MGT.

http://www.xilinx.com

120 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

Port Settings Panel

The Port Settings panel contains a table that is made up of one or more vertical columns
and horizontal rows. Each column represents a specific active GTX transceiver. Each row
represents a specific MGT port. Not all ports are displayed because some are used in the
IBERT design to send and receive data.

The Radix combo lets you choose to display the value in either Hex (hexadecimal) or Bin
(binary). Some ports are read-only, and not editable. Those cells in the table look like labels.
The ports in the table that are editable look like text-fields, and placing the cursor in those
fields, typing a new value, and pressing Enter writes the new value to the MGT
immediately.

Sweep Test Settings Panel

The Sweep Test Settings panel is used to set up a channel test that sweeps through various
transceiver settings. The TX and RX settings are for the same GTX transceiver. Sweeping
through both TX and RX settings only works if the transceiver is set to one of the near-end
or external loopback modes. Sweeping through RX parameters only can be performed
when the corresponding TX endpoint for the link resides in a different device or a different
transceiver in the same device.

The Sweep Test Settings tabbed panel consists of four sections: the Parameter Settings
section, the Sampling Point Region Section, the Test Controls section, and the Test Results
Section.

Parameter Settings

Setting up the sweep test first involves setting up the sweep parameters

The GTX transceiver parameters that are available for sweep default to the following:

• TX Diff Swing

• TX Pre-Emphasis

• TX Post-Emphasis

• RX EQ

The sweep parameters can be initialized in one of two ways:

• Click the Clear All Parameters button to clear all parameters to the Select… option.

• Click the Set Parameters to Current Values button to set the parameters to their
current values on the MGT/BERT Settings panel.

The order of the parameters in the Sweep Parameter table dictates how the parameters are
swept. The values of the parameters near the top of the table are swept less frequently than
the parameters near the bottom of the table. In other words, the parameters near the top of
the table are in the outer loops of the sweep algorithm while the parameters near the
bottom of the table are in the inner loops of the sweep algorithm.

Each parameter must be set up with a start and end value. The order of the parameter
values cannot be changed. Once you select the start value, the end values available for
selection change automatically to include only valid selections. If you do not want to
sweep through a parameter, set the start and end values for that parameter to the same
value. The Sweep Value Count column indicates how many values are swept through for
a particular parameter. Once all sweep parameters have valid start and end values, the
total number of sweep iterations are shown in the Total Iterations field.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 121

UG029 (v13.1) March 1, 2011

Analyzer Features

To add or remove items in the table, click the Add/Remove Parameters button. This opens
a dialog box with all available ports/attributes on the left, and the ones to sweep on the
right. To add new parameters to sweep, click it in the left hand list, and click the > arrow
button. To remove a parameter to sweep, click it in the right-hand list, and click the < arrow
button. To specify the sweep order of the parameters, click it in the right hand list, and then
the Up or Down buttons. To revert the sweep attributes and their order to the default
setting, click the Reset to Default button. Click OK to apply the settings, or Cancel to exit
without saving.

Sampling Point Region

The sampling point is the horizontal point within the eye to sample. Visualize on transition
region at the far left, and the next at the far right. The RX Sampling Point is one of 128
discrete sampling positions. In the Sampling Point Region section, choose the left and right
edges of the sampling region.

Test Controls

After the sweep test has been set up, the test can be started by clicking the Start button.
Once the Start button is clicked, the sweep parameter table are disabled, and the test starts
running.

As the sweep test runs, the current sweep result file, current iteration, elapsed time, and
estimated time remaining status indicators are displayed. The sweep results are shown in
the text area near the bottom of the screen. The sweep test can be paused by clicking on the
Pause button or stopped completely by clicking on the Reset button.

The results from a sweep test are displayed in the Test Results panel and are also sent to a
sweep test result file. Clicking on the Log File Settings button brings up the dialog
window.

You can set both the location of the file and the number of sweep iterations stored in each
file. If the total number of sweep iterations exceeds the file limit, multiple files with starting
iteration number appended to the base file name are created in the same directory as the
initial result file.

Test Results

The Test Results panel shows which is the current run, the elapsed time, and the estimated

time remaining. Below this status information are three tabbed panels showing the results

of the sweep test:

• Sweep Test Log

• Sweep Test Plots

• Sweep Test Info.

Sweep Test Log

The Sweep Test Log tabbed panel is always enabled and contains the running log of the
sweep test results. The information on this panel is shown using a text-only display. The
results of the sweep test are also stored in a CSV log file.

Sweep Test Plots

The Sweep Test Plots tabbed panel is enabled only after the sweep test has stopped
running. The graphical data shown in the sweep test plot window corresponds to the data
stored in the CSV log file. Each plot corresponds to a sweep across the unit interval (UI) of

http://www.xilinx.com

122 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

the received signal. The left and right edges of the data plot correspond to the settings in
the Sample Point Region panel.

The main measurement that is observed in the sweep test plot is the width of the UI
"opening" of the active plot at the lowest measured bit error ratio (BER). The horizontal
marker can be moved up and down and the vertical markers can be moved left and right
by clicking and dragging them. By right-clicking in the plot list area on the right side of the
Sweep Test Plots panel, you can hide or show each plot, rename and re-color each plot, and
set a plot as active.

Sweep Test Info

The Sweep Test Info tabbed panel is also enabled only after the sweep test has stopped
running. The tabular data shown in the Sweep Test Info panel corresponds to the data
shown in the graphical Sweep Test Plots panel. Each row in the table correspond to a
single sweep test plot. The table columns correspond to the following:

• Enable Plot: shows or hides the plot in the Sweep Test Plots panel. Check to show,
uncheck to hide.

• Line Color: color of the line used in the Sweep Test Plots panel. Click to select new
color.

• Plot Name: name of the plot. Click the text field to change plot name.

• Opening at the Lowest BER Level: width of the longest run of zero errors at the lowest
BER level.

• The remaining columns correspond to the parameter value settings that were used to
create the corresponding sweep test plot.

Click the column header to sort the rows in the sweep test panel.

Note: One useful sort strategy is to sort the plots from the widest to the lowest UI opening by

clicking the Opening at the Lowest BER Level column header.

Standalone IBERT Sweep Test Plot Viewer

The plot viewer in the Sweep Test panel of the IBERT Console can only be used to sweep

test results while you are connected to the live device under test. If you want to view the

sweep test results offline, you can use the standalone IBERT sweep test plot viewer:

• On Windows (32-bit) platforms: <install dir>\bin\nt\ibertplotter.exe

• On Windows (64-bit) platforms: <install dir>\bin\nt64\ibertplotter.exe

• On Linux (32-bit) platforms: <install dir>/bin/lin/ibertplotter

• On Linux (64-bit) platforms: <install dir>/bin/lin64/ibertplotter

You can use the standalone IBERT sweep test plot viewer to view CSV sweep test result

files that were created by running IBERT sweep tests on the following transceivers:

• Spartan®-6 FPGA GTP transceivers

• Virtex®-5 FPGA GTX transceivers

• Virtex-6 FPGA GTX transceivers

• Virtex-6 FPGA GTH transceivers

You can also use the IBERT sweep test plot viewer to view multiple sweep test result CSV
files at the same time. This is useful for comparing the results of different sweep test runs.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 123

UG029 (v13.1) March 1, 2011

Analyzer Features

IBERT Virtex-6 FPGA GTX Transceiver Toolbar and Menu Options

IBERT Console Options

The IBERT Console Options dialog allows you to select which columns and rows to
display in the IBERT Console. The left-hand panel selects the MGTs by location. Use the
Check All and Uncheck All buttons to select all or none of the MGTs.

The right-hand panel selects which rows are displayed in the MGT/BERT settings. Use the
Check All and Uncheck All buttons to select all or none of the rows. The Default button
sets up the Console to display the basic set of rows needed to determine the health of the
channels. The Default rows are Tile Location, TX PLL Status, RX PLL Status, Loopback
Mode, Channel Reset, TX Error Inject, Rx Sampling Point, TX Data Pattern, RX Data
pattern, Rx Bit Error Ratio, Rx Received Bit Count, Rx Bit Error Count, BERT Reset,
TXUSRCLK2 Freq, and RXUSRCLK2 Freq.

Import/Export Dialog

In the Import/Export dialog box, you can save and recall settings from a specific MGT, or
apply the setting of one MGT to others in the design. To import or export settings, use
IBERT_V6GTX > Import/Export Wizard or click the Import/Export Wizard button in the
toolbar.

The first screen of the wizard chooses the source of the MGT settings - either MGT or File.
If MGT is selected, choose among the available MGTs in the combo box. For File, click
Browse and navigate to the settings file. Click Next to go to the next screen.

The second screen is the destination screen. Any combination of the MGTs in the IBERT
design and a file are available. If File is enabled, click Browse to specify the file destination.

The third screen is the confirmation screen, summarizing the source and destination(s) for
the settings. Click Apply to execute the import or export. This operation cannot be undone.

Reset All

To reset all the channels in the IBERT core, use IBERT_V6GTX > Reset All or click the
Reset All button in the toolbar.

JTAG Scan Rate and Scan Now

The JTAG Scan Rate toolbar and IBERT_V6GTX > JTAG Scan Rate menu options are
used to select how frequently the Analyzer software queries the IBERT core for status
information. The default is 1s between queries, but it can be set to 250 ms, 500 ms, 1s, 2s, 5s,
or Manual Scan. When Manual Scan is selected, use IBERT_V6GTX > Scan Now or the
Scan Now (or S!) toolbar button to query the IBERT core.

IBERT Console Window for Virtex-6 FPGA GTH Transceivers

To open the console for a ChipScope Pro IBERT core for Virtex-6 HXT families, select
Window > New Unit Windows and the desired core. A dialog box displays for that core,
and you can select the IBERT V6 GTH Console. You cannot close windows from this
dialog box.

You can achieve the same operation by double-clicking on the IBERT V6 GTH Console
leaf node in the project tree, or by right-clicking on the IBERT V6 GTH Console leaf node
and selecting Open IBERT V6 GTH Console.

The IBERT Console for Virtex-6 HXT families GTH transceivers is composed of:
“MGT/BERT Settings Panel”, “DRP Settings Panel,” page 119, “Port Settings Panel,”

http://www.xilinx.com

124 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

page 120, and “IBERT Virtex-6 FPGA GTX Transceiver Toolbar and Menu Options,”
page 123.

MGT/BERT Settings Panel

The MGT/BERT Settings panel contains a table that is made up of one or more vertical
columns and horizontal rows. Each column represents a specific active GTH transceiver.
Each row represents a specific control or status setting.

MGT Settings

The MGT Alias setting is initially set to the MGT number of the GTH transceiver, but you
can change it by selecting the field and typing in a new value.

The Tile Location setting denotes the X/Y coordinate of the GTH transceiver in the device.

The MGT Link Status indicator is displays the status of the link detection logic that is
connected to the receiver of a particular GTH transceiver channel. If the channel is linked
(green), the measured line rate is displayed. If the channel isn’t linked, it displays NOT
LOCKED (red).

The PLL Status indicator shows the lock status of the PLL that is a part of the GTH QUAD.
The valid states of this status indicator are LOCKED (green) or NOT LOCKED (red).

The Loopback Mode setting is used to control the loopback mode of a particular GTH
transceiver channel. The valid choices for loopback mode are:

• None: No feedback path is used.

• Near-End PCS: The circuit is wholly contained within the near-end GTH transceiver
channel. It starts at the TX fabric interface, passes through the PCS, and returns
immediately to the RX fabric interface without ever passing through the PMA side of
the GTH channel.

• Far-End PCS: The circuit originates and ends at some external channel endpoint (for
example, external test equipment or another device) but passes through part of the
GTH transceiver channel. For this GTH loopback mode, the signal comes into the RX
pins, passes through the PMA, through the PCS, back through the PMA, and returns
to the TX pins.

The QUAD Reset button resets the GTH QUAD (four transceivers) by clearing and
resetting all internal PMA and PCS circuitry as well as the related fabric interfaces.

The TX Bit Error Inject button inverts the polarity of a single bit in a single transmitted
word. The receiver endpoint of the channel that is connected to this transmitter should
detect a single bit error.

The TX Diff Output Swing combo box controls the differential swing of the transmitter.
Change the value in the combo box to change the swing.

The TX Pre-Emphasis combo box controls the amount of pre-emphasis on the transmitted
signal. Change the value in the combo box to change the emphasis.

The TX Post-Emphasis combo box controls the amount of post-emphasis on the
transmitted signal. Change the value in the combo box to change the emphasis.

The RX Equalization setting controls the internal RX equalization circuit.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 125

UG029 (v13.1) March 1, 2011

Analyzer Features

BERT Settings

The TX/RX Data Pattern settings are used to select the data pattern that is used by the
transmit pattern generator and receive pattern checker, respectively. These patterns
include PRBS 7, 15, 23, and 31, and Clk 2x and 10x.

The RX Bit Error Ratio field contains the currently calculated bit error ratio for the GTH
transceiver channel. It is expressed as an exponent. For instance, 1.000E-12 means that one
bit error happens (on average) for every trillion bits received.

The RX Received Bit Count field contains a running tally of the number of bits received.
This count resets when the BERT Reset button is clicked.

The RX Bit Error Count field contains a running tally of the number of bit errors detected.
This count resets when the BERT Reset button is clicked.

The BERT Reset button resets the bit error and received bit counters. It is appropriate to
reset the BERT counters after the GTH channel is linked and stable.

Clocking Settings

The TXUSERCLKOUT Freq (MHz) indicator shows the approximate clocking frequency
(in MHz) of the TXUSERCLKOUT port of the GTH transceiver. The accuracy of this status
indicator depends on the frequency of the system clock that was specified at compile-time.

The RXUSERCLKOUT Freq (MHz) indicator shows the approximate clocking frequency
(in MHz) of the RXUSERCLKOUT port of the GTH transceiver. The accuracy of this status
indicator depends on the frequency of the system clock that was specified at compile-time.

DRP Settings Panel

The DRP Settings panel contains a table displaying the DRP attributes or addresses. Each
column represents a specific active GTH QUAD, because there is one set of DRP attributes
for each. Each row represents a specific DRP attribute or address.

When the radio button at the bottom of the panel is set to View By Attribute Name, all the
DRP attributes are displayed in alphabetical order. The Radix combo lets you choose
between Hex (hexadecimal) and Bin (binary). To change a value, just click in the text field
where the value is, type in a new value, and press Enter. The new value is immediately set
in the GTH transceiver.

When the radio button at the bottom of the panel is set to View By Address, the raw
address are displayed in numerical order with their contents. The Radix combo lets you
choose between Hex (hexadecimal) and Bin (binary). To change a value, just click in the
text field where the value is, type in a new value, and press Enter. The new value is
immediately set in the GTH transceiver.

Port Settings Panel

The Port Settings panel contains a table that is made up of one or more vertical columns
and horizontal rows. Each column represents a specific active GTH QUAD. Each row
represents a specific transceiver port. Not all ports are displayed, because some are used in
the IBERT design to send and receive data.

The Radix combo lets you choose to display the value in either Hex (hexadecimal) or Bin
(binary). Some ports are read-only, and not editable. Those cells in the table look like labels.
The ports in the table that are editable look like text-fields. To change a value, place the
cursor in those fields, type a new value, and press Enter. The new value is immediately
written to the GTH transceiver.

http://www.xilinx.com

126 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

IBERT Virtex-6 FPGA GTH Transceiver Toolbar and Menu Options

IBERT Console Options

The IBERT Console Options dialog box allows you to select which columns and rows to
display in the IBERT Console. The left-hand panel selects the transceivers by location. Use
the Check All and Uncheck All buttons to select all or none of the transceivers.

The right-hand panel selects which rows are displayed in the MGT/BERT settings. Use the
Check All and Uncheck All buttons to select all or none of the rows. The Default button
sets up the Console to display the basic set of rows needed to determine the health of the
channels. The Default rows are Tile Location, TX PLL Status, RX PLL Status, Loopback
Mode, Channel Reset, TX Error Inject, Rx Sampling Point, TX Data Pattern, RX Data
pattern, Rx Bit Error Ratio, Rx Received Bit Count, Rx Bit Error Count, BERT Reset,
TXUSRCLK2 Freq, and RXUSRCLK2 Freq.

Import/Export Dialog Box

In the Import/Export dialog box, you can save and recall settings from a specific GTH
transceiver, or apply the setting of one transceiver to others in the design. To import or
export settings, ese IBERT_V6GTH > Import/Export Wizard or click the Import/Export
Wizard button in the toolbar.

The first screen of the wizard chooses the source of the transceiver settings - either MGT or
File. If MGT is selected, choose among the available transceivers in the combo box. For
File, click Browse and navigate to the settings file. Click Next to go to the next screen.

The second screen is the destination screen. Any combination of the GTH transceivers in
the IBERT design and a file are available. If File is enabled, click Browse to specify the file
destination.

The third screen is the confirmation screen, summarizing the source and destination(s) for
the settings. Click Apply to execute the import or export. This operation cannot be undone.

Reset All

To reset all the channels in the IBERT core, use IBERT_V6GTH > Reset All or click the
Reset All button in the toolbar.

JTAG Scan Rate and Scan Now

The JTAG Scan Rate toolbar and IBERT_V6GTH > JTAG Scan Rate menu options are
used to select how frequently the Analyzer software queries the IBERT core for status
information. The default is 1s between queries, but it can be set to 250 ms, 500 ms, 1s, 2s, 5s,
or Manual Scan. When Manual Scan is selected, use IBERT_V6GTH > Scan Now or the
Scan Now (or S!) toolbar button to query the IBERT core.

IBERT Console Window for Spartan-6 FPGA GTP Transceivers

To open the console for a ChipScope Pro IBERT core for Spartan®-6 LXT devices, select
Window > New Unit Windows and the core. A dialog box displays for that core, and you
can select the IBERT S6 GTP Console. Windows cannot be closed from this dialog box.

The same operation can by achieved by double-clicking on the IBERT S6 GTP Console
leaf node in the project tree, or by right-clicking on the IBERT S6 GTP Console leaf node
and selecting Open IBERT S6 GTP Console.

The IBERT Console for Spartan-6 LXT platforms is composed of the MGT/BERT Settings
Panel, the DRP Settings Panel, and the Port Settings Panel.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 127

UG029 (v13.1) March 1, 2011

Analyzer Features

MGT/BERT Settings Panel

The MGT/BERT Settings panel contains a table that is made up of one or more vertical
columns and horizontal rows. Each column represents a specific active GTP Transceiver.
Each row represents a specific control or status setting.

MGT Settings

The MGT Alias setting is initially set to the MGT number of the GTP transceiver, but can
be changed by selecting the field and typing in a new value.

The Tile Location setting denotes the X/Y coordinate of the GTP transceiver in the device.

The MGT Link Status indicator is displays the status of the link detection logic that is
connected to the receiver of a particular GTP transceiver channel. If the channel is linked
(green), the measured line rate is displayed. If the channel isn’t linked, it displays NOT
LOCKED (red).

The Edit Line Rate button is used to specify the various parameters that relate to the line
rate and various PLL settings for the GTP transceiver, and is label with the current settings,
given the known REFCLK frequency and internal PLL divider settings. When editing the
line rate, the settings are applied to both TX and RX of the transceiver. The MGT combo box
is used to select the GTP transceiver component. The REFCLK Input Freq (MHz) is a read-
only field that indicates the frequency of the input reference clock. The Target Line Rate
(Mbps) combo box contains all valid line rates and related PLL settings (FB, REF, and
DIVSEL) that are derived from the REFCLK input frequency. The table at the bottom of the
Edit Line Rate window shows all line rate-related attributes for the GTP transceiver.

The PLL Status indicator shows the lock status of the PLL that is connected to the GTP. The
valid states of this status indicator are LOCKED (green) or NOT LOCKED (red).

The Loopback Mode setting is used to control the loopback mode of a particular GTP
transceiver channel. The valid choices for loopback mode are:

• None: No feedback path is used.

• Near-End PCS: The circuit is wholly contained within the near-end GTP transceiver
channel. It starts at the TX fabric interface, passes through the PCS, and returns
immediately to the RX fabric interface without ever passing through the PMA side of
the GTP transceiver channel GTP transceiver channel.

