DISCRETE SEMICONDUCTORS

DATA SHEET

PDTC115E series NPN resistor-equipped transistors; R1 = 100 kΩ, R2 = 100 kΩ

Product specification Supersedes data of 2004 Apr 06 2004 Aug 06

PDTC115E series

FEATURES

- Built-in bias resistors
- · Simplified circuit design
- Reduction of component count
- Reduced pick and place costs.

APPLICATIONS

- General purpose switching and amplification
- · Inverter and interface circuits
- · Circuit driver.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	TYP.	MAX.	UNIT
V _{CEO}	collector-emitter voltage	_	50	V
Io	output current (DC)	_	20	mA
R1	bias resistor	100	_	kΩ
R2	bias resistor	100	_	kΩ

DESCRIPTION

NPN resistor equipped transistor (see "Simplified outline, symbol and pinning" for package details).

PRODUCT OVERVIEW

TYPE NUMBER	PAC	KAGE	MARKING CODE	PNP COMPLEMENT	
I TPE NUMBER	PHILIPS	EIAJ	MARKING CODE	PNP COMPLEMENT	
PDTC115EE	SOT416	SC-75	46	PDTA115EE	
PDTC115EEF	SOT490	SC-89	49	PDTA115EEF	
PDTC115EK	SOT346	SC-59	56	PDTA115EK	
PDTC115EM	SOT883	SC-101	DV	PDTA115EM	
PDTC115ES	SOT54 (TO-92)	SC-43	TC115E	PDTA115ES	
PDTC115ET	SOT23	_	*44 ⁽¹⁾	PDTA115ET	
PDTC115EU	SOT323	SC-70	*15 ⁽¹⁾	PDTA115EU	

Note

^{1. * =} p: Made in Hong Kong.

^{* =} t: Made in Malaysia.

^{* =} W: Made in China.

NPN resistor-equipped transistors; R1 = 100 k Ω , R2 = 100 k Ω

PDTC115E series

SIMPLIFIED OUTLINE, SYMBOL AND PINNING

TYPE NUMBER	CIMPLIFIED OUTLINE AND CYMPOL	PINNING		
I TPE NUMBER	SIMPLIFIED OUTLINE AND SYMBOL	PIN	DESCRIPTION	
PDTC115ES	1 R1 R2	1 2 3	base collector emitter	
PDTC115EE PDTC115EEF PDTC115EK PDTC115ET PDTC115EU	Top view ADB269	1 2 3	base emitter collector	
PDTC115EM	2 R1 R2 R2 Dottom view MHC506	1 2 3	base emitter collector	

NPN resistor-equipped transistors; R1 = 100 k Ω , R2 = 100 k Ω

PDTC115E series

ORDERING INFORMATION

TYPE NUMBER		PACKAGE							
I TPE NUMBER	NAME	DESCRIPTION	VERSION						
PDTC115EE	_	plastic surface mounted package; 3 leads	SOT416						
PDTC115EEF	 plastic surface mounted package; 3 leads 		SOT490						
PDTC115EK	_	plastic surface mounted package; 3 leads	SOT346						
PDTC115EM	_	leadless ultra small plastic package; 3 solder lands; body $1.0 \times 0.6 \times 0.5$ mm	SOT883						
PDTC115ES	_	plastic single-ended leaded (through hole) package; 3 leads	SOT54						
PDTC115ET	_	plastic surface mounted package; 3 leads	SOT23						
PDTC115EU	_	plastic surface mounted package; 3 leads	SOT323						

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter	_	50	V
V _{CEO}	collector-emitter voltage	open base	_	50	V
V _{EBO}	emitter-base voltage	open collector	_	10	V
VI	input voltage				
	positive		_	+40	V
	negative		_	-10	V
Io	output current (DC)		_	20	mA
I _{CM}	peak collector current		_	100	mA
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C			
	SOT54	note 1	_	500	mW
	SOT23	note 1	_	250	mW
	SOT346	note 1	_	250	mW
	SOT323	note 1	_	200	mW
	SOT416	note 1	_	150	mW
	SOT883	notes 2 and 3	_	250	mW
	SOT490	notes 1 and 2	_	250	mW
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature			150	°C
T _{amb}	operating ambient temperature		-65	+150	°C

Notes

- 1. Refer to standard mounting conditions.
- 2. Reflow soldering is the only recommended soldering method.
- 3. Refer to SOT883 standard mounting conditions; FR4 with 60 μm copper strip line.

NPN resistor-equipped transistors; R1 = 100 k Ω , R2 = 100 k Ω

PDTC115E series

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th(j-a)}	thermal resistance from junction to ambient	in free air		
	SOT54	note 1	250	K/W
	SOT23	note 1	500	K/W
	SOT346	note 1	500	K/W
	SOT323	note 1	625	K/W
	SOT416	note 1	833	K/W
	SOT833	notes 2 and 3	500	K/W
	SOT490	notes 1 and 2	500	K/W

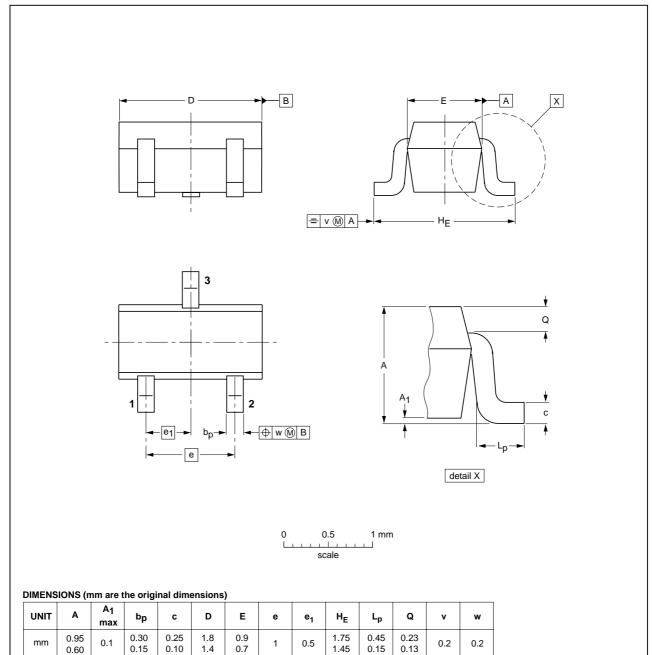
Notes

- 1. Refer to standard mounting conditions.
- 2. Reflow soldering is the only recommended soldering method.
- 3. Refer to SOT883 standard mounting conditions; FR4 with 60 μm copper strip line.

CHARACTERISTICS

 T_{amb} = 25 °C unless otherwise specified.

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
collector-base cut-off current	V _{CB} = 50 V; I _E = 0 A	_	_	100	nA
collector-emitter cut-off current	V _{CE} = 30 V; I _B = 0 A	_	_	1	μΑ
	$V_{CE} = 30 \text{ V}; I_{B} = 0 \text{ A}; T_{j} = 150 ^{\circ}\text{C}$	_	_	50	μΑ
emitter-base cut-off current	$V_{EB} = 5 \text{ V}; I_{C} = 0 \text{ A}$	_	_	50	μΑ
DC current gain	$V_{CE} = 5 \text{ V}; I_{C} = 5 \text{ mA}$	80	_	_	
collector-emitter saturation voltage	$I_C = 5 \text{ mA}; I_B = 0.25 \text{ mA}$	_	_	150	mV
input-off voltage	$I_C = 100 \mu\text{A}; V_{CE} = 5 \text{V}$	_	1.1	0.5	V
input-on voltage	$I_C = 1 \text{ mA}; V_{CE} = 0.3 \text{ V}$	3	1.5	_	V
input resistor		70	100	130	kΩ
resistor ratio		0.8	1	1.2	
collector capacitance	$I_E = i_e = 0 \text{ A}; V_{CB} = 10 \text{ V};$ f = 1 MHz	_	_	2.5	pF
	collector-base cut-off current collector-emitter cut-off current emitter-base cut-off current DC current gain collector-emitter saturation voltage input-off voltage input-on voltage input resistor resistor ratio			$ \begin{array}{c} \text{collector-base cut-off current} \\ \text{collector-emitter cut-off current} \\ \text{V}_{\text{CE}} = 30 \text{ V}; \text{ I}_{\text{B}} = 0 \text{ A} \\ \text{V}_{\text{CE}} = 30 \text{ V}; \text{ I}_{\text{B}} = 0 \text{ A} \\ \text{V}_{\text{CE}} = 30 \text{ V}; \text{ I}_{\text{B}} = 0 \text{ A}; \text{ T}_{\text{j}} = 150 ^{\circ}\text{C} \\ - \\ \text{emitter-base cut-off current} \\ \text{V}_{\text{EB}} = 5 \text{ V}; \text{ I}_{\text{C}} = 0 \text{ A} \\ \text{DC current gain} \\ \text{V}_{\text{CE}} = 5 \text{ V}; \text{ I}_{\text{C}} = 5 \text{ mA} \\ \text{80} \\ - \\ \text{collector-emitter saturation voltage} \\ \text{I}_{\text{C}} = 5 \text{ mA}; \text{I}_{\text{B}} = 0.25 \text{ mA} \\ \text{I}_{\text{C}} = 100 \mu\text{A}; \text{V}_{\text{CE}} = 5 \text{ V} \\ \text{I}_{\text{C}} = 100 \mu\text{A}; \text{V}_{\text{CE}} = 5 \text{ V} \\ \text{I}_{\text{C}} = 100 \mu\text{A}; \text{V}_{\text{CE}} = 0.3 \text{ V} \\ \text{I}_{\text{C}} = 100 \mu\text{A}; \text{V}_{\text{CE}} = 0.3 \text{ V} \\ \text{I}_{\text{C}} = 100 \mu\text{A}; \text{V}_{\text{CE}} = 0.3 \text{ V} \\ \text{I}_{\text{C}} = 100 \mu\text{A}; \text{V}_{\text{CE}} = 0.3 \text{ V} \\ \text{I}_{\text{C}} = 100 \mu\text{A}; \text{V}_{\text{CE}} = 0.3 \text{ V} \\ \text{I}_{\text{C}} = 100 \mu\text{A}; \text{V}_{\text{CE}} = 0.3 \text{ V} \\ \text{I}_{\text{C}} = 100 \mu\text{A}; \text{V}_{\text{CE}} = 0.3 \text{ V} \\ \text{I}_{\text{C}} = 100 \mu\text{A}; \text{V}_{\text{CE}} = 0.3 \text{ V} \\ \text{I}_{\text{C}} = 100 \mu\text{A}; \text{V}_{\text{CE}} = 0.3 \text{ V} \\ \text{I}_{\text{C}} = 100 \mu\text{A}; \text{V}_{\text{CE}} = 0.3 \text{ V} \\ \text{I}_{\text{C}} = 100 \mu\text{A}; \text{V}_{\text{CE}} = 0.3 \text{ V} \\ \text{I}_{\text{C}} = 100 \mu\text{A}; \text{V}_{\text{CE}} = 0.3 \text{ V} \\ \text{I}_{\text{C}} = 100 \mu\text{A}; \text{V}_{\text{CE}} = 0.3 \text{ V} \\ \text{I}_{\text{C}} = 100 \mu\text{A}; \text{V}_{\text{CE}} = 0.3 \text{ V} \\ \text{I}_{\text{C}} = 100 \mu\text{A}; \text{V}_{\text{CE}} = 1$	