• Near-End PMA: The circuit is wholly contained within the near-end GTP transceiver
channel. It starts at the TX fabric interface, passes through the PCS, through the PMA,
back through the PCS, and returns to the RX fabric interface.

• Far-End PMA: The circuit originates and ends at some external channel endpoint (for
example, a piece of test equipment or another device) but passes through the part of
the GTP transceiver channel. For this GTP loopback mode, the signal comes into the
RX pins, passes through the PMA circuitry, and returns immediately to the TX pins.

• Far-End PCS: The circuit originates and ends at some external channel endpoint (for
example, a piece of test equipment or another device) but passes through part of the
GTP transceiver channelGTP transceiver channel. For this GTP loopback mode, the
signal comes into the RX pins, passes through the PMA, through the PCS, back
through the PMA, and returns to the TX pins.

• Far-End Fabric: The circuit originates and ends at some external channel endpoint (for
example, a piece of test equipment or another device) but passes through the entire
GTP transceiver channelGTP transceiver channel and related fabric logic. For this
GTP loopback mode, the signal comes into the RX pins, passes through the PMA and

http://www.xilinx.com

128 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

PCS, through a shallow fabric-based FIFO, back through the PCS and PMA, and
finally returns to the TX pins.

The Channel Reset button resets the GTP transceiver channelGTP transceiver channel by
clearing and resetting all internal PMA and PCS circuitry as well as the related fabric
interfaces.

The TX Polarity Invert setting controls the polarity of the data sent out of the TX pins of the
GTP transceiver channel. To flip the polarity of the TX side of the GTP transceiver, check
the TX Polarity Invert box.

The TX Bit Error Inject button inverts the polarity of a single bit in a single transmitted
word. The receiver endpoint of the channel that is connected to this transmitter should
detect a single bit error.

The TX Diff Output Swing combo box controls the differential swing of the transmitter.
Change the value in the combo box to change the swing.

The TX Pre-Emphasis combo box controls the amount of pre-emphasis on the transmitted
signal. Change the value in the combo to change the emphasis.

The RX Polarity Invert setting controls the polarity of the data received by the RX pins of
the GTP transceiver channel. To flip the polarity of the RX side of the GTP transceiver,
check the RX Polarity Invert box.

The RX AC Coupling Enabled setting controls whether the built-in AC coupling
capacitors are enabled or not.

The RX Termination Voltage setting controls which supply is used in the RX termination
network.

The RX Equalization setting controls the internal RX equalization circuit.

BERT Settings

The TX/RX Data Pattern settings are used to select the data pattern that is used by the
transmit pattern generator and receive pattern checker, respectively. These patterns
include PRBS 7, 15, 23, and 31, and Clk 2x and 10x.

The RX Bit Error Ratio field contains the currently calculated bit error ratio for the GTP
transceiver channel. It is expressed as an exponent. For instance, 1.000E-12 means that one
bit error happens (on average) for every trillion bits received.

The RX Received Bit Count field contains a running tally of the number of bits received.
This count resets when the BERT Reset button is pushed.

The RX Bit Error Count field contains a running tally of the number of bit errors detected.
This count resets when the BERT Reset button is pushed.

The BERT Reset button resets the bit error and received bit counters. It is appropriate to
reset the BERT counters after the GTP transceiver channel is linked and stable.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 129

UG029 (v13.1) March 1, 2011

Analyzer Features

Clocking Settings

The TXUSRCLK Freq (MHz) indicator shows the approximate clocking frequency (in
MHz) of the TXUSRCLK port of the GTP transceiver. The accuracy of this status indicator
depends on the frequency of the system clock that was specified at compile-time.

The TXUSRCLK2 Freq (MHz) indicator shows the approximate clocking frequency (in
MHz) of the TXUSRCLK2 port of the GTP transceiver. The accuracy of this status indicator
depends on the frequency of the system clock that was specified at compile-time.

The RXUSRCLK Freq (MHz) indicator shows the approximate clocking frequency (in
MHz) of the RXUSRCLK port of the GTP transceiver. The accuracy of this status indicator
depends on the frequency of the system clock that was specified at compile-time.

The RXUSRCLK2 Freq (MHz) indicator shows the approximate clocking frequency (in
MHz) of the RXUSRCLK2 port of the GTP transceiver. The accuracy of this status indicator
depends on the frequency of the system clock that was specified at compile-time.

DRP Settings Panel

The DRP Settings panel contains a table that is made up of one or more vertical columns
and horizontal rows. Each column represents a specific active GTP transceiver. Each row
represents a specific DRP attribute or address.

When the radio button at the bottom of the panel is set to View By Attribute Name, all the
DRP attributes are displayed in alphabetical order. The Radix combo lets you choose
between Hex and Bin (binary). To change a value, just click in the text field where the value
is, type in a new value, and press Enter. The new value is immediately set in the MGT.

When the radio button at the bottom of the panel is set to View By Address, the raw
address are displayed in numerical order with their contents. The Radix combo lets you
choose between Hex and Bin (binary). To change a value, just click in the text field where
the value is, type in a new value, and press Enter. The new value is immediately set in the
MGT.

Port Settings Panel

The Port Settings panel contains a table that is made up of one or more vertical columns
and horizontal rows. Each column represents a specific active GTP transceiver. Each row
represents a specific MGT port. Not all ports are displayed because some are used in the
IBERT design to send and receive data.

The Radix combo lets you choose to display the value in either Hex or Bin (binary). Some
ports are read-only, and not editable. Those cells in the table look like labels. The ports in
the table that are editable look like text-fields, and placing the cursor in those fields, typing
a new value, and pressing Enter writes the new value to the MGT immediately.

http://www.xilinx.com

130 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

IBERT S6 GTP Toolbar and Menu Options

IBERT Console Options

The IBERT Console Options dialog allows you to select which columns and rows to
display in the IBERT Console. The left-hand panel selects the MGTs by location. Use the
Check All and Uncheck All buttons to select all or none of the MGTs.

The right-hand panel selects which rows are displayed in the MGT/BERT settings. Use the
Check All and Uncheck All buttons to select all or none of the rows. The Default button
sets up the Console to display the basic set of rows needed to determine the health of the
channels. The Default rows are Tile Location, TX PLL Status, RX PLL Status, Loopback
Mode, Channel Reset, TX Error Inject, Rx Sampling Point, TX Data Pattern, RX Data
pattern, Rx Bit Error Ratio, Rx Received Bit Count, Rx Bit Error Count, BERT Reset,
TXUSRCLK2 Freq, and RXUSRCLK2 Freq.

Import/Export Dialog

The Import/Export Dialog allows you to save and recall settings from a specific MGT, or
apply the setting of one MGT to others in the design. To import or export settings, use
IBERT_S6GTP > Import/Export Wizard or click the Import/Export Wizard button in the
toolbar.

The first screen of the wizard chooses the source of the MGT settings- either MGT or File.
If MGT is selected, choose among the available MGTs in the combo box. For File, click
Browse and navigate to the settings file. Click Next to go to the next screen.

The second screen is the destination screen. Any combination of the MGTs in the IBERT
design and a file are available. If File is enabled, click Browse to specify the file destination.

The third screen is the confirmation screen, summarizing the source and destination(s) for
the settings. Click Apply to execute the import or export. This operation cannot be undone.

Reset All

To reset all the channels in the IBERT core, use IBERT_S6GTP > Reset All or click the
Reset All button in the toolbar.

JTAG Scan Rate and Scan Now

The JTAG Scan Rate toolbar and IBERT_S6GTP > JTAG Scan Rate menu options are used
to select how frequently the Analyzer software queries the IBERT core for status
information. The default is 1s between queries, but it can be set to 250 ms, 500 ms, 1s, 2s, 5s,
or Manual Scan. When Manual Scan is selected, use IBERT_S6GTP > Scan Now or the
Scan Now (or S!) toolbar button to query the IBERT core.

Help

Viewing the Help Pages

The Analyzer help pages contain information for only the currently opened versions of the
software and each of the core units. Selecting Help > About: ChipScope Software displays
the version of the software. Selecting Help > About: Cores displays detailed core
parameters for every detected core. Individual core parameters can be displayed by right-
clicking on the unit in the project tree and selecting Show Core Info.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 131

UG029 (v13.1) March 1, 2011

ChipScope Pro ILA Waveform Toolbar Features

ChipScope Pro ILA Waveform Toolbar Features

In addition to the menu options, other Analyzer ILA waveform commands are available
on a toolbar residing directly below the Analyzer menu. The second set of toolbar buttons
is available only when the Trigger Setup window is open. The third and fourth sets of
toolbar buttons are only available when the Waveform window is active.

The toolbar buttons correspond to the following equivalent menu options:

• Open Cable/Search JTAG Chain: Automatically detects the cable, and queries the
JTAG chain to find its composition

• Turn On/Off Auto Core Status Polling: Green icon means polling is on, red icon
means polling is off. Same as JTAG Chain > Auto Core Status Poll

• Run: Same as Trigger Setup > Run (F5)

• Stop: Same as Trigger Setup > Stop Acquisition (F9)

• Trigger Immediate: Same as Trigger Setup > Trigger Immediate (Ctrl+F5)

• Go To X Marker: Same as Waveform > Go To > Go To X Marker

• Go To O Marker: Same as Waveform > Go To > Go To O Marker

• Go To Previous Trigger: Same as Waveform > Go To > Trigger > Previous

• Go To Next Trigger: Same as Waveform > Go To > Trigger > Next

• Zoom In: Same as Waveform > Zoom > Zoom In

• Zoom Out: Same as Waveform > Zoom > Zoom Out

• Fit Window: Same as Waveform > Zoom > Zoom Fit

ChipScope Pro Analyzer Command Line Options

On Windows systems, the Analyzer can be started either from the command line or from
the Start menu.

• On 32-bit Windows systems, you can invoke the analyzer from the command line by
running:

<XILINX_ISE_INSTALL>\bin\nt\analyzer.exe

• On 64-bit Windows systems, you can invoke the analyzer from the command line by
running:

<XILINX_ISE_INSTALL>\bin\nt64\analyzer.exe

• On 32-bit Linux systems, you can invoke the analyzer from the command line by
running:

<XILINX_ISE_INSTALL>/bin/lin/analyzer

• On 64-bit Linux systems, you can invoke the analyzer from the command line by
running:

<XILINX_ISE_INSTALL>/bin/lin64/analyzer

where <XILINX_ISE_INSTALL> represents the location where the Xilinx ISE Design
Suite tools are installed.

http://www.xilinx.com

132 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 4: Using the ChipScope Pro Analyzer

Optional Arguments

The following command line options are available, if run from the command line:

-geometry <width>x<height>+<left edge x coord>+<top edge y coord>

Set location, width and height of the Analyzer program window.

-project <path and filename>

Reads in specified project file at start. Default is not to read a project file at start up.

-init <path and filename>

Read specified init file at start up and write to the same file when the Analyzer exits.
The default is: %userprofile%\.chipscope\cs_analyzer.ini

-log <path and filename>

-log stdout

Write log messages to the specified file. Specifying stdout writes to standard output.
The default is: $HOME/.chipscope/cs_analyzer.log

Windows Command Line Example

C:\Xilinx\12.3\ISE_DS\ISE\bin\nt\analyzer.exe -log c:\proj\t\t.log -
init C:\proj\t\t.ini -project c:\proj\t\t.cpj -geometry 1000x300+30+600

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 133

UG029 (v13.1) March 1, 2011

Chapter 5

ChipScope Engine Tcl Interface

Overview

This interface provides Tcl scripting access to JTAG (Joint Test Action Group, IEEE
standard) download cables using the communication library in the ChipScope™ logic
analyzer engine. The purpose of the CSE/Tcl interface is to provide a simple scripting
system to access basic JTAG, FPGA, and VIO (virtual input/output) core functions. In a
few lines of Tcl script, you can scan and manipulate devices in the JTAG chain (and VIO
cores in those devices) through standard Xilinx® JTAG cables.

For further information on JTAG, see Configuration and Readback of Virtex FPGAs Using
(JTAG) Boundary Scan [See Reference 12, p. 227]. For information about Tcl, see Tcl
Developer Xchange [See Reference 25, p. 227].

Requirements

• A computer system running one of the supported operating systems described in the
ISE Design Suite Release Notes Guide [See Reference 13, p. 227].

• A supported JTAG cable such as Platform Cable USB, Parallel Cable IV, or Parallel
Cable III.

• A Tcl shell (xtclsh is provided in the ChipScope Pro and ISE® tool installations) or
the ActiveTcl 8.4 shell [See Reference 23, p. 227].

• The required environment variables are set up by using xtclsh.exe (on Windows)
or xtclsh (on Linux).

Limitations

The ChipScope Engine Tcl interface package favors simplicity over performance. Some
commands such as ::chipscope::csejtag_tap_shift_chain_ir and
::chipscope::csejtag_tap_shift_chain_dr transfer bits as hexadecimal strings
(for example, "30010A7") instead of as packed binary data structures. The extra overhead
in converting particularly large data strings does result in some loss of performance;
however, the simple design of the application programming interface (API) and the use of
the Tcl scripting language makes CSE/Tcl an easy-to-use means to interact with devices
and cores in the JTAG chain.

Note: The CSE/Tcl interface is only compatible with software that uses the CSE/Tcl interface to the

JTAG cable communication device (such as the Analyzer software tool and the Embedded

Development Kit (EDK) XMD software debugger tool).

http://www.xilinx.com

134 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

CSE/Tcl Command Summary

The CSE/Tcl interface commands belong to a namespace called ::chipscope::. The
CSE/Tcl interface is comprised of four categories of commands (see Table 5-1).

CseJtag Tcl Commands

The CseJtag Tcl command category consists of four commands (see Table 5-2), each having
one or more subcommands.

A summary of the CseJtag Tcl subcommands is shown in Table 5-3. See “CseJtag Tcl
Commands,” page 139 for additional information about these commands.

Note: Refer to the file csejtagglobals.tcl in the ChipScope Pro tool installation for all CseJtag Tcl

global variable declarations.

Table 5-1: CSE/Tcl Command Categories

Category Description

CseJtag JTAG interface status and control commands (see “CseJtag Tcl Commands”).

CseFpga
FPGA status and configuration commands (see “CseFpga Tcl Commands,”
page 137).

CseCore
ChipScope Pro core status commands (see “CseCore Tcl Commands,”
page 138).

CseVIO
ChipScope Pro VIO core status and control commands (see “CseVIO Tcl
Commands,” page 138).

Table 5-2: CseJtag Tcl Commands

Command Description

::chipscope::csejtag_session Manages CseJtag sessions. A session is used to
maintain all data and messaging associated with a
JTAG target. See Table 5-3 for a summary of all
subcommands for this command.

::chipscope::csejtag_db Interacts with the CseJtag JTAG database. The
CseJtag JTAG database contains all data associated
with known JTAG devices. See Table 5-4 for a
summary of all subcommands for this command.

::chipscope::csejtag_target Manages connections to CseJtag targets, such as
JTAG download cables, JTAG emulators, and other
JTAG devices. See Table 5-5, page 135 for a
summary of all subcommands for this command.

::chipscope::csejtag_tap Interacts with the JTAG Test Access Port (TAP) of
CseJtag targets. Operations include navigating the
TAP state machine and shifting data into and out of
the TAP. See Table 5-6, page 136 for a summary of all
subcommands for this command.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 135

UG029 (v13.1) March 1, 2011

CSE/Tcl Command Summary

Table 5-3: Summary of ::chipscope::csejtag_session Subcommands

Subcommand Description

create Creates and initializes a session.

destroy Destroys and frees up memory resources used by an existing
session.

get_api_version Gets the CseJtag API library version information.

send_message Sends a message using the session message router function.

Table 5-4: Summary of ::chipscope::csejtag_db Subcommands

Subcommand Description

add_device_data Adds device records to the JTAG database.

lookup_device Looks up device information in the JTAG database.

get_device_name_for_idcode Gets the name of a device from the JTAG database by
using an IDCODE.

parse_bsdl Extracts device data for a JTAG device by parsing a
Boundary Scan Description Language (BSDL) buffer.

parse_bsdl_file Extracts device data for a JTAG device by parsing a
Boundary Scan Description Language (BSDL) file.

Table 5-5: Summary of ::chipscope::csejtag_target Subcommands

Subcommand Description

open Opens a connection to a JTAG target and associate it with a session.

close Closes the connection to an open JTAG target and remove it from
the session.

is_connected Tests and returns the connection status of the target.

lock Attempts to obtain an exclusive lock on a JTAG target.

unlock Releases an exclusive lock on a JTAG target.

get_lock_status Gets the lock status of a JTAG target.

clean_locks Releases all cable locks and cleans up lock-related resources.

flush Flushes the data buffer of a JTAG target.

set_pin Sets the value of a JTAG target TAP pin.

get_pin Gets the value of a JTAG target TAP pin.

pulse_pin Pulses a JTAG target TAP pin.

wait_time Waits for a specified amount of time.

get_info Gets information associated with a JTAG target.

http://www.xilinx.com

136 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

Table 5-6: Summary of ::chipscope::csejtag_tap Subcommands

Subcommand Description

autodetect_chain Attempts to automatically detect all information
pertaining to the JTAG chain currently connected to
the target.

interrogate_chain Scans the JTAG chain to determine the length of the
chain and the IDCODE information of each device in
the chain.

get_device_count Gets the number of devices in the JTAG chain.

set_device_count Sets the number of devices in the JTAG chain.

get_irlength Gets the instruction register (IR) length of a device.

set_irlength Sets the instruction register (IR) length of a device.

get_device_idcode Gets the IDCODE of a device.

set_device_idcode Sets the IDCODE of a device.

navigate Navigates to a JTAG TAP state.

shift_chain_ir Shifts a stream of bits into and out of the instruction
register of the JTAG chain.

shift_chain_dr Shifts a stream of bits into and out of the data register
of the JTAG chain.

shift_device_ir Shifts a stream of bits into and out of the instruction
register of a particular device in the JTAG chain.

shift_device_dr Shifts a stream of bits into and out of the data register
of a particular device in the JTAG chain.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 137

UG029 (v13.1) March 1, 2011

CSE/Tcl Command Summary

CseFpga Tcl Commands

The CseFpga Tcl command category consists of several commands (see Table 5-7).

Note: Refer to the file csefpgaglobals.tcl in the ChipScope Pro tool installation for all CseFpga Tcl

global variable declarations.

Table 5-7: CseFpga Tcl Commands

Command Description

::chipscope::

csefpga_configure_device

Configures a FPGA device with the contents of a byte
array containing the contents of a .bit, .rbt, or .mcs file.

::chipscope::

csefpga_configure_device_

with_file

Configures a FPGA device with the contents of a .bit,
.rbt, or .mcs file.

::chipscope::csefpga_get_

config_reg
Reads the configuration register bits of the target
FPGA device.

::chipscope::

csefpga_get_instruction_

reg

Reads the instruction register of the target FPGA
device and format the configuration-specific status
bits.

::chipscope::csefpga_get_

usercode
Reads the USERCODE register of the target FPGA
device.

::chipscope::

csefpga_get_user_chain_

count

Determines the number of USER scan chain registers
in the target FPGA device.

::chipscope::

csefpga_is_config_

supported

Tests if configuration is supported for the target FPGA
device.

::chipscope::csefpga_is_

configured
Returns the configuration status of an FPGA device.

::chipscope::

csefpga_is_sys_mon_

supported

Tests if a System Monitor commands are supported
for the target FPGA device.

::chipscope::

csefpga_run_sys_mon_

command_sequence

Executes a sequence of reads and writes from/to
System Monitor registers.

::chipscope::csefpga_get_

sys_mon_reg
Reads from a System Monitor register.

::chipscope::csefpga_set_

sys_mon_reg
Writes to a System Monitor register.

::chipscope::csefpga_

assign_config_data_to_

device

Assign configuration data or mask to a specific device.

::chipscope::csefpga_

assign_config_data_file_to
_device

Assign configuration or mask data to a specific device.

http://www.xilinx.com

138 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

CseCore Tcl Commands

The CseCore Tcl command category consists of several commands (see Table 5-8).

Note: Refer to the file csecoreglobals.tcl in the ChipScope Pro tool installation for all CseCore Tcl

global variable declarations.

CseVIO Tcl Commands

The CseVIO Tcl command category consists of several commands (see Table 5-9).