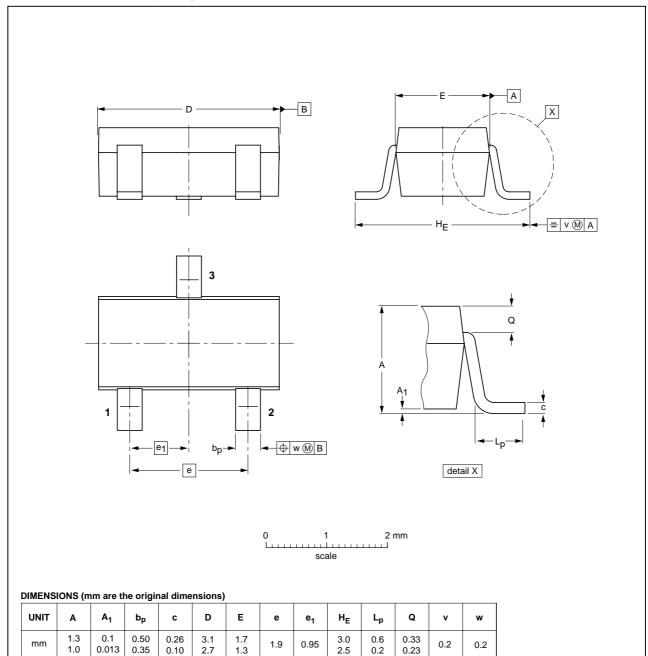

NPN resistor-equipped transistors; R1 = 100 k Ω , R2 = 100 k Ω

PDTC115E series

PACKAGE OUTLINES

Plastic surface mounted package; 3 leads

SOT416

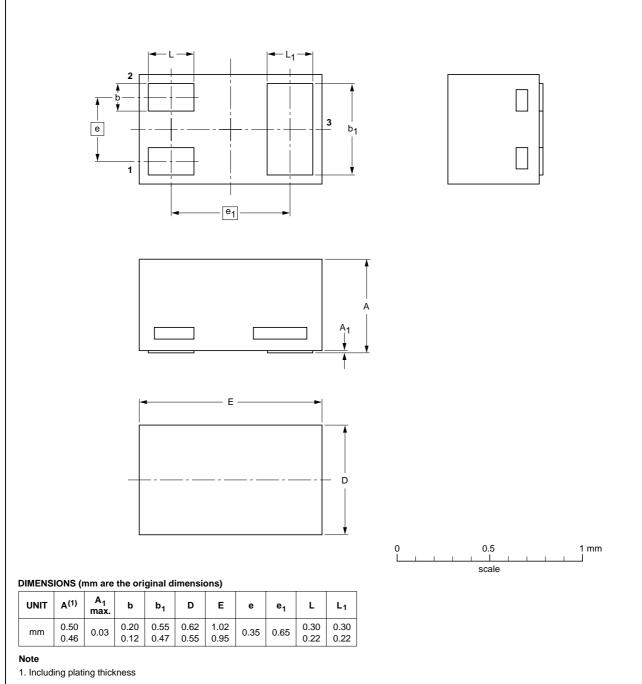


OUTLINE		REFERENCES		EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE	
SOT416			SC-75		97-02-28	

PDTC115E series

Plastic surface mounted package; 3 leads

SOT346

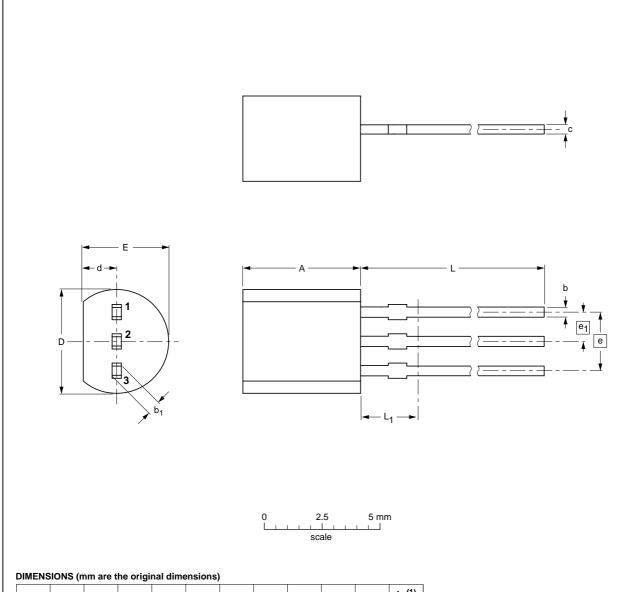

	REFER	ENCES	EUROPEAN	ISSUE DATE
IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
	TO-236	SC-59		98-07-17
	IEC	IEC JEDEC	IEC JEDEC EIAJ	IEC JEDEC EIAJ PROJECTION

NPN resistor-equipped transistors; R1 = 100 k Ω , R2 = 100 k Ω

PDTC115E series

Leadless ultra small plastic package; 3 solder lands; body 1.0 x 0.6 x 0.5 mm

SOT883


OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT883			SC-101		03-02-05 03-04-03	

NPN resistor-equipped transistors; R1 = 100 k Ω , R2 = 100 k Ω

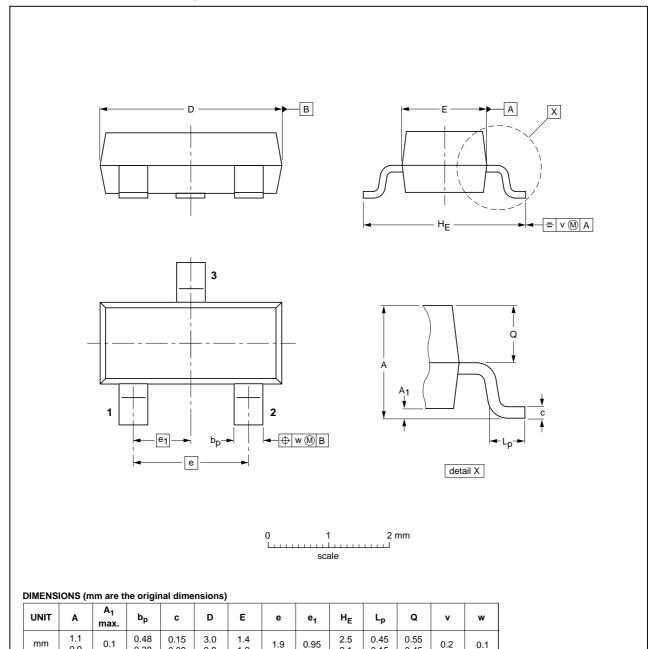
PDTC115E series

Plastic single-ended leaded (through hole) package; 3 leads

SOT54

UNIT	A	b	b ₁	С	D	d	E	е	e ₁	L	L ₁ ⁽¹⁾ max.	
mm	5.2 5.0	0.48 0.40	0.66 0.55	0.45 0.38	4.8 4.4	1.7 1.4	4.2 3.6	2.54	1.27	14.5 12.7	2.5	

Note


1. Terminal dimensions within this zone are uncontrolled to allow for flow of plastic and terminal irregularities.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	1330E DATE	
SOT54		TO-92	SC-43A		97-02-28 04-06-28	

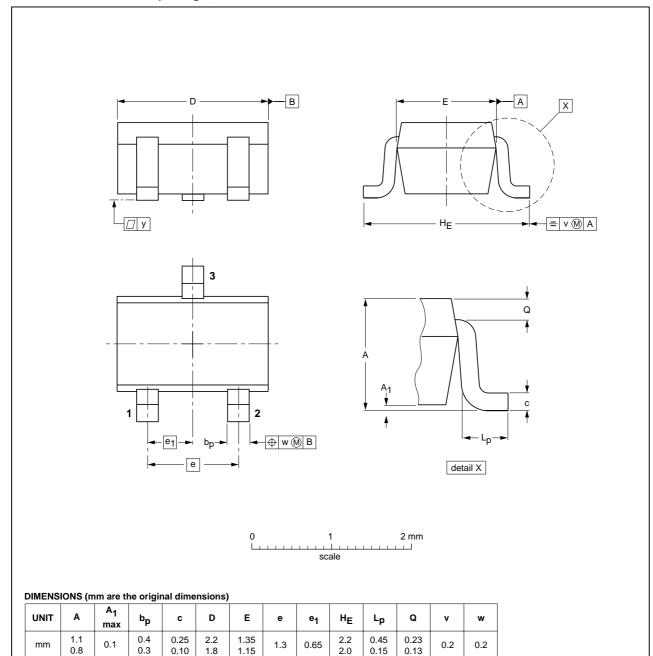
PDTC115E series

Plastic surface mounted package; 3 leads

SOT23

OUTLINE	REFERENCES				EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT23		TO-236AB				-97-02-28 99-09-13

2004 Aug 06 10

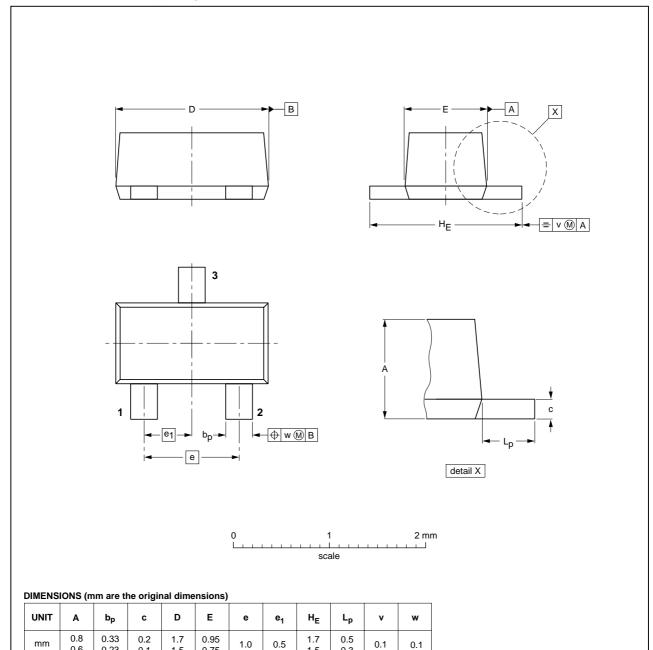

0.38

0.9

PDTC115E series

Plastic surface mounted package; 3 leads

SOT323


OUTLINE	REFERENCES				EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT323			SC-70			97-02-28

NPN resistor-equipped transistors; $R1 = 100 \text{ k}\Omega$, $R2 = 100 \text{ k}\Omega$

PDTC115E series

Plastic surface mounted package; 3 leads

SOT490

OUTLINE	REFERENCES				EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT490			SC-89			98-10-23

2004 Aug 06 12

0.6

NPN resistor-equipped transistors; R1 = 100 k Ω , R2 = 100 k Ω

PDTC115E series

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ⁽¹⁾	PRODUCT STATUS(2)(3)	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors – a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

© Koninklijke Philips Electronics N.V. 2004

SCA76

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

R75/05/pp14

Date of release: 2004 Aug 06

Document order number: 9397 750 13666

Let's make things better.

Philips Semiconductors