Note: Refer to the file csevioglobals.tcl in the ChipScope Pro tool installation for all CseVIO Tcl

global variable declarations.

Table 5-8: CseCore Tcl Commands

Command Description

::chipscope::

csecore_get_core_count

Gets the number of cores attached to an ICON
(integrated controller) core that targets an FPGA
device and attaches to a particular USER scan chain
register.

::chipscope::

csecore_get_core_status

Retrieves the static status word from the target
ChipScope Pro core.

::chipscope::

csecore_is_cores_supported

Tests if a the target FPGA device supports ChipScope
Pro cores.

Table 5-9: CseVIO Tcl Commands

Command Description

::chipscope::csevio_get_core_info Reads the status word from the target VIO
core.

::chipscope::csevio_is_vio_core Determines whether the target core is a VIO
core.

::chipscope::csevio_init_core Initializes global variables associated with
the target VIO core.

::chipscope::csevio_terminate_core Removes global variables and releases
memory associated with the target VIO
core.

::chipscope::csevio_define_signal Defines a name for a specified VIO signal
bit.

::chipscope::csevio_define_bus Defines a name for a grouping of VIO signal
bits (called a “bus”).

::chipscope::csevio_undefine_name Removes a VIO signal/bus name and all
associated information.

::chipscope::csevio_write_values Writes values to the specified signal/bus of
the target VIO core.

::chipscope::csevio_read_values Reads values from the specified signal/bus
of the target VIO core.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 139

UG029 (v13.1) March 1, 2011

CseJtag Tcl Commands

CseJtag Tcl Commands

The following CseJtag Tcl Commands are described in detail in this section:

• ::chipscope::csejtag_session create

• ::chipscope::csejtag_session destroy

• ::chipscope::csejtag_session get_api_version

• ::chipscope::csejtag_session send_message

• ::chipscope::csejtag_target open

• ::chipscope::csejtag_target close

• ::chipscope::csejtag_target is_connected

• ::chipscope::csejtag_target lock

• ::chipscope::csejtag_target unlock

• ::chipscope::csejtag_target get_lock_status

• ::chipscope::csejtag_target clean_locks

• ::chipscope::csejtag_target flush

• ::chipscope::csejtag_target set_pin

• ::chipscope::csejtag_target get_pin

• ::chipscope::csejtag_target pulse_pin

• ::chipscope::csejtag_target wait_time

• ::chipscope::csejtag_target get_info

• ::chipscope::csejtag_tap autodetect_chain

• ::chipscope::csejtag_tap interrogate_chain

• ::chipscope::csejtag_tap get_device_count

• ::chipscope::csejtag_tap set_device_count

• ::chipscope::csejtag_tap get_irlength

• ::chipscope::csejtag_tap set_irlength

• ::chipscope::csejtag_tap get_device_idcode

• ::chipscope::csejtag_tap set_device_idcode

• ::chipscope::csejtag_tap navigate

• ::chipscope::csejtag_tap shift_chain_ir

• ::chipscope::csejtag_tap shift_device_ir

• ::chipscope::csejtag_tap shift_chain_dr

• ::chipscope::csejtag_tap shift_device_dr

• ::chipscope::csejtag_db add_device_data

• ::chipscope::csejtag_db lookup_device

• ::chipscope::csejtag_db get_device_name_for_idcode

• ::chipscope::csejtag_db get_irlength_for_idcode

• ::chipscope::csejtag_db parse_bsdl

• ::chipscope::csejtag_db parse_bsdl_file

http://www.xilinx.com

140 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csejtag_session create

This is typically the first subcommand call made to the ChipScope Engine. The session
handle that is returned by this command allows you to open and control JTAG targets. This
command also initializes the session with data obtained from various data files located in
the default directory called <LIBCSEJTAG_DLL_PATH>/../../data/cse, where
<LIBCSEJTAG_DLL_PATH> denotes the absolute location of the libCseJtag.dll file.

Syntax

::chipscope::csejtag_session create messageRouterFn [opt_args...]

Note: [opt_args...] is an optional list of arguments in string or list of string form.

Arguments

Returns

A session handle. An exception is thrown if the command fails.

Example

1. Create a new session with no optional arguments.

%set handle [::chipscope::csejtag_session create messageRouterFn]

2. Create a new session using the client/server libraries to a server called “lab_machine”
at port “50001”.

%set handle [::chipscope::csejtag_session create messageRouterFn

-server “lab_machine” -port “50001”]

Back to list of all CseJtag Tcl Commands

Table 5-10: Arguments for Subcommand ::chipscope::csejtag_session create

Argument Type Description

messageRouterFn Required

Message router function name. Use a value of 0 to route
all messages to stdout. Sample function declaration:

proc messageRouterFn {handle msgFlags
msg} { ... }

msgFlags return one of the following:

$CSE_MSG_ERROR

$CSE_MSG_WARNING

$CSE_MSG_STATUS

$CSE_MSG_INFO

$CSE_MSG_NOISE

$CSE_MSG_DEBUG

-server <host> Optional
Creates a session associated with the ChipScope server
host name denoted by <cs_server_host_name>.

-port <portnum> Optional
Creates a session associated with the ChipScope server
port number denoted by <cs_server_port_number>.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 141

UG029 (v13.1) March 1, 2011

CseJtag Tcl Commands

::chipscope::csejtag_session destroy

This command destroys an existing session and free all resources previously used by that
session.

Syntax

::chipscope::csejtag_session destroy handle

Arguments

Returns

An exception is thrown if the command fails.

Example

Destroy the specified session

%::chipscope::csejtag_session destroy $handle

Back to list of all CseJtag Tcl Commands

::chipscope::csejtag_session get_api_version

This command retrieves the version of the CseJtag API library.

Syntax

::chipscope::csejtag_session get_api_version

Arguments

There are no arguments for this command.

Returns

A Tcl list containing API version information. List elements are in the format:

{apiVersion versionString}

The apiVersion is the API version number and versionString is the build version
number. An exception is thrown if command fails.

Example

Obtain a list containing the API version number and the build number version string

%set api_info [::chipscope::csejtag_session get_api_version]

Back to list of all CseJtag Tcl Commands

Table 5-11: Arguments for Subcommand ::chipscope::csejtag_session create

Argument Type Description

handle Required
Handle to the session that is returned by
::chipscope::csejtag_session create.

http://www.xilinx.com

142 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csejtag_session send_message

This subcommand sends a message to the message router function of the CseJtag library.

Syntax

::chipscope::csejtag_session send_message handle msgType msg

Arguments

Returns

An exception is thrown if the command fails.

Example

Send the message "Hello World!" to the message router function.

%::chipscope::csejtag_session send_message $handle $CSE_MSG_INFO
"Hello World!"

Back to list of all CseJtag Tcl Commands

Table 5-12: Arguments for Subcommand ::chipscope::csejtag_session

send_message

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

msgType

The type of message that must be set to one of the following:

• $CSE_MSG_ERROR

• $CSE_MSG_WARNING

• $CSE_MSG_STATUS

• $CSE_MSG_INFO

• $CSE_MSG_NOISE

• $CSE_MSG_DEBUG

msg The message string.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 143

UG029 (v13.1) March 1, 2011

CseJtag Tcl Commands

::chipscope::csejtag_target open

This subcommand opens a JTAG target device and associates it with a session.

Note: Currently, only one JTAG target can be opened per session.

Syntax

::chipscope::csejtag_target open handle targetName
progressCallbackFunc [opt_args...]

Note: [opt_args...] is an optional list of arguments in string or list of string form.

Arguments

Table 5-14 shows valid combinations of targetName argument values and their optional
arguments.

Table 5-13: Arguments for Subcommand ::chipscope::csejtag_target open

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

targetName

Name of the JTAG target to open. See Table 5-14 for
available targetName and [optional args...]
combinations. If targetName is set to
$CSEJTAG_TARGET_AUTO, then the first available JTAG
cable target is opened.

progressCallback
Func

Progress callback function that can be used to monitor
progress of JTAG target operations. The format of the
progress callback function is:

proc progressCallbackFunc (handle
totalCount CurrentCount progressStatus)
{...}

The progress callback function must return either
$CSE_STOP or $CSE_CONTINUE. If no progress
callback function is necessary, a 0 should be passed into
this argument position.

Table 5-14: Argument targetName and [optional args...] combinations

targetName [optional args...]

$CSEJTAG_TARGET_AUTO N/A

$CSEJTAG_TARGET_PARALLEL "port={LPT1 | LPT2 | LPT3}"

"frequency={5000000 | 2500000 | 200000}"

$CSEJTAG_TARGET_PLATFORMUSB "port=USB2 (aliased to USB21) | USB21 | USB22 |
USB23 | ..."

"ESN=<electronic serial number string>"

"frequency={12000000 | 6000000 | 3000000 | 1500000
| 750000}"

http://www.xilinx.com

144 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

Returns

A list in the format:

{target_name plugin_name fw_ver driver_ver plugin_ver vendor frequency
port full_name target_uid rawinfo target_flags}

Where:

Note: An exception is thrown if the subcommand fails.

Example

1. Try to autodetect and open the target cable. Returns information on the opened target.

%set targetInfo [::chipscope::csejtag_target open $handle
$CSEJTAG_TARGET_AUTO progressFunc]

2. Try to open a Parallel cable in the port LPT1 with a frequency of 200000. Returns
information on the opened target.

%set targetInfo [::chipscope::csejtag_target open $handle
$CSEJTAG_TARGET_PARALLEL progressFunc “port=LPT1” “frequency=200000”]

Back to list of all CseJtag Tcl Commands

Value Description

target_name The same as the targetName string

plugin_name The plugin library name string

fw_ver The firmware version string

driver_ver The driver version string

plugin_ver The plugin version string

vendor The vendor string

frequency The frequency string

port The port string

full_name The full target name string

target_uid The target-unique ID string. For the Xilinx Platform Cable USB, this
is the Electronic Serial Number (ESN).

rawinfo The raw target info string

target_flags The integer containing target-specific flags

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 145

UG029 (v13.1) March 1, 2011

CseJtag Tcl Commands

::chipscope::csejtag_target close

This subcommand closes a previously opened JTAG target device.

Syntax

::chipscope::csejtag_target close handle

Arguments

Returns

An exception is thrown if the subcommand fails.

Example

Close the current target in the specified session.

%::chipscope::csejtag_target close $handle

Back to list of all CseJtag Tcl Commands

Table 5-15: Arguments for Subcommand ::chipscope::csejtag_target close

Argument Type Description

handle Required
Handle to the session that is returned by
::chipscope::csejtag_session create.

http://www.xilinx.com

146 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csejtag_target is_connected

This subcommand tests the connection status of a JTAG target device.

Syntax

::chipscope::csejtag_target is_connected handle

Arguments

Returns

Connection status:

− 1 indicates connection to target is open and active

− 0 indicates closed.

An exception is thrown if the subcommand fails.

Example

Return current target in the specified session.

%set isConnected (::chipscope::csejtag_target is_connected $handle)

Back to list of all CseJtag Tcl Commands

Table 5-16: Arguments for Subcommand ::chipscope::csejtag_target is_connected

Argument Type Description

handle Required
Handle to the session that is returned by
::chipscope::csejtag_session create.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 147

UG029 (v13.1) March 1, 2011

CseJtag Tcl Commands

::chipscope::csejtag_target lock

This subcommand attempts to obtain an exclusive lock on a previously opened JTAG
target device.

Syntax

::chipscope::csejtag_target lock handle msWait

Arguments

Returns

The lock status in the form of one of the following:

- $CSEJTAG_LOCKED_ME

- $CSEJTAG_LOCKED_OTHER

- $CSEJTAG_UNKNOWN

An exception is thrown if the subcommand fails.

Example

Attempt to obtain an exclusive target lock and wait at least 1000 milliseconds. Obtains the
status of the lock.

%set lockStatus [::chipscope::csejtag_target lock $handle 1000]

Back to list of all CseJtag Tcl Commands

Table 5-17: Arguments for Subcommand ::chipscope::csejtag_target lock

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

msWait
Wait time in milliseconds before giving up (-1 means
wait until lock is gained)

http://www.xilinx.com

148 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csejtag_target unlock

This subcommand releases an exclusive lock on a previously opened and locked JTAG
target device.

Syntax

::chipscope::csejtag_target unlock handle

Arguments

Returns

An exception is thrown if the subcommand fails.

Example

Unlock the target in the specified session.

%::chipscope::csejtag_target unlock $handle

Back to list of all CseJtag Tcl Commands

Table 5-18: Arguments for Subcommand ::chipscope::csejtag_target unlock

Argument Type Description

handle Required
Handle to the session that is returned by
::chipscope::csejtag_session create.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 149

UG029 (v13.1) March 1, 2011

CseJtag Tcl Commands

::chipscope::csejtag_target get_lock_status

This subcommand retrieves the lock status for the target device.

Syntax

::chipscope::csejtag_target get_lock_status handle

Arguments

Returns

Status of the lock in the form of one of the following:

- $CSEJTAG_LOCKED_ME

- $CSEJTAG_LOCKED_OTHER

- $CSEJTAG_UNKNOWN

An exception is thrown if the subcommand fails.

Example

Obtain the current lock status.

%set lockStatus [::chipscope::csejtag_target get_lock_status $handle]

Back to list of all CseJtag Tcl Commands

Table 5-19: Arguments for Subcommand ::chipscope::csejtag_target

get_lock_status

Argument Type Description

handle Required
Handle to the session that is returned by
::chipscope::csejtag_session create.

http://www.xilinx.com

150 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csejtag_target clean_locks

This subcommand cleans up all JTAG target locks.

Note: This subcommand should only be used as a last resort. The subcommand kills all sharing

semaphores, including those used by other processes and applications. It currently only cleans up

locks for JTAG cable targets.

Syntax

::chipscope::csejtag_target clean_locks handle

Arguments

Returns

An exception is thrown if the subcommand fails.

Example

Clean locks as a last resort because the application closed unexpectedly and
::chipscope::csejtag_target open does not open the target successfully.

%::chipscope::csejtag_target clean_locks $handle

Back to list of all CseJtag Tcl Commands

Table 5-20: Arguments for Subcommand ::chipscope::csejtag_target clean_locks

Argument Type Description

handle Required
Handle to the session that is returned by
::chipscope::csejtag_session create.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 151

UG029 (v13.1) March 1, 2011

CseJtag Tcl Commands

::chipscope::csejtag_target flush

This subcommand flushes the buffer associated with a previously opened and locked
JTAG target device.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock

subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_target flush handle

Arguments

Returns

An exception is thrown if the subcommand fails.

Example

Attempt to flush an opened and locked buffer of a JTAG target to make data writes occur
immediately.

%::chipscope::csejtag_target flush $handle

Back to list of all CseJtag Tcl Commands

Table 5-21: Arguments for Subcommand ::chipscope::csejtag_target flush

Argument Type Description

handle Required
Handle to the session that is returned by
::chipscope::csejtag_session create.

http://www.xilinx.com

152 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csejtag_target set_pin

This subcommand sets the value of a JTAG TAP pin for a previously opened and locked
JTAG target device.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock

subcommand before calling this subcommand.

If using this function to change the JTAG TAP state, please be aware that the CseJtag Tcl
library does not keep track of the JTAG TAP state. Before using any of the
::chipscope::csejtag_tap subcommands, use the ::chipscope::csejtag_tap
navigate subcommand to set the JTAG TAP state machine to the
$CSEJTAG_TEST_LOGIC_RESET state.

Syntax

::chipscope::csejtag_target set_pin handle pin value

Arguments

Returns

An exception is thrown if the subcommand fails.

Example

Set the TMS pin to 1.

%::chipscope::csejtag_target set_pin $handle $CSEJTAG_TMS 1

Back to list of all CseJtag Tcl Commands

Table 5-22: Arguments for Subcommand ::chipscope::csejtag_target set_pin

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

pin

JTAG TAP pin identifier {$CSEJTAG_TMS |
$CSEJTAG_TDI}. To change the $CSEJTAG_TCK pin, use the
subcommand ::chipscope::csejtag_target
pulse_pin.

value JTAG TAP pin value {1=set, 0=clear}

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 153

UG029 (v13.1) March 1, 2011

CseJtag Tcl Commands

::chipscope::csejtag_target get_pin

This subcommand retrieves the value of a JTAG TAP pin for a previously opened and
locked JTAG target device.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock

subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_target get_pin handle pin

Arguments

Returns

JTAG TAP pin value {1=set, 0=clear}

An exception is thrown if the subcommand fails.

Example

Get the current value of the TDO pin.

%set value [::chipscope::csejtag_target set_pin $handle $CSEJTAG_TDO]

Back to list of all CseJtag Tcl Commands

Table 5-23: Arguments for Subcommand ::chipscope::csejtag_target get_pin

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

pin
JTAG TAP pin identifier {$CSEJTAG_TMS | $CSEJTAG_TCK |
$CSEJTAG_TDI | $CSEJTAG_TDO}.

http://www.xilinx.com

154 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csejtag_target pulse_pin

This subcommand pulses the value of a JTAG TAP pin for a previously opened and locked
JTAG target device.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock

subcommand before calling this subcommand.

If using this function to change the JTAG TAP state, please be aware that the CseJtag Tcl
library does not keep track of the JTAG TAP state. Before using any of the
::chipscope::csejtag_tap subcommands, use the ::chipscope::csejtag_tap
navigate subcommand to set the JTAG TAP state machine to the
$CSEJTAG_TEST_LOGIC_RESET state.

Syntax

::chipscope::csejtag_target pulse_pin handle pin count

Arguments

Returns

An exception is thrown if the subcommand fails.

Example

Pulse the TCK pin five times.

%::chipscope::csejtag_target pulse_pin $handle $CSEJTAG_TCK 5

Back to list of all CseJtag Tcl Commands

Table 5-24: Arguments for Subcommand ::chipscope::csejtag_target pulse_pin

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

pin
JTAG TAP pin identifier {$CSEJTAG_TMS |
$CSEJTAG_TCK | $CSEJTAG_TDI}.

count
Number of times to pulse the JTAG TAP pin (pulse means
driving a 0, then a 1, then a 0 on the pin).

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 155

UG029 (v13.1) March 1, 2011

CseJtag Tcl Commands

::chipscope::csejtag_target wait_time

This subcommand waits for a specified amount of time (in microseconds).

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock

subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_target wait_time handle usecs

Arguments

Returns

An exception is thrown if the subcommand fails.

Example

Instruct the JTAG target to wait 1000 microseconds before performing another operation.

%::chipscope::csejtag_target wait_time $handle 1000

Back to list of all CseJtag Tcl Commands

Table 5-25: Arguments for Subcommand ::chipscope::csejtag_target wait_time

Argument Type Description

handle
Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

usecs Number of microseconds to wait.

http://www.xilinx.com

156 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csejtag_target get_info

This subcommand retrieves information from a previously opened JTAG target.

Note: A JTAG target lock does not need to be obtained prior to calling this function.

Syntax

::chipscope::csejtag_target get_info handle

Arguments

Returns

A list in the format:

{target_name plugin_name fw_ver driver_ver plugin_ver vendor frequency
port full_name target_uid rawinfo target_flags}

Where:

Note: An exception is thrown if the subcommand fails.

Example

Obtain information about the current JTAG target.

%set targetInfo [::chipscope::csejtag_target get_info $handle]

Back to list of all CseJtag Tcl Commands

Table 5-26: Arguments for Subcommand ::chipscope::csejtag_target get_info

Argument Type Description

handle Required
Handle to the session that is returned by
::chipscope::csejtag_session create.

Value Description

target_name The name of the JTAG target

plugin_name The plugin library name string

fw_ver The firmware version string

driver_ver The driver version string

plugin_ver The plugin version string

vendor The vendor string

frequency The frequency string

port The port string

full_name The full target name string

target_uid The target-unique ID string

rawinfo The raw target info string

target_flags The integer containing target-specific flags

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 157

UG029 (v13.1) March 1, 2011

CseJtag Tcl Commands

::chipscope::csejtag_tap autodetect_chain

This subcommand attempts to automatically detect the composition of the JTAG chain.
The subcommand first obtains the number of devices and IDCODE values for devices in
the JTAG chain. The IR lengths are then determined for the devices in the JTAG chain that
have an IDCODE. The IR lengths for devices that do not have corresponding IDCODEs
must be assigned manually. Upon success, all pertinent device information is determined
and set in the session. Some IEEE 1149.1 non-compliant devices might not be compatible
with this subcommand and might cause the entire chain to be detected incorrectly or not at
all.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock

subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_tap autodetect_chain handle algorithm

Arguments

Returns

An exception is thrown if the subcommand fails to detect the chain completely. In the case
of such an error, the devices in the JTAG chain must be detected and assigned manually.

Example

Attempt to automatically detect the chain using the default algorithm.

%::chipscope::csejtag_tap autodetect_chain $handle
$CSEJTAG_SCAN_DEFAULT

Back to list of all CseJtag Tcl Commands

Table 5-27: Arguments for Subcommand ::chipscope::csejtag_tap

autodetect_chain

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

algorithm

Algorithm used to determine the composition of the JTAG
chain. Can be set to one of {$CSEJTAG_SCAN_DEFAULT |
$CSEJTAG_SCAN_TLRSHIFT |
$CSEJTAG_SCAN_WALKING_ONES}

The CSEJTAG_SCAN_WALKING_ONES algorithm is:

• Set each device into BYPASS by shifting long stream of 1's
into IR

• Shift DR pattern into TDI and wait for pattern on TDO. The
number of shifts determines the number of devices in the
JTAG chain.

• Perform the CSEJTAG_SCAN_TLRSHIFT algorithm to get
IDCODEs for each device.

The CSEJTAG_SCAN_TLRSHIFT algorithm is:

• Navigate to TLR

Shift out bits until all IDCODEs (or BYPASS bits) are read.

http://www.xilinx.com

158 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csejtag_tap interrogate_chain

This subcommand scans the JTAG chain to obtain the IDCODE and number of devices in
the chain. Some IEEE 1149.1 non-compliant devices might not be compatible with this
subcommand and can cause the entire chain to be detected incorrectly or not at all. This
command does not update the instruction register (IR) lengths of each device.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock

subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_tap interrogate_chain handle algorithm

Arguments

Returns

An exception is thrown if the subcommand fails.

Example

Attempt to interrogate the chain using the default algorithm.

%::chipscope::csejtag_tap interrogate_chain $handle
$CSEJTAG_SCAN_DEFAULT

Back to list of all CseJtag Tcl Commands

Table 5-28: Arguments for Subcommand ::chipscope::csejtag_tap

interrogate_chain

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

algorithm

Algorithm used to determine the composition of the JTAG
chain. Can be set to one of {$CSEJTAG_SCAN_DEFAULT |
$CSEJTAG_SCAN_TLRSHIFT |
$CSEJTAG_SCAN_WALKING_ONES}

The CSEJTAG_SCAN_WALKING_ONES algorithm is:

• Set each device into BYPASS by shifting long stream of 1's
into IR

• Shift DR pattern into TDI and wait for pattern on TDO. The
number of shifts determines the number of devices in the
JTAG chain.

• Perform the CSEJTAG_SCAN_TLRSHIFT algorithm to get
IDCODEs for each device.

The CSEJTAG_SCAN_TLRSHIFT algorithm is:

• Navigate to TLR

• Shift out bits until all IDCODEs (or BYPASS bits) are read

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 159

UG029 (v13.1) March 1, 2011

CseJtag Tcl Commands

::chipscope::csejtag_tap get_device_count

This subcommand is used to get the number of devices in the current JTAG chain.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock

subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_tap get_device_count handle

Arguments

Returns

The number of devices in the chain.

An exception is thrown if the subcommand fails.

Example

Obtain the number of devices in the JTAG chain.

%set deviceCount [::chipscope::csejtag_tap get_device_count $handle]

Back to list of all CseJtag Tcl Commands

Table 5-29: Arguments for Subcommand ::chipscope::csejtag_tap

get_device_count

Argument Type Description

handle Required
Handle to the session that is returned by
::chipscope::csejtag_session create.

http://www.xilinx.com

160 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csejtag_tap set_device_count

This subcommand is used to set the number of devices in the current JTAG chain.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock

subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_tap set_device_count handle count

Arguments

Returns

An exception is thrown if the subcommand fails.

Example

Set the number of devices in the JTAG chain to four.

%::chipscope::csejtag_tap set_device_count $handle 4

Back to list of all CseJtag Tcl Commands

Table 5-30: Arguments for Subcommand ::chipscope::csejtag_tap

set_device_count

Argument Type Description

handle
Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

count Number of devices in the JTAG chain.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 161

UG029 (v13.1) March 1, 2011

CseJtag Tcl Commands

::chipscope::csejtag_tap get_irlength

This subcommand retrieves the instruction register (IR) length of a device in the current
JTAG chain. The IR length is used to determine the amount of padding required to shift an
instruction into a device register. TAP shift and navigate operations do not work until all
devices have the IR lengths set up correctly. The ::chipscope::csejtag_tap
autodetect_chain subcommand automatically sets up IR lengths for all devices in the
chain that support the IDCODE command.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock

subcommand before calling this subcommand. Also, the device count must be set prior to calling this

subcommand using the ::chipscope::csejtag_tap set_device_count.

Syntax

::chipscope::csejtag_tap get_irlength handle deviceIndex

Arguments

Returns

The length of the IR for the device.

An exception is thrown if the subcommand fails.

Example

Get the IR length of the device at index 0.

%set irLength [::chipscope::csejtag_tap get_irlength $handle 0]

Back to list of all CseJtag Tcl Commands

Table 5-31: Arguments for Subcommand ::chipscope::csejtag_tap get_irlength

Argument Type Description

handle
Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

deviceIndex Device index (0 to n-1) in the n-length JTAG chain.

http://www.xilinx.com

162 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csejtag_tap set_irlength

This subcommand sets the instruction register (IR) length of a single device in the current
JTAG chain. The IR length is used to determine the amount of padding required to shift an
instruction into a device register. TAP shift and navigate operations do not work until all
devices have the IR lengths set up correctly. The ::chipscope::csejtag_tap
autodetect_chain subcommand automatically sets up IR lengths for all devices in the
chain that support the IDCODE command.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock

subcommand before calling this subcommand. Also, the device count must be set prior to calling this

subcommand using the ::chipscope::csejtag_tap set_device_count.

Syntax

::chipscope::csejtag_tap set_irlength handle deviceIndex irLength

Arguments

Returns

An exception is thrown if the subcommand fails.

Example

Set the IR length of the device at index 0 to 11 bits.

%::chipscope::csejtag_tap set_irlength $handle 0 11

Back to list of all CseJtag Tcl Commands

Table 5-32: Arguments for Subcommand ::chipscope::csejtag_tap set_irlength

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

deviceIndex Device index (0 to n-1) in the n-length JTAG chain.

irLength Length of the IR (in bits)

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 163

UG029 (v13.1) March 1, 2011

CseJtag Tcl Commands

::chipscope::csejtag_tap get_device_idcode

This subcommand returns the 32-bit IDCODE for a given device in the current JTAG chain.
If the device does not support the IDCODE instruction, a null string is returned.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock

subcommand before calling this subcommand. Also, the device count must be set prior to calling this

subcommand using the ::chipscope::csejtag_tap set_device_count.

Syntax

::chipscope::csejtag_tap get_device_idcode handle deviceIndex

Arguments

Returns

A 32-character string of ones and zeros representing the 32-bit IDCODE of the device.

An exception is thrown if the subcommand fails.

Example

Get the IDCODE of the device at index 0

%set idcode [::chipscope::csejtag_tap get_device_idcode $handle 0]

Back to list of all CseJtag Tcl Commands

Table 5-33: Arguments for Subcommand ::chipscope::csejtag_tap

get_device_idcode

Argument Type Description

handle
Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

deviceIndex Device index (0 to n-1) in the n-length JTAG chain.

http://www.xilinx.com

164 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csejtag_tap set_device_idcode

This subcommand sets the IDCODE for a given device in the current JTAG chain. Passing
a null string indicates the device does not support the IDCODE instruction.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock

subcommand before calling this subcommand. Also, the device count must be set prior to calling this

subcommand using the ::chipscope::csejtag_tap set_device_count.

Syntax

::chipscope::csejtag_tap set_device_idcode handle deviceIndex idcode

Arguments

Returns

An exception is thrown if the subcommand fails.

Example

Set the IDCODE of the device at index 0 to 01010101010101010101010101010101.

%::chipscope::csejtag_tap set_device_idcode $handle 0
“01010101010101010101010101010101”

Back to list of all CseJtag Tcl Commands

Table 5-34: Arguments for Subcommand ::chipscope::csejtag_tap

set_device_idcode

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

deviceIndex Device index (0 to n-1) in the n-length JTAG chain.

idcode
A 32-character string of ones and zeros
representing the 32-bit IDCODE of the device.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 165

UG029 (v13.1) March 1, 2011

CseJtag Tcl Commands

::chipscope::csejtag_tap navigate

This subcommand is used to change the state of the TAP of a device in the JTAG chain.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock

subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_tap navigate handle newState clockRepeat
microseconds

Arguments

Returns

An exception is thrown if the subcommand fails.

Example

Navigate the TAP state to Test Logic Reset and keep it in this state for five additional clock
cycles.

%::chipscope::csejtag_tap navigate $handle $CSEJTAG_TEST_LOGIC_RESET 5
0

Back to list of all CseJtag Tcl Commands

Table 5-35: Arguments for Subcommand ::chipscope::csejtag_tap navigate

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

newState New state to navigate into.

clockRepeat
Number of additional times to pulse the TCK pin
after entering the new state.

microseconds
Number of microseconds to sleep after
navigating to the new state.

http://www.xilinx.com

166 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csejtag_tap shift_chain_ir

This subcommand is used to shift a stream of bits into and out of the instruction register of
the JTAG chain. No device padding is performed by this subcommand. For device-indexed
IR shifting, see ::chipscope::csejtag_tap shift_device_ir.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock

subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_tap shift_chain_ir handle shiftMode exitState
progressCallbackFunc bitCount hextdibuf [-hextdimask hextdimaskval] [-
hextdomask hextdomaskval]

Arguments

Returns

A buffer that is full of the data that is shifted out of the TDO pin of the JTAG TAP.

An exception is thrown if the subcommand fails.

Table 5-36: Arguments for Subcommand ::chipscope::csejtag_tap shift_chain_ir

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

shiftMode
{CSJTAG_SHIFT_READ | CSJTAG_SHIFT_WRITE |
CSJTAG_SHIFT_READWRITE)

exitState
State to end in after shift is complete (CSEJTAG_SHIFT_IR
if no state change is desired).

progressCallback
Func

Progress callback function that can be used to monitor
progress of JTAG target operations. The format of the
progress callback function is:

proc progressCallbackFunc (handle
totalCount CurrentCount progressStatus)
{...}

The progress callback function must return either
$CSE_STOP or $CSE_CONTINUE. If no progress callback
function is necessary, a 0 should be passed into this
argument position.

bitCount Number of bits to shift.

hextdibuf
Data buffer that holds the data bits to be written into TDI.
The least-significant bit is shifted into TDI first.

-hextdimask

hextdimaskval

Optional

Specifies that a mask word hextdimaskval should be
applied to the data buffer bits before the data is shifted into
the TDI pin of the JTAG TAP.

-hextdomask

hextdomaskval

Specifies that a mask word hextdomaskval should be
applied to the data buffer bits after the data is shifted out of
the TDO pin of the JTAG TAP.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 167

UG029 (v13.1) March 1, 2011

CseJtag Tcl Commands

Example

This function shifts in 64 ones into the instruction register, captures the 64 bits of received
data, and navigates to the Run Test Idle state when finished.

%set hextdobuf [::chipscope::csejtag_tap shift_chain_ir $handle
$CSEJTAG_SHIFT_READWRITE $CSEJTAG_RUN_TEST_IDLE progressFunc 64
“FFFFFFFFFFFFFFFF”]

Back to list of all CseJtag Tcl Commands

http://www.xilinx.com

168 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csejtag_tap shift_device_ir

This subcommand is used to shift a stream of bits into and out of the instruction register of
a particular device the JTAG chain. Device padding is performed by this subcommand by
putting all other devices into BYPASS mode. This subcommand should be called before
::chipscope::csejtag_tap shift_device_dr to ensure all non-target devices as
in BYPASS mode, otherwise unexpected and unintended results can occur. For raw data
shifting into the chain IR, see ::chipscope::csejtag_tap shift_chain_ir.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock

subcommand before calling this subcommand. Also, the number of bits shifted into the device IR

must be exactly equal to the IR length of the device, or the subcommand will fail.

Syntax

::chipscope::csejtag_tap shift_device_ir handle deviceIndex shiftMode
exitState progressCallbackFunc bitCount hextdibuf [-hextdimask
hextdimaskval] [-hextdomask hextdomaskval]

Arguments

Table 5-37: Arguments for Subcommand ::chipscope::csejtag_tap shift_device_ir

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

deviceIndex Device index (0 to n-1) in the n-length JTAG chain.

shiftMode
{CSJTAG_SHIFT_READ | CSJTAG_SHIFT_WRITE |
CSJTAG_SHIFT_READWRITE)

exitState
State to end in after shift is complete
(CSEJTAG_SHIFT_IR if no state change is desired).

progressCallback
Func

Progress callback function that can be used to monitor
progress of JTAG target operations. The format of the
progress callback function is:

proc progressCallbackFunc (handle totalCount
CurrentCount progressStatus) {...}

The progress callback function must return either
$CSE_STOP or $CSE_CONTINUE. If no progress callback
function is necessary, a 0 should be passed into this
argument position.

bitCount Number of bits to shift.

hextdibuf
Data buffer that holds the data bits to be written into TDI.
The least-significant bit is shifted into TDI first.

-hextdimask

hextdimaskval

Optional

Specifies that a mask word hextdimaskval should be
applied to the data buffer bits before the data is shifted into
the TDI pin of the JTAG TAP.

-hextdomask

hextdomaskval

Specifies that a mask word hextdomaskval should be
applied to the data buffer bits after the data is shifted out of
the TDO pin of the JTAG TAP.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 169

UG029 (v13.1) March 1, 2011

CseJtag Tcl Commands

Returns

A buffer that is full of the data that is shifted out of the TDO pin of the JTAG TAP.

An exception is thrown if the subcommand fails.

Example

This function shifts in 11 ones into the instruction register of the device at index 1, captures
the 11 bits of received data, and navigates to the Run Test Idle state when finished.

%set hextdobuf [::chipscope::csejtag_tap shift_device_ir $handle 1
$CSEJTAG_SHIFT_READWRITE $CSEJTAG_RUN_TEST_IDLE progressFunc 11 “7FF”]

Back to list of all CseJtag Tcl Commands

http://www.xilinx.com

170 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csejtag_tap shift_chain_dr

This subcommand is used to shift a stream of bits into and out of the data register (DR) of
the JTAG chain. No device padding is performed by this subcommand. For device-indexed
DR shifting, see ::chipscope::csejtag_tap shift_device_dr.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock

subcommand before calling this subcommand.

Syntax

::chipscope::csejtag_tap shift_chain_dr handle shiftMode exitState
progressCallbackFunc bitCount hextdibuf [-hextdimask hextdimaskval] [-
hextdomask hextdomaskval]

Arguments

Returns

A buffer that is full of the data that is shifted out of the TDO pin of the JTAG TAP.

An exception is thrown if the subcommand fails.

Table 5-38: Arguments for Subcommand ::chipscope::csejtag_tap shift_chain_dr

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

shiftMode
{CSJTAG_SHIFT_READ | CSJTAG_SHIFT_WRITE |
CSJTAG_SHIFT_READWRITE)

exitState
State to end in after shift is complete
(CSEJTAG_SHIFT_DR if no state change is desired).

progressCallback
Func

Progress callback function that can be used to monitor
progress of JTAG target operations. The format of the
progress callback function is:

proc progressCallbackFunc (handle totalCount
CurrentCount progressStatus) {...}

The progress callback function must return either
$CSE_STOP or $CSE_CONTINUE. If no progress callback
function is necessary, a 0 should be passed into this
argument position.

bitCount Number of bits to shift.

hextdibuf
Data buffer that holds the data bits to be written into TDI.
The least-significant bit is shifted into TDI first.

-hextdimask

hextdimaskval

Optional

Specifies that a mask word hextdimaskval should be
applied to the data buffer bits before the data is shifted into
the TDI pin of the JTAG TAP.

-hextdomask

hextdomaskval

Specifies that a mask word hextdomaskval should be
applied to the data buffer bits after the data is shifted out of
the TDO pin of the JTAG TAP.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 171

UG029 (v13.1) March 1, 2011

CseJtag Tcl Commands

Example

This function shifts in 64 ones into the instruction register, captures the 64 bits of received
data, and navigates to the Run Test Idle state when finished.

%set hextdobuf [::chipscope::csejtag_tap shift_chain_dr $handle
$CSEJTAG_SHIFT_READWRITE $CSEJTAG_RUN_TEST_IDLE progressFunc 64
“FFFFFFFFFFFFFFFF”]

Back to list of all CseJtag Tcl Commands

http://www.xilinx.com

172 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csejtag_tap shift_device_dr

This subcommand is used to shift a stream of bits into and out of the data register of a
particular device the JTAG chain. Device padding is performed by this subcommand by
assuming all non-target devices are in BYPASS mode, then adding the necessary heading
and trailing bits to accommodate for the position of the target device in the chain. For raw
data shifting into the chain DR, see ::chipscope::csejtag_tap shift_chain_dr.

Note: The JTAG target must be locked by using the ::chipscope::csejtag_target lock

subcommand before calling this subcommand. This subcommand should be called before

::chipscope::csejtag_tap shift_device_dr to ensure all non-target devices as in

BYPASS mode, otherwise unexpected and unintended results can occur.

Syntax

::chipscope::csejtag_tap shift_device_dr handle deviceIndex shiftMode
exitState progressCallbackFunc bitCount hextdibuf [-hextdimask
hextdimaskval] [-hextdomask hextdomaskval]

Arguments

Table 5-39: Arguments for Subcommand ::chipscope::csejtag_tap shift_device_dr

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

deviceIndex Device index (0 to n-1) in the n-length JTAG chain.

shiftMode
{CSJTAG_SHIFT_READ | CSJTAG_SHIFT_WRITE |
CSJTAG_SHIFT_READWRITE)

exitState
State to end in after shift is complete
(CSEJTAG_SHIFT_DR if no state change is desired).

progressCallback
Func

Progress callback function that can be used to monitor
progress of JTAG target operations. The format of the
progress callback function is:

proc progressCallbackFunc (handle totalCount
CurrentCount progressStatus) {...}

The progress callback function must return either
$CSE_STOP or $CSE_CONTINUE. If no progress callback
function is necessary, a 0 should be passed into this
argument position.

bitCount Number of bits to shift.

hextdibuf
Data buffer that holds the data bits to be written into TDI.
The least-significant bit is shifted into TDI first.

-hextdimask

hextdimaskval

Optional

Specifies that a mask word hextdimaskval should be
applied to the data buffer bits before the data is shifted into
the TDI pin of the JTAG TAP.

-hextdomask

hextdomaskval

Specifies that a mask word hextdomaskval should be
applied to the data buffer bits after the data is shifted out
of the TDO pin of the JTAG TAP.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 173

UG029 (v13.1) March 1, 2011

CseJtag Tcl Commands

Returns

A buffer that is full of the data that is shifted out of the TDO pin of the JTAG TAP.

An exception is thrown if the subcommand fails.

Example

This function shifts in 11 ones into the data register of the device at index 1, captures the 11
bits of received data, and navigates to the Run Test Idle state when finished.

%set hextdobuf [::chipscope::csejtag_tap shift_device_dr $handle 1
$CSEJTAG_SHIFT_READWRITE $CSEJTAG_RUN_TEST_IDLE progressFunc 11 “7FF”]

Back to list of all CseJtag Tcl Commands

http://www.xilinx.com

174 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csejtag_db add_device_data

This subcommand is used to read device records from a file and add it to the memory-
based lookup table inside the CseJtag library.

Note: The file format and device record structure is the same as the idcode.lst file.

Syntax

::chipscope::csejtag_db add_device_data handle filename buf bufLen

Arguments

Returns

An exception is thrown if the subcommand fails.

Example

Adding data from the file my_idcode.lst to the internal device database. Also, store the
data record buffer and buffer size in local variables.

%::chipscope::csejtag_db add_device_data $handle “my_idcode.lst”
$my_idcode_buf $my_idcode_bufLen

Back to list of all CseJtag Tcl Commands

Table 5-40: Arguments for Subcommand ::chipscope::csejtag_db add_device_data

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

filename
String containing filename from which device records are
read

buf
String containing device records in the same format and
structure as the idcode.lst file.

bufLen Size of the buffer (in bytes or characters)

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 175

UG029 (v13.1) March 1, 2011

CseJtag Tcl Commands

::chipscope::csejtag_db lookup_device

This subcommand is used to look up a device in the database using the device IDCODE.

Syntax

::chipscope::csejtag_db lookup_device handle idcode

Arguments

Returns

A list in the format:

{deviceName irlen cmd_bypass}

where

deviceName

String containing the name of the device

irlen

Number of bits in the IR of the device

cmd_bypass

String containing the BYPASS instruction for the device (usually all ones)

An exception is thrown if the subcommand fails.

Example

Look in the database for the device information belonging to IDCODE
01010101010101010101010101010101.

%set deviceInfo [::chipscope::csejtag_db lookup_device $handle
“01010101010101010101010101010101”]

Back to list of all CseJtag Tcl Commands

Table 5-41: Arguments for Subcommand ::chipscope::csejtag_db lookup_device

Argument Type Description

handle
Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

idcode IDCODE for the desired device.

http://www.xilinx.com

176 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csejtag_db get_device_name_for_idcode

This subcommand is used to get the name of a device in the database using the device
IDCODE.

Syntax

::chipscope::csejtag_db get_device_name_for_idcode handle idcode

Arguments

Returns

A string containing the device name.

An exception is thrown if the subcommand fails.

Example

Look in the database for the name of the device belonging to IDCODE
01010101010101010101010101010101.

%set deviceName [::chipscope::csejtag_db get_device_name_for_idcode
$handle “01010101010101010101010101010101”]

Back to list of all CseJtag Tcl Commands

Table 5-42: Arguments for Subcommand ::chipscope::csejtag_db

get_device_name_for_idcode

Argument Type Description

handle
Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

idcode IDCODE for the desired device.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 177

UG029 (v13.1) March 1, 2011

CseJtag Tcl Commands

::chipscope::csejtag_db get_irlength_for_idcode

This subcommand is used to get the IR length of a device in the database using the device
IDCODE.

Syntax

::chipscope::csejtag_db get_irlength_for_idcode handle idcode

Arguments

Returns

A string containing the size of the IR (in bits).

An exception is thrown if the subcommand fails.

Example

Look in the database for the IR length of the device belonging to IDCODE
01010101010101010101010101010101.

%set irlen [::chipscope::csejtag_db get_irlength_for_idcode $handle
“01010101010101010101010101010101”]

Back to list of all CseJtag Tcl Commands

Table 5-43: Arguments for Subcommand ::chipscope::csejtag_db

get_irlength_for_idcode

Argument Type Description

handle
Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

idcode IDCODE for the desired device.

http://www.xilinx.com

178 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csejtag_db parse_bsdl

This subcommand is used to extract device information from a Boundary Scan Description
Language (BSDL) buffer.

Syntax

::chipscope::csejtag_db parse_bsdl handle filename buf bufLen

Arguments

Returns

A list in the format:

{deviceName irlen idcode cmd_bypass}

Where:

deviceName

String containing the name of the device

irlen

Number of bits in the IR of the device

idcode

IDCODE of the device

cmd_bypass

String containing the BYPASS instruction for the device (usually all ones)

An exception is thrown if the subcommand fails.

Example

Extract device information from the file “device.bsd” that was placed in the buffer
bsdl_buf of size bsdl_bufLen.

%::chipscope::csejtag_db parse_bsdl $handle “device.bsd” $bsdl_buf
$bsdl_bufLen

Back to list of all CseJtag Tcl Commands

Table 5-44: Arguments for Subcommand ::chipscope::csejtag_db parse_bsdl

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

filename Filename of local BSDL file (for debugging only)

buf Buffer containing the contents of the entire BSDL file

bufLen Size of the buffer buf (in bytes or characters)

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 179

UG029 (v13.1) March 1, 2011

CseJtag Tcl Commands

::chipscope::csejtag_db parse_bsdl_file

This subcommand is used to extract device information from a Boundary Scan Description
Language (BSDL) file.

Syntax

::chipscope::csejtag_db parse_bsdl_file handle filename

Arguments

Returns

A list in the format:

{deviceName irlen idcode cmd_bypass}

Where:

deviceName

String containing the name of the device

irlen

Number of bits in the IR of the device

idcode

IDCODE of the device

cmd_bypass

String containing the BYPASS instruction for the device (usually all ones)

An exception is thrown if the subcommand fails.

Example

Extract device information from the file device.bsd.

%::chipscope::csejtag_db parse_bsdl_file $handle “device.bsd”

Back to list of all CseJtag Tcl Commands

Table 5-45: Arguments for Subcommand ::chipscope::csejtag_db parse_bsdl_file

Argument Type Description

handle
Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

filename Filename of local BSDL file.

http://www.xilinx.com

180 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

CseFpga Command Details

The following CseFpga Commands are described in detail in this section:

• ::chipscope::csefpga_configure_device

• ::chipscope::csefpga_configure_device_with_file

• ::chipscope::csefpga_get_config_reg

• ::chipscope::csefpga_get_instruction_reg

• ::chipscope::csefpga_get_usercode

• ::chipscope::csefpga_get_user_chain_count

• ::chipscope::csefpga_is_config_supported

• ::chipscope::csefpga_is_configured

• ::chipscope::csefpga_is_sys_mon_supported

• ::chipscope::csefpga_get_sys_mon_reg

• ::chipscope::csefpga_set_sys_mon_reg

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 181

UG029 (v13.1) March 1, 2011

CseFpga Command Details

::chipscope::csefpga_configure_device

Configures an FPGA device with the contents of a byte array containing the contents of a
BIT, RBT, or MCS file.

Syntax

::chipscope::csefpga_configure_device handle deviceIndex format
fileData fileDataByteLen progressFunc<optional args>

Arguments

Table 5-46: Arguments for Subcommand ::chipscope::csefpga_configure_device

Argument Type Description

handle Required
Handle to the session that is returned by
::chipscope::csejtag_session create

deviceIndex Required Device index (0 to n-1) in the n-length JTAG chain.

format Required
Format of the configuration file. Valid choices are “bit”,
“rbt”, and “mcs”.

fileData Required

Contents of configuration file in an array of bytes. The
"bit" file must be read in "binary mode". Other formats
may be read in "binary mode" or "text mode". Do not
remove Windows/unix end-of-line characters from
fileData.

fileDataByteLen Required Length of fileData byte array (in bytes).

<optional args> Optional
Enables additional device configuration options. A list of
configuration options is provided in Table 5-47.

progressFunc Required

Function to show progress while shifting in
configuration data into the device. The format of the
progress callback function is:

proc progressFunc (handle totalCount

CurrentCount progressStatus) {...}

The progress callback function must return either

$CSE_STOP or $CSE_CONTINUE. If no progress callback

function is necessary, a 0 should be passed into this

argument position.

Table 5-47: Configuration Options

Option Name Values Description

reset_device reset_device=true,
reset_device=false

Controls whether or not device is reset during configuration.
Default is "reset_device=true".

shutdown_sequence shutdown_sequence=

true,
shutdown_sequence=

false

 Use the JTAG SHUTDOWN command to shut down device. For
Spartan®-3 and Spartan-6 FPGA devices, this option has the
same effect as "reset_device=true". Default is
"shutdown_sequence=false".

http://www.xilinx.com

182 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

Returns

A bitfield containing the resulting status of the configuration. The bitfield can be logically
AND'ed with one or more of the following values to check the corresponding status
information:

$CSE_INTERNAL_DONE_HIGH_STATUS

$CSE_EXTERNAL_DONE_HIGH_STATUS

$CSE_CRC_ERROR_STATUS

$CSE_BITSTREAM_READ_ENABLED

$CSE_BITSTREAM_WRITE_ENABLED

An exception is thrown if the command fails.

Example

Configure the third device in the JTAG chain with the file mydesign.bit.

%set filename "mydesign.bit"

%set fp [open $filename r]

%fconfigure $fp -translation binary -blocking 1

%set fileData [read $fp]

%close $fp

%set configStatus [::chipscope::csefpga_configure_device $handle 2
"bit" $CSE_DEFAULT_OPTIONS $fileData [file size $filename]
"progressCallBack"]

Back to list of all CseFpga Command Details

verify_internal_done verify_internal_done
=true,
verify_internal_done
=false

 Read internal device DONE status after configuration from the
device JTAG instruction register. Default is
"verify_internal_done=true".

verify_external_done verify_external_done
=true,
verify_external_done
=false

Read external device DONE status after configuration from the
configuration status register. If you tie DONE device package
pins together, the DONE status is a logical AND of all device
DONE pins which have their DONE device package pins tied
together. Default is "verify_external_done=false".

verify_crc verify_crc=true,
verify_crc=false

Read CRC status after configuration from the device
configuration status register. Default is
"verify_crc=false".

use_assigned_config_

data
use_assigned_config_
data=true,
use_assigned_config_
data=false

Use the configuration and/or mask data provided by
::chipscope::csefpga_assign_config_data_to_de
vice or
::chipscope::csefpga_assign_config_data_file_
to_device. Default is
"use_assigned_config_data=false".

Table 5-47: Configuration Options (Cont’d)

Option Name Values Description

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 183

UG029 (v13.1) March 1, 2011

CseFpga Command Details

::chipscope::csefpga_configure_device_with_file

Configures a FPGA device with the contents of a .bit, .rbt or .mcs file.

Syntax

::chipscope::csefpga_configure_device_with_file handle deviceIndex
filename options progressFunc

Arguments

Returns

A bitfield containing the resulting status of the configuration. The bitfield can be logically
AND'ed with one or more of the following values to check the corresponding status
information:

$CSE_INTERNAL_DONE_HIGH_STATUS

$CSE_EXTERNAL_DONE_HIGH_STATUS

$CSE_CRC_ERROR_STATUS

$CSE_BITSTREAM_READ_ENABLED

$CSE_BITSTREAM_WRITE_ENABLED

An exception is thrown if the command fails.

Example

Configure the third device in the JTAG chain with the file mydesign.bit.

%set fileName "mydesign.bit"

%set configStatus [::chipscope::csefpga_configure_device $handle 2
$fileName $CSE_DEFAULT_OPTIONS "progressCallBack"]

Back to list of all CseFpga Command Details

Table 5-48: Arguments for Subcommand ::chipscope::csefpga_configure_device_with_file

Argument Type Description

handle Required
Handle to the session that is returned by
::chipscope::csejtag_session create

deviceIndex Device index (0 to n-1) in the n-length JTAG chain.

filename Filename of the “.bit”, “.rbt”, or “.mcs” configuration file.

<optional args> Optional
Enables additional device configuration options. A list of
configuration options is provided in Table 5-47.

progressFunc

Function to show progress while shifting in
configuration data into the device. The format of the
progress callback function is:

proc progressFunc (handle totalCount

CurrentCount progressStatus) {...}

The progress callback function must return either

$CSE_STOP or $CSE_CONTINUE. If no progress callback

function is necessary, a 0 should be passed into this

argument position.

http://www.xilinx.com

184 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csefpga_get_config_reg

Reads the configuration register bits of the target FPGA device.

Syntax

::chipscope::csefpga_get_config_reg handle deviceIndex bitCount

Arguments

Returns

A list in the format:

{hexReg bitNameBuf}

where:

hexReg

String containing the register value (in hexadecimal).

bitNameBuf

A comma separated list of strings that represent configuration register bit names.

An exception is thrown if the command fails.

Example

Read the contents of the configuration register of the third device in the JTAG chain.

%set ConfigReg [csefpga_get_config_reg $handle 2 $DeviceBitCount]

Back to list of all CseFpga Command Details

Table 5-49: Arguments for Subcommand ::chipscope::csefpga_get_config_reg

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create

deviceIndex Device index (0 to n-1) in the n-length JTAG chain.

bitCount Length of the configuration register (in bits)

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 185

UG029 (v13.1) March 1, 2011

CseFpga Command Details

::chipscope::csefpga_get_instruction_reg

Reads the instruction register of the target FPGA device and format the configuration-
specific status bits.

Syntax

::chipscope::csefpga_get_instruction_reg handle deviceIndex bitCount

Arguments

Returns

A list in the format:

{hexReg bitNameBuf}

where:

hexReg

String containing the register value (in hexadecimal).

bitNameBuf

A comma separated list of strings that represent configuration register bit names.

An exception is thrown if the command fails.

Example

Read the contents of the configuration register of the third device in the JTAG chain.

%set InstReg [csefpga_get_instruction_reg $handle 2 $DeviceBitCount]

Back to list of all CseFpga Command Details

Table 5-50: Arguments for Subcommand

::chipscope::csefpga_get_instruction_reg

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create

deviceIndex Device index (0 to n-1) in the n-length JTAG chain.

bitCount Length of the configuration register (in bits)

http://www.xilinx.com

186 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csefpga_get_usercode

Reads the USERCODE register of the target FPGA device.

Syntax

::chipscope::csefpga_get_usercode handle deviceIndex

Arguments

Returns

The contents of the USERCODE register (in hexadecimal).

An exception is thrown if the command fails.

Example

Read the contents of the USERCODE register of the third device in the JTAG chain.

%set usercode [csefpga_get_usercode $handle 2]

Back to list of all CseFpga Command Details

Table 5-51: Arguments for Subcommand ::chipscope::csefpga_get_usercode

Argument Type Description

handle
Required

Handle to the session that is returned by
::chipscope::csejtag_session create

deviceIndex Device index (0 to n-1) in the n-length JTAG chain.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 187

UG029 (v13.1) March 1, 2011

CseFpga Command Details

::chipscope::csefpga_get_user_chain_count

Determines the number of USER scan chain registers in the target FPGA device.

Syntax

::chipscope::csefpga_get_user_chain_count handle idcode

Arguments

Returns

The number of USER scan chain registers in the device (0 if the device does not have any
USER scan chain registers).

An exception is thrown if the command fails.

Example

Get the number of USER scan chain registers supported by the device to which $idcode
refers.

%set numUserRegs [csefpga_get_user_chain_count $handle $idcode]

Back to list of all CseFpga Command Details

Table 5-52: Arguments for Subcommand

::chipscope::csefpga_get_user_chain_count

Argument Type Description

handle
Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

idcode IDCODE for the desired device.

http://www.xilinx.com

188 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csefpga_is_config_supported

Tests if configuration is supported for the target FPGA device.

Syntax

::chipscope::csefpga_is_config_supported handle idcode

Arguments

Returns

Returns 1 if configuration of the device referred to by idcode is supported by the
csefpga_configure_device command, otherwise returns 0.

An exception is thrown if the command fails.

Example

Determine if the device referred to by $idcode can be configured.

%set isConfigurable [csefpga_is_config_supported $handle $idcode]

Back to list of all CseFpga Command Details

Table 5-53: Arguments for Subcommand

::chipscope::csefpga_is_config_supported

Argument Type Description

handle
Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

idcode IDCODE for the desired device.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 189

UG029 (v13.1) March 1, 2011

CseFpga Command Details

::chipscope::csefpga_is_configured

Returns the configuration status of an FPGA device.

Syntax

::chipscope::csefpga_is_configured handle deviceIndex

Arguments

Returns

Returns 1 if the device referred to by deviceIndex is configured, otherwise returns 0.

An exception is thrown if the command fails.

Example

Get the configuration status of the third device in the JTAG chain.

%set isConfigured [csefpga_is_configured $handle 2]

Back to list of all CseFpga Command Details

Table 5-54: Arguments for Subcommand ::chipscope::csefpga_is_configured

Argument Type Description

handle
Required

Handle to the session that is returned by
::chipscope::csejtag_session create

deviceIndex Device index (0 to n-1) in the n-length JTAG chain.

http://www.xilinx.com

190 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csefpga_is_sys_mon_supported

Tests if a System Monitor commands are supported for the target FPGA device.

Syntax

::chipscope::csefpga_is_sys_mon_supported handle idcode

Arguments

Returns

Returns 1 if the device referred to by idcode contains a System Monitor block, otherwise
returns 0.

An exception is thrown if the command fails.

Example

Determine if the device referred to by $idcode contains a System Monitor block

%set hasSysMon [csefpga_is_sys_mon_supported $handle $idcode]

Back to list of all CseFpga Command Details

Table 5-55: Arguments for Subcommand

::chipscope::csefpga_is_sys_mon_supported

Argument Type Description

handle
Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

idcode IDCODE for the desired device.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 191

UG029 (v13.1) March 1, 2011

CseFpga Command Details

::chipscope::csefpga_run_sys_mon_command_sequence

Executes a sequence of reads and writes from/to System Monitor registers.

Syntax

::chipscope::csefpga_run_sys_mon_command_sequence handle deviceIndex
[list hexAddresses...] [list hexInData...] [list setModes...]
commandCount

Arguments

Returns

A list containing commandCount elements each of which represents a register read value.
Note that the data element is valid if the corresponding setModes element is zero.

An exception is thrown if the command fails.

Example

For the second device in the JTAG chain, write 0x55AA to system monitor DRP register
address 0x10 and read from DRP register address 0x11.

%set hexOutData [csefpga_run_sys_mon_command_sequence $handle 1 [list
10 11] [list 55AA 0000] [list 1 0] 2]

Back to list of all CseFpga Command Details

Table 5-56: Arguments for Subcommand

::chipscope::csefpga_run_sys_mon_command_sequence

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create

deviceIndex Device index (0 to n-1) in the n-length JTAG chain.

[list hexAddresses...]
List of System Monitor DRP register addresses (in
hexadecimal) to be accessed. This number of elements in
this list is dictated by commandCount.

[list hexInData...]

List of data to be written to System Monitor DRP
registers specified by the list of hexAddresses. The
hexInData element is only written if the corresponding
setModes element is non-zero. This number of elements
in this list is dictated by commandCount.

[list setModes...]
List of setMode flags. Zero indicates read data from
register, non-zero indicates write. This number of
elements in this list is dictated by commandCount.

commandCount
Number of commands (and number of elements in each
list argument)

http://www.xilinx.com

192 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csefpga_get_sys_mon_reg

Reads from a System Monitor register.

Syntax

::chipscope::csefpga_get_sys_mon_reg handle deviceIndex hexAddress

Arguments

Returns

A data value (in hexadecimal) read from the System Monitor DRP register at address
hexAddress.

An exception is thrown if the command fails.

Example

For the second device in the JTAG chain, read the System Monitor register at address 0x07.

%set hexOutData [csefpga_get_sys_mon_reg $handle 1 7]

Back to list of all CseFpga Command Details

Table 5-57: Arguments for Subcommand ::chipscope::csefpga_get_sys_mon_reg

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create

deviceIndex Device index (0 to n-1) in the n-length JTAG chain.

hexAddress
System Monitor DRP register address (in hexadecimal) to
be read from.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 193

UG029 (v13.1) March 1, 2011

CseFpga Command Details

::chipscope::csefpga_set_sys_mon_reg

Writes to a System Monitor register.

Syntax

::chipscope::csefpga_set_sys_mon_reg handle deviceIndex hexAddress
hexInData

Arguments

Returns

An exception is thrown if the command fails.

Example

For the second device in the JTAG chain, write 0xABCD to the System Monitor register at
address 0x09

%csefpga_set_sys_mon_reg $handle 1 9 abcd

Back to list of all CseFpga Command Details

Table 5-58: Arguments for Subcommand ::chipscope::csefpga_set_sys_mon_reg

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create

deviceIndex Device index (0 to n-1) in the n-length JTAG chain.

hexAddress
System Monitor DRP register address (in hexadecimal) to
be written to.

hexInData
Data value (in hexadecimal) to be written to the System
Monitor DRP register.

http://www.xilinx.com

194 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

CseCore Command Details

The following CseFpga Commands are described in detail in this section:

• ::chipscope::csecore_get_core_count

• ::chipscope::csecore_get_core_status

• ::chipscope::csecore_is_cores_supported

::chipscope::csecore_get_core_count

Gets the number of cores attached to an ICON core that is in the target FPGA device and
attached to a particular USER scan chain register.

Syntax

::chipscope::csecore_get_core_count handle deviceIndex userRegNumber

Arguments

Returns

The number of cores.

An exception is thrown if the command fails.

Example

Get the number of cores attached to the ICON core in the USER3 register of the third device
in the JTAG chain.

%set coreCount [csecore_get_core_count $handle 2 3]

Back to list of all CseCore Command Details

Table 5-59: Arguments for Subcommand ::chipscope::csecore_get_core_count

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create

deviceIndex Device index (0 to n-1) in the n-length JTAG chain.

userRegNumber BSCAN block USER register number (starting with 1)

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 195

UG029 (v13.1) March 1, 2011

CseCore Command Details

::chipscope::csecore_get_core_status

Retrieves the static status word from the target ChipScope Pro core.

Syntax

::chipscope::csecore_get_core_status handle [list deviceIndex
userRegNumber coreIndex] bitCount

Arguments

Returns

A nested list. The outer list contains two elements: an inner list and a string representing
the core status (in hexadecimal). The inner list contains the following elements:

Note: An exception is thrown if the command fails.

Example

Get core status of first core connected to ICON core inside fourth device on second USER
register.

%set coreRef [list 3 2 0]

%set coreStatus [csecore_get_core_status $handle $coreRef]

Back to list of all CseCore Command Details

Table 5-60: Arguments for Subcommand ::chipscope::csecore_get_core_status

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create

[list deviceIndex
userRegNumber
coreIndex]

A list containing three elements:

• Device index (0 to n-1) in the n-length JTAG chain

• BSCAN block USER register number (starting with 1)

• Index for core unit. First core unit connected to ICON
has index 0.

bitCount Length of status word (in number of bits)

Element Description

manufacturerId Manufacturer ID (integer)

coreType Core type (integer)

coreMajorVersion Core major version (integer)

coreMinorVersion Core minor version (integer)

coreRevision Core revision (integer)

http://www.xilinx.com

196 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csecore_is_cores_supported

Tests if a the target FPGA device supports ChipScope Pro cores.

Syntax

::chipscope::csecore_is_cores_supported handle idcode

Arguments

Returns

Returns 1 if the device referred to by idcode supports ChipScope Pro cores, otherwise
returns 0.

An exception is thrown if the command fails.

Example

Determine if device referred to by $idcode supports ChipScope Pro cores

%set supportsCores [csecore_is_cores_supported $handle $idcode]

Back to list of all CseCore Command Details

Table 5-61: Arguments for Subcommand

::chipscope::csecore_is_cores_supported

Argument Type Description

handle
Required

Handle to the session that is returned by
::chipscope::csejtag_session create.

idcode IDCODE for the desired device.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 197

UG029 (v13.1) March 1, 2011

CseVIO Command Details

CseVIO Command Details

The following CseFpga Commands are described in detail in this section:

• ::chipscope::csevio_get_core_info

• ::chipscope::csevio_is_vio_core

• ::chipscope::csevio_init_core

• ::chipscope::csevio_terminate_core

• ::chipscope::csevio_define_signal

• ::chipscope::csevio_define_bus

• ::chipscope::csevio_undefine_name

• ::chipscope::csevio_write_values

• ::chipscope::csevio_read_values

::chipscope::csevio_get_core_info

Reads the status word from the target VIO core.

Syntax

::chipscope::csevio_get_core_info handle [list deviceIndex
userRegNumber coreIndex] coreInfoTclArray

Arguments

Table 5-62: Arguments for Subcommand ::chipscope::csevio_get_core_info

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create

[list deviceIndex
userRegNumber
coreIndex]

A list containing three elements:

• Device index (0 to n-1) in the n-length JTAG chain

• BSCAN block USER register number (starting with 1)

• Index for core unit. First core unit connected to ICON
has index 0.

coreInfoTclArray
Tcl array name. After the command is executed
successfully, the array contains information described in
the Returns section below.

http://www.xilinx.com

198 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

Returns

Returns core information through the coreInfoTclArray argument including the following
elements:

Note: An exception is thrown if the command fails.

Example

Get core info of the VIO core that is connected to the first control port of the ICON core
inside fourth device on second USER register. Print out the number of asynchronous
inputs that the VIO core has.

%set coreRef [list 3 2 0]

%csevio_get_core_info $handle $coreRef coreInfoTclArray

%puts stdout “$coreInfoTclArray($CSEVIO_ASYNC_INPUT_COUNT)”

Back to list of all CseVIO Command Details

Element Description

manufacturerId Manufacturer ID (integer)

$CSEVIO_MANUFACTURER_ID Manufacturer's ID, 1 for Xilinx.

$CSEVIO_CORE_TYPE Core Type field, different for each ChipScope Core,
VIO should be 9.

$CSEVIO_CORE_MAJOR_VERSION Major release version.

$CSEVIO_CORE_MINOR_VERSION Minor release version.

$CSEVIO_CORE_REVISION Revision.

$CSEVIO_CG_MAJOR_VERSION CoreGen specific field (for cores generated using 10.1
and later).

$CSEVIO_CG_MINOR_VERSION CoreGen specific field (for cores generated using 10.1
and later).

$CSEVIO_CG_MINOR_VERSION_A

LPHA

CoreGen specific field (for cores generated using 10.1
and later).

$CSEVIO_ASYNC_INPUT_COUNT Number of Asynchronous Inputs signals used.

$CSEVIO_SYNC_INPUT_COUNT Number of Synchronous Inputs signals used.

$CSEVIO_ASYNC_OUTPUT_COUNT Number of Asynchronous Outputs signals used.

$CSEVIO_SYNC_OUTPUT_COUNT Number of Synchronous Outputs signals used.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 199

UG029 (v13.1) March 1, 2011

CseVIO Command Details

::chipscope::csevio_is_vio_core

Determines whether the target core is a VIO core.

Syntax

::chipscope::csevio_is_vio_core handle [list deviceIndex userRegNumber
coreIndex]

Arguments

Returns

Returns 1 if the core is a VIO core, otherwise returns 0.

An exception is thrown if the command fails.

Example

Determine if the first core connected to ICON core inside fourth device on second USER
register is a VIO core

%set coreRef [list 3 2 0]

%set isVIO [csevio_is_vio_core $handle $coreRef]

Back to list of all CseVIO Command Details

Table 5-63: Arguments for Subcommand ::chipscope::csevio_is_vio_core

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create

[list deviceIndex
userRegNumber
coreIndex]

A list containing three elements:

• Device index (0 to n-1) in the n-length JTAG chain

• BSCAN block USER register number (starting with 1)

• Index for core unit. First core unit connected to ICON
has index 0.

http://www.xilinx.com

200 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csevio_init_core

Initializes global variables associated with the target VIO core.

Syntax

::chipscope::csevio_init_core handle [list deviceIndex userRegNumber
coreIndex]

Arguments

Returns

An exception is thrown if the command fails.

Example

Initialize the VIO core connected to ICON core inside fourth device on second USER
register is a VIO core

%set coreRef [list 3 2 0]

%csevio_init_core $handle $coreRef

Back to list of all CseVIO Command Details

Table 5-64: Arguments for Subcommand ::chipscope::csevio_init_core

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create

[list deviceIndex
userRegNumber
coreIndex]

A list containing three elements:

• Device index (0 to n-1) in the n-length JTAG chain

• BSCAN block USER register number (starting with 1)

• Index for core unit. First core unit connected to ICON
has index 0.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 201

UG029 (v13.1) March 1, 2011

CseVIO Command Details

::chipscope::csevio_terminate_core

Removes global variables and releases memory associated with the target VIO core.

Syntax

::chipscope::csevio_terminate_core handle [list deviceIndex
userRegNumber coreIndex]

Arguments

Returns

An exception is thrown if the command fails.

Example

Terminates the VIO core connected to ICON core inside fourth device on second USER
register is a VIO core

%set coreRef [list 3 2 0]

%csevio_terminate_core $handle $coreRef

Back to list of all CseVIO Command Details

Table 5-65: Arguments for Subcommand ::chipscope::csevio_terminate_core

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create

[list deviceIndex
userRegNumber
coreIndex]

A list containing three elements:

• Device index (0 to n-1) in the n-length JTAG chain

• BSCAN block USER register number (starting with 1)

• Index for core unit. First core unit connected to ICON
has index 0.

http://www.xilinx.com

202 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csevio_define_signal

Defines a name for a specified VIO signal bit. Requires that csevio_init_core be called
first.

Syntax

::chipscope::csevio_define_signal handle [list deviceIndex
userRegNumber coreIndex] name flags bitIndex

Arguments

Returns

An exception is thrown if the command fails.

Example

For the VIO core connected to ICON core inside fourth device on second USER register,
define a signal called “status_bit” that is assigned to bit 0 of the ASYNC_INPUT port:

%set coreRef [list 3 2 0]

%set csevio_define_signal $handle $coreRef “status_bit”

$CSEVIO_ASYNC_INPUT 0

Back to list of all CseVIO Command Details

Table 5-66: Arguments for Subcommand ::chipscope::csevio_define_signal

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create

[list deviceIndex
userRegNumber
coreIndex]

A list containing three elements:

• Device index (0 to n-1) in the n-length JTAG chain

• BSCAN block USER register number (starting with 1)

• Index for core unit. First core unit connected to ICON
has index 0.

name

Name to be given to the signal. All input signal names
must be unique with respect to other input signals. All
output signal names must be unique with respect to
other output signals.

flags

Flags used to determine the port type to which the signal
belongs. Possible flag values include:

• $CSEVIO_SYNC_OUTPUT

• $CSEVIO_SYNC_INPUT

• $CSEVIO_ASYNC_OUTPUT

• $CSEVIO_ASYNC_INPUT

bitIndex
Bit index into the port. Used to determine what port
signal to assign to the name.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 203

UG029 (v13.1) March 1, 2011

CseVIO Command Details

::chipscope::csevio_define_bus

Defines a name for a grouping of VIO signal bits (called a “bus”). Requires that
csevio_init_core be called first.

Syntax

::chipscope::csevio_define_bus handle [list deviceIndex userRegNumber
coreIndex] name flags bitIndexArray arrayLen

Arguments

Returns

An exception is thrown if the command fails.

Example

For the VIO core connected to ICON core inside fourth device on second USER register,
define a bus called “control_bus” that is assigned to bits 3:0 of the SYNC_OUTPUT port:

%set coreRef [list 3 2 0]

%set csevio_define_bus $handle $coreRef “control_bus”

$CSEVIO_SYNC_OUTPUT [list 0 1 2 3]

Back to list of all CseVIO Command Details

Table 5-67: Arguments for Subcommand ::chipscope::csevio_define_bus

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create

[list deviceIndex
userRegNumber
coreIndex]

A list containing three elements:

• Device index (0 to n-1) in the n-length JTAG chain

• BSCAN block USER register number (starting with 1)

• Index for core unit. First core unit connected to ICON
has index 0.

name

Name to be given to the bus. All input bus names must
be unique with respect to other input buses. All output
bus names must be unique with respect to other output
buses.

flags

Flags used to determine the port type to which the bus
belongs. Possible flag values include:

• $CSEVIO_SYNC_OUTPUT

• $CSEVIO_SYNC_INPUT

• $CSEVIO_ASYNC_OUTPUT

• $CSEVIO_ASYNC_INPUT

[list bitIndicies...]
List containing the bit indices of the signals in the bus.
Left-most element in the list is the LSB.

http://www.xilinx.com

204 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csevio_undefine_name

Removes a VIO signal/bus name and all associated information.

Syntax

::chipscope::csevio_undefine_name handle [list deviceIndex
userRegNumber coreIndex] name flags

Arguments

Returns

An exception is thrown if the command fails.

Example

For the VIO core connected to ICON core inside fourth device on second USER register,
undefine a bus called “control_bus” that is assigned to bits of the SYNC_OUTPUT port:

%set coreRef [list 3 2 0]

%set csevio_undefine_name $handle $coreRef “control_bus”

$CSEVIO_SYNC_OUTPUT

Back to list of all CseVIO Command Details

Table 5-68: Arguments for Subcommand ::chipscope::csevio_undefine_name

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create

[list deviceIndex
userRegNumber
coreIndex]

A list containing three elements:

• Device index (0 to n-1) in the n-length JTAG chain

• BSCAN block USER register number (starting with 1)

• Index for core unit. First core unit connected to ICON
has index 0.

name Name of the signal or bus to be removed.

flags

Flags used to determine the port type to which the signal
or bus belongs. Possible flag values include:

• $CSEVIO_SYNC_OUTPUT

• $CSEVIO_SYNC_INPUT

• $CSEVIO_ASYNC_OUTPUT

• $CSEVIO_ASYNC_INPUT

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 205

UG029 (v13.1) March 1, 2011

CseVIO Command Details

::chipscope::csevio_write_values

Writes values to the specified signal/bus of the target VIO core.

Syntax

::chipscope::csevio_write_values handle [list deviceIndex
userRegNumber coreIndex] outputTclArray

Arguments

Returns

An exception is thrown if the command fails.

Example

Assumptions for these examples:

• coreRef has already been set to the VIO core

• a signal called “reset” is defined as a bit in the SYNC_OUTPUT port

• a bus called “instruction” is defined as an 8-bit bus in the ASYNC_OUTPUT port

1. Set the “reset” signal to 0 and set the “instruction” bus to FF

%set outputTclArray(reset) 0

%set outputTclArray(instruction) FF

%csevio_write_values $handle $coreRef outputTclArray

2. Send a single clock cycle pulse of 1 followed by 0's to the "reset" signal

%set outputTclArray(reset.pulsetrain) 00000000000000000000000000000001

%csevio_write_values $handle $coreRef outputTclArray

Back to list of all CseVIO Command Details

Table 5-69: Arguments for Subcommand ::chipscope::csevio_write_values

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create

[list deviceIndex
userRegNumber
coreIndex]

A list containing three elements:

• Device index (0 to n-1) in the n-length JTAG chain

• BSCAN block USER register number (starting with 1)

• Index for core unit. First core unit connected to ICON has
index 0.

outputTclArray

Name of a Tcl array. The index into the array is the name of an
output signal or bus defined by csevio_define_signal or
csevio_define_bus, respectively. For signals that belong to the
SYNC_OUTPUT port, the postfix ".pulsetrain" can be appended
to the name and a string hexadecimal values can be specified
(LSB is right-most character). In order to use the pulse train, 16
values must be passed in, with the first value sent in to the right.
Each value must be byte aligned. This means that a single signal
requires two hexadecimal characters for each value. If the value
is greater than 8 bits, then two additional characters are required
per value, and so on. Each element of the array must be unset
manually after this command is called to reuse the array.

http://www.xilinx.com

206 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

::chipscope::csevio_read_values

Reads values from the specified signal/bus of the target VIO core.

Syntax

::chipscope::csevio_read_values handle [list deviceIndex userRegNumber
coreIndex] inputTclArray

Arguments

Returns

An exception is thrown if the command fails.

Example

Assumptions for this example:

• coreRef has already been set to the VIO core.

• A signal called “status” is defined as a bit in the SYNC_INPUT port.

• A bus called “data_bus” is defined as an 8-bit bus in the ASYNC_INPUT port.

1. Get the values of “status” and “data_bus” and print them to stdout

%csevio_read_values $handle $coreRef inputTclArray
% puts stdout “status = $inputTclArray(status.value)”
% puts stdout “data_bus = $inputTclArray(data_bus)”

Table 5-70: Arguments for Subcommand ::chipscope::csevio_read_values

Argument Type Description

handle

Required

Handle to the session that is returned by
::chipscope::csejtag_session create

[list deviceIndex
userRegNumbe
r coreIndex]

A list containing three elements:

• Device index (0 to n-1) in the n-length JTAG chain

• BSCAN block USER register number (starting with 1)

• Index for core unit. First core unit connected to ICON has
index 0.

inputTclArray

Name of a Tcl array. The index into the array is the name of an
input signal or bus defined by csevio_define_signal or
csevio_define_bus, respectively. Special postfixes can be
used to specify various states of the input signal or buses:

• “.value” specifies the signal/bus value (same as no postfix)

• “.activity_up” specifies asynchronous low-to-high activity

• “.activity_down” specifies asynchronous high-to-low
activity

• “.sync_activity_up” specifies the synchronous low-to-high
activity (only valid for SYNC_INPUT signals/buses)

• “.sync_activity_down” specifies the synchronous high-to-
low activity (only valid for SYNC_INPUT signals/buses)

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 207

UG029 (v13.1) March 1, 2011

CSE/Tcl Examples

2. Get the various activity states of the “status” signal and print them to stdout:

%csevio_read_values $handle $coreRef inputTclArray
% puts stdout “up = $inputTclArray(status.activity_up)”
% puts stdout “dn = $inputTclArray(status.activity_down)”
% puts stdout “sup = $inputTclArray(status.sync_activity_up)”
% puts stdout “sdn = $inputTclArray(status.sync_activity_down)”

Back to list of all CseVIO Command Details

CSE/Tcl Examples

The ChipScope Pro installation includes an example Tcl script that uses the CseJtag Tcl
interface. This example opens a Xilinx Parallel cable or Xilinx Platform USB cable and
scans the JTAG chain and returns information about the devices found in the chain. The
example script is located in the following location:

<XILINX_ISE_INSTALL>\cse\tcl\csejtag_example1.tcl

The script can be run in the Tcl shell (xtclsh) that is included with Xilinx ISE Design Suite
software or in the ActiveTcl 8.4 Tcl shell (tclsh) from ActiveState Software Inc. ([See
Reference 23, p. 227]). To run the Tcl example in a command line shell, change to the
directory where csejtag_example1.tcl is located (see above). Next, follow these
instructions for the particular operating system:

• On 32-bit Windows operating systems:

− To use a Xilinx Parallel Cable, type:

<XILINX_ISE_INSTALL>\bin\nt\xtclsh csejtag_example1.tcl -par

− To use a Xilinx Platform Cable USB, type:

<XILINX_ISE_INSTALL>\bin\nt\xtclsh csejtag_example1.tcl -usb

• On 64-bit Windows operating systems:

− To use a Xilinx Parallel Cable, type:

<XILINX_ISE_INSTALL>\bin\nt64\xtclsh csejtag_example1.tcl -par

− To use a Xilinx Platform Cable USB, type:

<XILINX_ISE_INSTALL>\bin\nt64\xtclsh csejtag_example1.tcl -usb

• On 32-bit Linux operating systems:

− To use a Xilinx Parallel Cable, type:

<XILINX_ISE_INSTALL>/bin/lin/xtclsh csejtag_example1.tcl -par

− To use a Xilinx Platform Cable USB, type:

<XILINX_ISE_INSTALL>/bin/lin/xtclsh csejtag_example1.tcl -usb

• On 64-bit Linux operating systems:

− To use a Xilinx Parallel Cable, type:

<XILINX_ISE_INSTALL>/bin/lin64/xtclsh csejtag_example1.tcl -par

− To use a Xilinx Platform Cable USB, type:

<XILINX_ISE_INSTALL>/bin/lin64/xtclsh csejtag_example1.tcl -usb

Other example Tcl scripts (such as the CSE VIO example Tcl script called
csevio_example1.tcl) can be found in the same directory as csejtag_example1.tcl. These
scripts offer examples of other CSE/Tcl function calls.

http://www.xilinx.com

208 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Chapter 5: ChipScope Engine Tcl Interface

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 209

UG029 (v13.1) March 1, 2011

Appendix A

ChipScope Pro Tools Troubleshooting
Guide

Overview

This appendix provides instructions to validate your ChipScope™ Pro tools install and
ISE® software integration. The purpose of this appendix is to assist you with common
errors and issues you might face when using the ChipScope Pro tools. In addition, this
appendix provides a general practices for troubleshooting your ChipScope Pro and
Xilinx® JTAG-based programming cable installation. Each problem description has one or
more of the following sections:

• Issue(s): This section lists ways to verify whether the problem described is the same as
the problem at hand generally in the form of an error message or warning.

• Solution(s) or work-around(s): This section lists ways to resolve the problem at hand.

http://www.xilinx.com

210 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Appendix A: ChipScope Pro Tools Troubleshooting Guide

ChipScope Pro Tools Installation Troubleshooting

Common Error Messages/problems that point to issues with a ChipScope Pro tools install
are shown in Table A-1.

Table A-1: Troubleshooting ChipScope Pro Tools Installation Issues

Issue(s) Solution(s) or Work-Around(s)

On either Windows or Linux systems, double clicking
on a <filename>.cdc file in the ISE tool does not

launch the inserter and the following error appears in
the console:

ERROR: Unable to find the Chipscope Exe at
NotHere/inserterlauncher.exe

1. Check that your environment is set up correctly by
ensuring that the following three parameters are set
correctly:

− The CHIPSCOPE environment variable needs to be
set to a valid Xilinx ChipScope Pro tools installation
to operate correctly.

- On Windows systems, select Start > Settings >
Control Panel > System > Advanced > System
Variables. Set the environment variable
CHIPSCOPE to point to your installation.
Typically this would be C:\Xilinx\

<version number>\ChipScope

- On Linux systems, set and environment variable
CHIPSCOPE to point to your installation. For
example: setenv CHIPSCOPE
/tools/xilinx/<version number>/chipscope

− The XILINX environment variable needs to be set to
a valid Xilinx ISE tool installation directory for
ChipScope Pro tools to operate correctly.

- On Windows systems, select Start > Settings >
Control Panel > System > Advanced > System
Variables. Set the environment variable XILINX
to point to your installation. Typically this would
be C:\Xilinx\<version number>\ISE

- On Linux systems, at the completion of the
installation process, the installation program
creates an environment variables file for you. Go
to your Xilinx ISE software installation directory
and source <settings file> (where <settings file>
is settings32.sh, settings32.csh, settings64.sh, or
settings64.csh, depending on your OS and shell
type).

2. From inside the ISE tool, check and make sure that the
Edit > Preferences > ISE General > Integrated Tools is set
to <install>/bin/<platform>

− <install> is the ChipScope Pro tools installation
location

− <platform> is lin, lin64, nt, nt64 for 32-bit Linux OS,
64-bit Linux OS, 32-bit Windows OS, and 64-bit
Windows OS, respectively. Note that <platform> for
ChipScope Pro tools should match that of the ISE
tools.

On Windows systems, when running the inserter
from the Start menu you see a splash screen but the
Core Inserter tool does not start up.

On Windows systems, when running inserter from
the command line you see a pop-up dialog box with
the following message:

inserter.exe - entry point not found

On Linux systems, after running the inserter.sh
script to launch the core inserter you see the
following errors:

ERROR: Unable to locate Xilinx ISE <release
number> tools in path!

ERROR: You must set the CHIPSCOPE
environment variable before running this tool

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 211

UG029 (v13.1) March 1, 2011

Xilinx JTAG Programming Cable Troubleshooting

Xilinx JTAG Programming Cable Troubleshooting

This section describes how to determine if your Xilinx JTAG programming cable is
connected correctly and how to troubleshoot common Xilinx JTAG (Joint Test Action
Group, IEEE standard) cable connection issues. Here is a list of issues that are covered in
this section:

• For verifying correct cable connections, see Table A-3, page 213 and Table A-3,
page 213.

• For troubleshooting issues related to “INFO: Cable connection failed” messages, see
Table A-4, page 213

• For troubleshooting issues related to “ERROR:iMPACT:2246 - A reference voltage has
not been detected...” messages, see Table A-5, page 215.

• For troubleshooting issues related to “ERROR: No devices detected while scanning
the JTAG chain”, “ERROR: Failed detecting JTAG device chain”, or “ERROR: Opened
Xilinx Platform USB Cable but failed to detect JTAG Chain” messages, see Table A-6,
page 216.

• For troubleshooting issues related to “ERROR: Socket Open Failed.
localhost/127.0.0.1:50001” messages, see Table A-7, page 217.

http://www.xilinx.com

212 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Appendix A: ChipScope Pro Tools Troubleshooting Guide

Table A-2: Verifying Correct Platform Cable USB Connection

Issue Solution or Workaround

How can I tell if I am connecting
to the Platform Cable USB
correctly?

1. Start the ChipScope Pro Analyzer tool

2. Select the JTAG Chain menu option

3. Select the Platform Cable USB option

4. Make sure the Speed and Port options are set correctly

5. Click OK

6. Look for messages similar to the following:

COMMAND: open_platform_usb_cable FREQUENCY=3000000 PORT=USB21
INFO: Started ChipScope host (localhost:50001)
INFO: Opened socket connection: localhost 50001
localhost/127.0.0.1
INFO: Connecting to cable (Usb Port - USB21).
INFO: Checking cable driver.
INFO: Driver file xusbdfwu.sys found.
INFO: Driver version: src=1027, dest=1027.
INFO: Driver windrvr6.sys version = 8.1.1.0.
INFO: WinDriver v8.11 Jungo (c) 1997 - 2006 Build Date: Oct 16
2006 X86 32bit SYS 12:35:07, version = 811.
INFO: Cable PID = 0008.
INFO: Max current requested during enumeration is 300 mA.
INFO: Type = 0x0005.
INFO: Cable Type = 3, Revision = 0.
INFO: Setting cable speed to 3 MHz.
INFO: Cable connection established.
INFO: Firmware version = 2301.
INFO: File version of
C:/Xilinx/11.1/ChipScope/xilinx/data/xusb_xp2.hex = 2401.
INFO: Firmware hex file version = 2401.
INFO: Downloading
C:/Xilinx/11.1/ChipScope/xilinx/data/xusb_xp2.hex.
INFO: Downloaded firmware version = 2401.
INFO: PLD file version = 200Dh.
INFO: PLD version = 200Dh.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 213

UG029 (v13.1) March 1, 2011

Xilinx JTAG Programming Cable Troubleshooting

Table A-3: Verifying Correct JTAG Parallel Cable IV Connection

Issue(s) Solution(s) or Work-Around(s)

How can I tell if I am
connecting to the Parallel
Cable IV correctly?

1. Start the ChipScope Pro Analyzer tool

2. Select the JTAG Chain menu option

3. Select the Platform Cable USB option

4. Make sure the Speed and Port options are set correctly

5. Click OK

6. Look for messages similar to the following:

COMMAND: open_parallel_cable FREQUENCY=5000000 PORT=LPT1
INFO: Started ChipScope host (localhost:50001)
INFO: Opened socket connection: localhost 50001 localhost/127.0.0.1
INFO: Connecting to cable (Parallel Port - LPT1).
INFO: Checking cable driver.
INFO: Driver windrvr6.sys version = 8.1.1.0.
INFO: WinDriver v8.11 Jungo (c) 1997 - 2006 Build Date: Oct 16 2006
X86 32bit SYS 12:35:07, version = 811.
INFO: LPT base address = 0378h.
INFO: ECP base address = 0778h.
INFO: ECP hardware is detected.
INFO: Cable connection established.
INFO: Connecting to cable (Parallel Port - LPT1) in ECP mode.
INFO: Checking cable driver.
INFO: Driver xpc4drvr.sys version = 1.0.4.0.
INFO: LPT base address = 0378h.
INFO: Cable Type = 1, Revision = 10.
INFO: Setting cable speed to 5 MHz.
INFO: Cable connection established.

Table A-4: Troubleshooting Platform Cable USB Connection Issues

Issue(s) Solution(s) or Work-Around(s)

1. On attempting to connect to the cable
you see the following messages in
the console.

INFO: Cable connection failed.

ERROR: Failed to open Xilinx
Platform USB Cable. See
message(s) above.

This issue occurs when your cable is
installed but not connected. If the
cable is connected and you still see
this issue it might be damaged or
require a firmware update.

You should first check to see if the cable is connected. Go to Issue #2.

2. Is your cable is plugged into the
appropriate USB port?

If NO: Connect the cable and attempt to connect in the Analyzer.

If YES: Go to Issue #3.

http://www.xilinx.com

214 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Appendix A: ChipScope Pro Tools Troubleshooting Guide

3. Has the correct cable been specified
at connection?

If NO or NOT SURE: In the Analyzer tool, check that the correct cable has
been selected in the JTAG Chain menu. Select the correct cable and retry
connection.

If YES: Go to Issue #4.

4. Are the Server Host Settings set
correctly?

If NO or NOT SURE: In the Analyzer tool, select JTAG Chain > Server Host
Settings. In the dialog box, check to make sure that the correct server
hostname (or IP address) and port are used. For connecting to cables on the
local system, use localhost:50001.

If YES: Go to Issue #5.

5. If you are trying to connect to a
particular Platform Cable USB, is the
correct Port setting selected?

If NO or NOT SURE: In the Analyzer tool, select JTAG Chain > Platform
Cable USB. In the dialog box, check to make sure that the Port setting is set
to the correct port enumeration for the desired cable. For instance, for the
first enumerated cable, select port USB21.

If YES: Go to Issue #6.

6. A firmware update might be
required.

To update the firmware:

1. Open a DOS shell and set the environment variable by entering:

SET XIL_IMPACT_ENV_USB2_FORCE_CPLD_UPDATE=TRUE

2. Start iMPACT by entering impact in the DOS shell.

3. Select Xilinx USB Cable from the Cable Communication Setup
dialog box and wait for the update to be completed.

4. Exit iMPACT.

5. Clear the environment variable in the DOS shell by entering:

SET XIL_IMPACT_ENV_USB2_FORCE_CPLD_UPDATE=

For additional details on setting environment variables and for setting
environment variables in Linux-based operating systems, see (Xilinx
Answer Record 11630).

If this does not work, then you should open a case with Xilinx Technical
Support including the following information:

• Xinfo

• cs_analyzer.log

Table A-4: Troubleshooting Platform Cable USB Connection Issues (Cont’d)

Issue(s) Solution(s) or Work-Around(s)

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=answer+record&sub=11630
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=answer+record&sub=11630

ChipScope Pro Software and Cores User Guide www.xilinx.com 215

UG029 (v13.1) March 1, 2011

Xilinx JTAG Programming Cable Troubleshooting

Table A-5: Troubleshooting Cable Reference Voltage Issues

Issue(s) Solution(s) or Work-Around(s)

1. On attempting to connect to the cable
you see that the LED on the cable is
orange (and not green) and the
following messages in the console:

ERROR: ERROR:iMPACT:2246 -
A reference voltage has not been
detected on the ribbon cable
interface to the target system
(pin 2). Check that power is
applied to the target system and
that the ribbon cable is properly
seated at both ends. The status
LED on Platform Cable USB is
GREEN if target voltage is in the
proper range and applied to the
correct pin.

The issue here is usually an incorrect voltage on the VCC. Go to Issue #2.

2. Is the target board powered on? If NO: Check that the board is powered on correctly.

If YES: Go to Issue #3.

3. Is the ribbon cable firmly plugged
into the target board connector and
the Platform Cable USB connector?

If NO: Re-seat the ribbon cable in both connectors.

If YES: Go to Issue #4.

4. Is the VCC voltage on the cable
connection at the appropriate voltage
level?

If NO or NOT SURE: Use a test instrument to probe the voltage on the
board to make sure it is in the appropriate range.

If YES: then open a case with Xilinx Technical Support including the
following information:

• Xinfo

• cs_analyzer.log

• If possible, a screen shot of voltage level on the VCC of the cable
at the cable connection on the target board.

http://www.xilinx.com

216 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Appendix A: ChipScope Pro Tools Troubleshooting Guide

Table A-6: Troubleshooting JTAG Device Detection Issues

Issue(s) Solution(s) or Work-Around(s)

1. On attempting to connect to the
cable you see one or more of the
following messages in the
console:

ERROR: No devices
detected while scanning the
JTAG chain

ERROR: Failed detecting
JTAG device chain

ERROR: Opened Xilinx
Platform USB Cable but
failed to detect JTAG Chain.

This is often due to JTAG chain
problem where TDI or TDO are
disconnected or pulled high or
low. This generally indicates
board-related issues.

 Go to Issue #2.

2. Are the Cable TDI and TDO
connected correctly at the cable
header?

If NO or NOT SURE: If possible, try using a different board, cable, or cable
connector to locate the fault. Modify connections so that you have a valid
chain. A different ribbon cable or fly leads for connection might help.
Alternatively, a different board might not have the issue.

If YES: Go to Issue #3.

3. Is switching noise elsewhere on
the board causing the failure to
detect the JTAG chain?

If YES or NOT SURE: If possible, use a board-level reset to put other devices
into their reset state and try to detect the JTAG chain again. Asserting this
reset might reduce noise on the board during JTAG operations.

If NO: Go to Issue #4.

4. Are non-Xilinx devices in the
JTAG chain?

If YES: Check to make sure that any active-low TRST# pins of these non-Xilinx
devices are pulled high, then try to detect the JTAG chain again.

If NO: Go to Issue #5.

5. Is the active-low PROG# pin of
any Virtex®-4, Virtex, Virtex-E
or Spartan®-II/-E devices in the
JTAG chain being held low?

If YES: Make sure the PROG# pins of these devices are pulled high. A low
pulse on PROG# resets the JTAG TAP controller for these devices and
prevent any operation on the chain.

If NO: Go to Issue #6.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 217

UG029 (v13.1) March 1, 2011

Xilinx JTAG Programming Cable Troubleshooting

6. Do you have more than five
devices in your JTAG chain and
use un-buffered TCK and TMS
nets?

If YES: You might need to buffer your TCK and TMS signals. A general rule of
thumb is that for chains over five devices you should use buffers. The LS244 is
an example of a buffer that has been used successfully with Xilinx devices. As
specified by the IEEE 1149.1 standard, the TMS and TDI pins both have internal
pull-up resistors. These internal pull-up resistors of 50-150k are active,
regardless of the mode selected. Please refer to the appropriate configuration
user guide for the FPGA device family to obtain the resistor value:

• Spartan-3 FPGA Configuration User Guide [See Reference 7, p. 227]

• Spartan-6 FPGA Configuration User Guide [See Reference 8, p. 227]

• Virtex-4 FPGA Configuration User Guide [See Reference 9, p. 227]

• Virtex-5 FPGA Configuration User Guide [See Reference 10, p. 227]

• Virtex-6 FPGA Configuration User Guide [See Reference 11, p. 227]

If NO: Go to Issue #7

7. Are you running TCK to fast? If YES or NOT SURE: Reduce the speed of the cable using the JTAG Chain >
Xilinx Platform USB Cable > Speed option to slow the frequency of the TCK pin
to the lowest setting.

If NO: Open a case with Xilinx Technical Support including the following
information:

• Xinfo

• cs_analyzer.log

• Screenshots of the JTAG lines (TDI, TDO, TCK and TMS) during a JTAG
operation. Preferably the screen shot is close to the target FPGA and
focussed in on one rising edge of TCK.

Table A-6: Troubleshooting JTAG Device Detection Issues (Cont’d)

Issue(s) Solution(s) or Work-Around(s)

Table A-7: Troubleshooting Server Host Connection Issues

Issue(s) Solution(s) or Work-Around(s)

1. On attempting to connect to the cable
you see one or more of the following
messages in the console:

ERROR: Socket Open Failed.
localhost/127.0.0.1:50001

java.net.ConnectException:
Connection refused

These messages can appear in cases
where another application had
control of the cable (for example, the
iMPACT software tool).
Alternatively, it is possible that
another device or application on
your system is denying access to the
port/socket.

Go to Issue #2.

http://www.xilinx.com

218 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Appendix A: ChipScope Pro Tools Troubleshooting Guide

2. Are you running any firewall
applications that might prevent the
ChipScope Pro Analyzer tool from
connecting to a TCP/IP socket?

If YES: Disable any applications that might be denying the access to the
TCP/IP socket and try to reconnect to the cable.

If NO: Go to Issue #3.

3. Have you been using any other
Xilinx software application to access
the cable?

If YES: It is possible that the other application has not released the cable
lock. This situation can often be worked around by closing down the other
application. If this does not help, try running the following commands in
iMPACT batch mode to clean the stale cable locks:

> impact -batch

cleancablelock

exit

If NO: Open a case with Xilinx Technical Support including the
following information:

• Xinfo

• cs_analyzer.log

Table A-7: Troubleshooting Server Host Connection Issues (Cont’d)

Issue(s) Solution(s) or Work-Around(s)

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 219

UG029 (v13.1) March 1, 2011

ChipScope Pro Analyzer Core Troubleshooting

ChipScope Pro Analyzer Core Troubleshooting

This section deals with issues where the ChipScope Pro Analyzer tool can access the cable
and the JTAG chain but is either not detecting any debug cores in the Xilinx FPGAs or is
having trouble triggering an ILA core or displaying captured ILA core data.

• For troubleshooting issues related to “INFO: Found 0 Core Units in the JTAG device
Chain" messages, see Table A-8.

• For troubleshooting issues related to “Waiting for upload" messages, see Table A-9,
page 222.

• For troubleshooting issues related to "ERROR: Fatal - Did not find trigger mark in
buffer. Data buffer may be corrupt!” messages, see Table A-10, page 224.

Table A-8: Troubleshooting Core Detection Issues

Issue(s) Solution(s) or Work-Around(s)

1. On attempting to connect to the cable
you see the following message in the
console:

INFO: Found 0 Core Units in the
JTAG device Chain

There are a number of reasons why
the ChipScope Pro Analyzer tool
might not be able to detect the core
units. The Analyzer tool polls the
JTAG chain for a status word that
indicates the number and type(s) of
core(s) in the device. The reading of
the status word can result in corrupt
date either by noise on the JTAG TAP
signals or a timing issue in the design
that affects the core.

Go to Issue #2.

2. Are the ChipScope Pro ICON
(integrated controller), ILA
(integrated logic analyzer), VIO
(virtual input/output), and/or ATC2
(Agilent trace core) debug cores
implemented correctly or even
present in the design?

If NO or NOT SURE: Verify that the cores are in the design by performing
the following steps:

1. Open the FPGA Editor to edit the placed-and-routed NCD file of
your design.

2. Go to Tools > ILA. A window displays all the probed signals. If an
error message appears specifying, "There is no ILA Core," your
design does not contain an ILA debug core.

If no cores are detected, you must go back to your design and determine
why the core was not implemented. The synthesis and translate reports
can tell you if all the netlists are correctly implemented, including the ILA
Core and the ICON Core. Also check that the NCF (netlist constraints file)
associated with the core was applied. If the core netlist file (*.ngc/ngo) was
moved during implementation the associated constraint file (*.ncf) might
not have been moved accordingly.

If YES: Go to Issue #3.

http://www.xilinx.com

220 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Appendix A: ChipScope Pro Tools Troubleshooting Guide

3. Has the JTAG logic been released by
the programming tool?

If NO or NOT SURE: Programming the FPGA with the iMPACT tool
instead of the Analyzer tool can solve this problem. Try performing the
following steps:

1. Run iMPACT, to program the FPGA.

2. Exit iMPACT.

3. Run ChipScope Pro Analyzer tool.

If YES: Go to Issue #4.

4. Is there a Xilinx System ACE™ MPM
device in the JTAG Chain?

If YES: There is a known issue when the JTAG chain contains a System
ACE MPM. The core unit might not be found. To work around the
problem, put the following line in the ChipScope Pro Analyzer tool project
file (.cpj) and read it in before opening the cable:

avoidUserRegDeviceX=1,2

Replace the "X" with the position index number of the V50E device.
Use index 0 for the first device in the chain. Information messages
about skipping scanning on the V50E device are placed in the
cs_analyzer.log file.

To use the updated .cpj file, follow the steps listed above. Be sure to
load the .cpj file immediately after ChipScope Pro Analyzer tool
launches before any other action.

If NO: Go to Issue #5.

5. Are there any non-Xilinx devices in
the JTAG chain?

If YES: You must enter the instruction register length for any non-Xilinx
devices in the chain in the Analyzer GUI. To find this, you can examine the
BSDL file corresponding to the device. There will be an entry similar to
below:

attribute INSTRUCTION_LENGTH of <entity name> : entity is
XX;

If you do not enter correct instruction register lengths, the Analyzer
tool cannot set the JTAG device offsets correctly and will not be able to
identify the devices or debug cores.

If NO: Go to Issue #6.

6. Has the device correctly exited from
the device start-up sequence?

If NO: The Analyzer tool might not be able to find the core because the
configuration options are not set correctly. If the BitGen option LCK_cycle
(or Release DLL in Project Navigator) is not set to "Nowait," the Analyzer
tool might not be able to detect the core because the ChipScope Pro core
must be initialized with the release of GWE. Setting this option to "Nowait"
(which is the default option) might solve this problem.

If YES: Go to Issue #7.

Table A-8: Troubleshooting Core Detection Issues (Cont’d)

Issue(s) Solution(s) or Work-Around(s)

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 221

UG029 (v13.1) March 1, 2011

ChipScope Pro Analyzer Core Troubleshooting

7. Is the DONE pin of the FPGA device
being held low on the board?

If there are multiple FPGAs on the
board with the DONE pins tied
together, this error might occur in a
situation where DONE is held Low
by unconfigured devices and
configuration does not fully
complete.

If YES: To work around this issue, ensure that all FPGAs on the board are
configured or that the DriveDONE bitgen option is set for the target
device.

If NO: Go to Issue #8.

8. Have the core constraints being
applied correctly?

If NO or NOT SURE: Check that a PERIOD constraint has been added to
the clock used as the Clock for your ILA. If there is no constraint on this net
in the ISE project, the ChipScope constraints are not applied correctly and
might result in the cores not being recognized. Also check that the NCF file
associated with the core was applied. If the core netlist file (*.ngc/ngo) was
moved during implementation the associated constraint file (*.ncf) might
not have been moved.

If YES: Open a case with Xilinx Technical Support including the
following information:

• cs_analyzer.log

• Archived ISE software project including inserter project
(<project_name>.cdc)

Table A-8: Troubleshooting Core Detection Issues (Cont’d)

Issue(s) Solution(s) or Work-Around(s)

http://www.xilinx.com

222 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Appendix A: ChipScope Pro Tools Troubleshooting Guide

Table A-9: Troubleshooting ILA Core Triggering Issues

Issue(s) Solution(s) or Work-Around(s)

1. After arming the trigger of the ILA
core, you see the following message
in the status bar:

Waiting for upload

but nothing happens. Possible reasons
for this problem:

• The trigger condition is never met

• The trigger clock (clock mapped to
the ILA Core) is stopped

• BUFG is not being used on JTAG
CLK (for the ICON).

Go to Issue #2.

2. Is the trigger condition ever met? If NO or NOT SURE: Check the message at the bottom of the ChipScope
Pro Analyzer tool window. If it is similar to Waiting for trigger, Sample
buffer has 0 samples(0%):

Go to Trigger Setup and Trigger Immediate. If the ChipScope Pro Analyzer
tool starts the acquisition and shows the samples (the waveform appears),
your design is fine; the clock is running, but your trigger condition never
occurs.

In the Trigger Setup windows, ensure that you have set the condition
correctly if you are certain that this event (the trigger condition)
happens in your design.

If YES: Go to Issue #3.

3. Is the clock that is connected to the
ILA core running?

If NO or NOT SURE: If the message at the bottom of the window is
similar to "Waiting for Core to be armed, slow or stopped clock," the
trigger condition is not the problem -- the ILA Core does not have a
valid clock and is not able to start the acquisition.

To fix this, ensure that you have mapped a valid clock using either the
ChipScope Pro Core Inserter tool or in your RTL code (if manually using
generated cores). If you are not sure if the clock mapped to the ILA core is
running, try to connect your system clock instead (or a clock that you are
sure is running).

If YES: Go to Issue #4.

4. Have you used a BUFG on the ICON
JTAG clock?

If NO: If the JTAG clock does not use a BUFG, the Waiting for upload
message can appear. You should re-implement your design ensuring that
this attribute is set for your ICON generation.

If YES: Go to Issue #5.

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 223

UG029 (v13.1) March 1, 2011

ChipScope Pro Analyzer Core Troubleshooting

5. Have the core constraints been
applied correctly?

If NO or NOT SURE: Check that a PERIOD constraint has been added
to the clock used as the CLK input to the ILA core. If there is no
constraint on this net in the ISE software project, the timing constraints
are not applied correctly and might result in the cores not being
recognized. Also check that the NCF file associated with the core was
applied. If the core netlist file (*.ngc/ngo) was moved during
implementation the associated constraint file (*.ncf) might not have
been moved accordingly.

If YES: Go to Issue #6.

6. Is the JTAG TCK clock running too
fast?

If YES or NOT SURE: Reduce the speed of the cable using the JTAG Chain
> Xilinx Platform USB Cable > Speed option to slow the frequency of the
TCK pin to the lowest setting.

If NO: Open a case with Xilinx Technical Support including the
following information:

• cs_analyzer.log

• Archived ISE software project including inserter project
(<filename>.cdc)

Table A-9: Troubleshooting ILA Core Triggering Issues (Cont’d)

Issue(s) Solution(s) or Work-Around(s)

http://www.xilinx.com

224 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Appendix A: ChipScope Pro Tools Troubleshooting Guide

Table A-10: Troubleshooting Corrupt ILA Core Data Buffer Issues

Issue(s) Solution(s) or Work-Around(s)

1. After arming the trigger of the ILA
core, you see the following message
in the console:

ERROR: Fatal - Did not find
trigger mark in buffer. Data
buffer may be corrupt!

This is likely to a timing issue in the
design or core that is affecting the
data being sampled, thus corrupting
the data in the buffer.

Go to Issue #2.

2. Have you applied offset in/out and
period constraints?

If YES: Be sure to apply these to all applicable signals to ensure timing
issues are not causing this issue.

If NO: Go to Issue #3.

3. Have you used a BUFG on the ICON
JTAG clock?

If NO: If the JTAG clock does not use a BUFG, the "ERROR: Fatal - Did
not find trigger mark in buffer. Data buffer may be corrupt!" message
can appear. You should re-implement your design ensuring that this
attribute is set for your ICON generation.

If YES: Go to Issue #4.

4. Have the core constraints been
applied correctly?

If NO or NOT SURE: Check that a PERIOD constraint has been added
to the clock used as the CLK input to the ILA core. If there is no
constraint on this net in the ISE software project, the timing constraints
are not applied correctly and might result in the ILA core control logic
not working correctly. Also check that the NCF file associated with the
core was applied. If the core netlist file (*.ngc/ngo) was moved during
implementation the associated constraint file (*.ncf) might not have
been moved accordingly.

If YES: Go to Issue #5.

5. Is the design and core meeting
timing?

If NO: Simplify the ILA core by reducing the number of trigger ports,
number of trigger bits per port, data width, and/or data depth in order
to get this design to meet timing again.

If YES: Open a case with Xilinx Technical Support including the
following information:

• cs_analyzer.log

• Archived ISE software project including inserter project
(<filename>.cdc)

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 225

UG029 (v13.1) March 1, 2011

Gathering Information for Xilinx Technical Support

Gathering Information for Xilinx Technical Support

Obtaining Xinfo Information

The Xinfo application is used to collect system info used by Xilinx tools which gives
installation logs and environment details that are useful for debug.

On Windows

1. Run Start > Run > Xinfo

2. In the Xinfo application, select File > Export > Save as Text file.

On Linux

1. Run xinfo from a shell prompt

2. In the Xinfo application, select File > Export > Save as Text file.

Obtaining ChipScope Pro Analyzer Log File Information

The cs_analyzer.log file contains a log of console messages from your last Analyzer tool
session.

On Windows

The cs_analyzer.log file is stored in your %homepath%/.chipscope directory. This location
is typically the same as C:/Documents and Settings/<username>/.chipscope.

On Linux

The cs_analyzer.log file is stored in your $HOME/.chipscope directory.

Obtaining ChipScope Pro Core Inserter Tool Log File Information

The cs_inserter.log file contains a log of console messages from your last Core Inserter tool
session.

On Windows

The cs_analyzer.log file is stored in your %homepath%/.chipscope directory. This location
is typically the same as C:/Documents and Settings/<username>/.chipscope.

On Linux

The cs_analyzer.log file is stored in your $HOME/.chipscope directory.

Obtaining an Archived ISE Tool Project

1. In the ISE Project Navigator tool, select Project > Archive

2. This creates a <project_name>.zip file with all project files. If you are using the
Core Inserter tool with your project, make sure that the <filename>.cdc is part of
the project before archiving.

http://www.xilinx.com

226 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Appendix A: ChipScope Pro Tools Troubleshooting Guide

http://www.xilinx.com

ChipScope Pro Software and Cores User Guide www.xilinx.com 227

UG029 (v13.1) March 1, 2011

Appendix B

References

Documents specific to multi-gigabit serial transceivers:

1. UG076, Virtex-4 FPGA RocketIO Multi-Gigabit Transceiver User Guide

2. UG196, Virtex-5 FPGA RocketIO GTP Transceiver User Guide

3. UG198, Virtex-5 FPGA RocketIO GTX Transceiver User Guide

4. UG366, Virtex-6 FPGA GTX Transceivers User Guide

5. UG371, Virtex-6 FPGA GTH Transceivers User Guide

6. UG386, Spartan-6 FPGA GTP Transceivers User Guide

Xilinx® Virtex® FPGA and Spartan® FPGA references:

7. UG332, Spartan-3 Generation Configuration User Guide

8. UG380, Spartan-6 FPGA Configuration User Guide

9. UG071, Virtex-4 FPGA Configuration User Guide

10. UG191, Virtex-5 FPGA Configuration User Guide

11. UG360, Virtex-6 FPGA Configuration User Guide

12. XAPP139 Configuration and Readback of Virtex FPGAs Using (JTAG) Boundary Scan

Xilinx Tools and Solutions

13. ISE® Design Suite Documentation

14. Embedded Development Kit (EDK) Documentation

15. ISE Design Suite Software Matrix

16. PlanAhead™ Design Analysis Tool

17. Xilinx Support

18. System Generator for DSP

19. Xilinx Online Store

20. Silicon Stepping

21. UG192, Virtex-5 System Monitor User Guide

22. UG370, Virtex-6 System Monitor User Guide

Other references:

23. ActiveState

24. Agilent Technologies

25. Tcl Developer Xchange

26. ByteTools

http://www.xilinx.com/support/documentation/user_guides/ug076.pdf
http://www.xilinx.com/support/documentation/user_guides/ug196.pdf
http://www.xilinx.com/support/documentation/user_guides/ug198.pdf
http://www.xilinx.com/support/documentation/user_guides/ug198.pdf
http://www.activestate.com
http://www.xilinx.com/support/documentation/dt_ise.htm
http://www.byte-tools.com/index.php?main_page=xilinx
http://www.xilinx.com/support/documentation/dt_edk.htm
http://www.xilinx.com/publications/matrix/Software_matrix.pdf
http://www.xilinx.com
http://www.xilinx.com/planahead
http://www.xilinx.com/planahead
http://www.xilinx.com/support
http://www.xilinx.com/ise/optional_prod/system_generator.htm
http://www.xilinx.com/support/documentation/user_guides/ug366.pdf
http://www.xilinx.com/onlinestore/index.htm
http://www.agilent.com/find/logic
http://www.xilinx.com/products/quality/silicon-stepping.htm
http://www.xilinx.com/support/documentation/user_guides/ug192.pdf
http://www.xilinx.com/support/documentation/user_guides/ug192.pdf
http://www.xilinx.com/support/documentation/user_guides/ug370.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp139.pdf
http://www.xilinx.com/support/documentation/user_guides/ug332.pdf
http://www.tcl.tk
http://www.xilinx.com/support/documentation/user_guides/ug386.pdf
http://www.xilinx.com/support/documentation/user_guides/ug380.pdf
http://www.xilinx.com/support/documentation/user_guides/ug191.pdf
http://www.xilinx.com/support/documentation/user_guides/ug360.pdf
http://www.xilinx.com/support/documentation/user_guides/ug371.pdf
http://www.xilinx.com/support/documentation/user_guides/ug071.pdf

228 www.xilinx.com ChipScope Pro Software and Cores User Guide

UG029 (v13.1) March 1, 2011

Appendix B: References

http://www.xilinx.com

	ChipScope Pro 13.1 Software and Cores
	Revision History
	Table of Contents
	1 Introduction
	ChipScope Pro Tools Overview
	ChipScope Pro Tools Description
	Design Flow
	Using ChipScope Pro Cores in Embedded Processor and DSP Tool Flows

	ChipScope Pro Cores Description
	ICON Core
	ILA Core
	VIO Core
	ATC2 Core
	IBERT Core

	System Requirements
	Operating System Requirements
	Software Tools Requirements
	Communications Requirements
	Board Requirements

	Software Installation and Licensing

	2 Using the Core Generator Tools
	Overview
	Using the Xilinx CORE Generator Tool with ChipScope Pro Cores
	Generating an ICON Core
	General ICON Core Parameters
	Generating the Core
	Using the ICON Core

	Generating an ILA Core
	ILA Core Trigger and Storage Parameters
	ILA Core Trigger Port Parameters
	Generating the Core
	Using the ILA Core

	Generating the VIO Core
	General VIO Core Options
	Generating the Core
	Using the VIO Core

	Generating the ATC2 Core
	ATC2 Core Acquisition and State Parameters
	ATC2 Core Pin and Signal Parameters
	ATC2 Core ATCK and ATD Pin Parameters
	Generating the Core
	Using the ATC2 Core

	Generating IBERT v1.0 Cores for Virtex-5 FPGAs
	General IBERT Options
	Selecting the IBERT Clocking Options
	Selecting the MGT/GTP/GTX Options
	Selecting the General Purpose I/O (GPIO) Options
	Selecting the Example and Template Options
	Generating the Design

	Generating IBERT v2.0 Cores for Virtex-5 FPGA GTX Transceivers
	General IBERT Options
	Selecting the GTX_DUALs and Reference Clocks
	Enabling RXRECCLK Probes
	Choosing the System Clock Source
	Generating the Design

	Generating IBERT v2.0 Cores for Virtex-6 FPGA GTX Transceivers
	General IBERT Options
	Selecting the GTX Transceivers and Reference Clocks
	Enabling RXRECCLK Probes
	Choosing the System Clock Source
	Generating the Design

	Generating IBERT v2.0 Cores for Virtex-6 FPGA GTH Transceivers
	General IBERT Options
	Setting up Protocols
	Assigning the GTH Transceivers
	Choosing REFCLK Sources
	Choosing RXRECCLK Probes (Optional)
	Generating the Design

	Generating IBERT v2.0 Cores for Spartan-6 FPGA GTP Transceivers
	General IBERT Options
	Selecting the GTPA1_DUALs and Reference Clocks
	Enabling RXRECCLK Probes
	Choosing the System Clock Source
	Generating the Design

	3 Using the ChipScope Pro Core Inserter
	Core Inserter Overview
	Using the Core Inserter with PlanAhead
	Using the Core Inserter with ISE Project Navigator
	ChipScope Definition and Connection Source File
	Useful Project Navigator Settings

	Using the Core Inserter with Command Line Implementation
	Command Line Flow Overview
	Create CDC Project Step
	Edit CDC Project Step
	Insert Cores Step

	ChipScope Pro Core Inserter Features
	Working with Projects
	Specifying Input and Output Files
	Project Level Parameters
	Core Utilization
	Choosing ICON Options
	Choosing ILA Trigger Options and Parameters
	Choosing ILA Core Capture Parameters
	Choosing ATC2 Data Capture Settings
	Choosing Net Connections for ILA Signals
	Adding Units
	Inserting Cores into Netlist
	Managing Project Preferences

	4 Using the ChipScope Pro Analyzer
	Analyzer Overview
	Analyzer Server Interface
	Analyzer Client Interface
	Project Tree
	Signal Browser
	Message Pane
	Main Window Area

	Analyzer Features
	Working with Projects
	Printing Waveforms
	Importing Signal Names
	Exporting Data
	Closing and Exiting the Analyzer
	Viewing Options
	Setting up a Server Host Connection
	Opening a Parallel Cable Connection
	Opening a Platform Cable USB Connection
	Using Multiple Platform Cable USB Connections
	Opening a JTAG Chain Plug-in Connections
	Polling the Auto Core Status
	Configuring the Target Device(s)
	Trigger Setup Window
	Waveform Window
	Listing Window
	Bus Plot Window
	VIO Console Window
	System Monitor
	IBERT Console Window for Virtex-5 FPGA GTP and GTX Transceivers
	IBERT v2.0 Console for Virtex-5 FPGA GTX Transceivers
	IBERT Console Window for Virtex-6 FPGA GTX Transceivers
	IBERT Console Window for Virtex-6 FPGA GTH Transceivers
	IBERT Console Window for Spartan-6 FPGA GTP Transceivers
	Help

	ChipScope Pro ILA Waveform Toolbar Features
	ChipScope Pro Analyzer Command Line Options

	5 ChipScope Engine Tcl Interface
	Overview
	Requirements
	Limitations

	CSE/Tcl Command Summary
	CseJtag Tcl Commands
	CseFpga Tcl Commands
	CseCore Tcl Commands
	CseVIO Tcl Commands

	CseJtag Tcl Commands
	::chipscope::csejtag_session create
	::chipscope::csejtag_session destroy
	::chipscope::csejtag_session get_api_version
	::chipscope::csejtag_session send_message
	::chipscope::csejtag_target open
	::chipscope::csejtag_target close
	::chipscope::csejtag_target is_connected
	::chipscope::csejtag_target lock
	::chipscope::csejtag_target unlock
	::chipscope::csejtag_target get_lock_status
	::chipscope::csejtag_target clean_locks
	::chipscope::csejtag_target flush
	::chipscope::csejtag_target set_pin
	::chipscope::csejtag_target get_pin
	::chipscope::csejtag_target pulse_pin
	::chipscope::csejtag_target wait_time
	::chipscope::csejtag_target get_info
	::chipscope::csejtag_tap autodetect_chain
	::chipscope::csejtag_tap interrogate_chain
	::chipscope::csejtag_tap get_device_count
	::chipscope::csejtag_tap set_device_count
	::chipscope::csejtag_tap get_irlength
	::chipscope::csejtag_tap set_irlength
	::chipscope::csejtag_tap get_device_idcode
	::chipscope::csejtag_tap set_device_idcode
	::chipscope::csejtag_tap navigate
	::chipscope::csejtag_tap shift_chain_ir
	::chipscope::csejtag_tap shift_device_ir
	::chipscope::csejtag_tap shift_chain_dr
	::chipscope::csejtag_tap shift_device_dr
	::chipscope::csejtag_db add_device_data
	::chipscope::csejtag_db lookup_device
	::chipscope::csejtag_db get_device_name_for_idcode
	::chipscope::csejtag_db get_irlength_for_idcode
	::chipscope::csejtag_db parse_bsdl
	::chipscope::csejtag_db parse_bsdl_file

	CseFpga Command Details
	::chipscope::csefpga_configure_device
	::chipscope::csefpga_configure_device_with_file
	::chipscope::csefpga_get_config_reg
	::chipscope::csefpga_get_instruction_reg
	::chipscope::csefpga_get_usercode
	::chipscope::csefpga_get_user_chain_count
	::chipscope::csefpga_is_config_supported
	::chipscope::csefpga_is_configured
	::chipscope::csefpga_is_sys_mon_supported
	::chipscope::csefpga_run_sys_mon_command_sequence
	::chipscope::csefpga_get_sys_mon_reg
	::chipscope::csefpga_set_sys_mon_reg

	CseCore Command Details
	::chipscope::csecore_get_core_count
	::chipscope::csecore_get_core_status
	::chipscope::csecore_is_cores_supported

	CseVIO Command Details
	::chipscope::csevio_get_core_info
	::chipscope::csevio_is_vio_core
	::chipscope::csevio_init_core
	::chipscope::csevio_terminate_core
	::chipscope::csevio_define_signal
	::chipscope::csevio_define_bus
	::chipscope::csevio_undefine_name
	::chipscope::csevio_write_values
	::chipscope::csevio_read_values

	CSE/Tcl Examples

	Appendix A ChipScope Pro Tools Troubleshooting Guide
	Overview
	ChipScope Pro Tools Installation Troubleshooting
	Xilinx JTAG Programming Cable Troubleshooting
	ChipScope Pro Analyzer Core Troubleshooting
	Gathering Information for Xilinx Technical Support
	Obtaining Xinfo Information
	Obtaining ChipScope Pro Analyzer Log File Information
	Obtaining ChipScope Pro Core Inserter Tool Log File Information
	Obtaining an Archived ISE Tool Project

	Appendix B References

