

NGB8245N - 20 A, 450 V, N-Channel Ignition IGBT, D²PAK

20 Amps, 450 Volts VCE(on) ≤ 1.24 V @ IC = 15 A, VGE ≥ 4.0

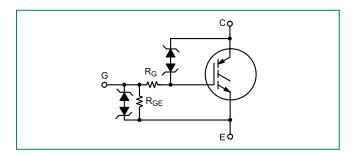
Maximum Ratings (T₁ = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CES}	500	V
Gate Voltage	V _{CER}	500	V
Gate-Emitter Voltage	V _{GE}	±15	V
Collector Current-Continuous @T _C = 25°C - Pulsed	I _c	20 50	A _{DC}
Continuous Gate Current	I _G	1.0	mA
Transient Gate Current (t ≤ 2 ms, f ≤ 100 Hz)	I _G	20	mA
ESD (Human Body Model) R = 1500 Ω , C = 100 pF	ESD	8.0	kV
ESD (Machine Model) R = 0 Ω, C = 200 pF	ESD	500	V
Total Power Dissipation @ T _c = 25°C Derate above 25°C	P _D	150 1.0	W W/°C
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +175	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Description

This Logic Level Insulated Gate Bipolar Transistor (IGBT) features monolithic circuitry integrating ESD and Over–Voltage clamped protection for use in inductive coil drivers applications. Primary uses include Ignition, Direct Fuel Injection, or wherever high voltage and high current switching is required.


Features

- Ideal for Coil-on-Plug and Driver-on-Coil Applications
- D²PAK Package Offers Smaller Footprint for Increased Board Space
- Gate–Emitter ESD Protection
- Temperature Compensated Gate–Collector Voltage Clamp Limits Stress Applied to Load
- LowThreshold Voltage for Interfacing Power Loads to Logic or Microprocessor Devices
- Low Saturation Voltage
- High Pulsed Current Capability
- This is a Pb-Free Device

Applications

Ignition Systems

Functional Diagram

Additional Information

Samples

Ignition IGBT Surface Mount > 450V > NGB8245N

Unclamped Collector-To-Emitter Avalanche Characteristics

Rating	Symbol	Value	Unit
Single Pulse Collector–to–Emitter Avalanche Energy $V_{CC}=50V, V_{GE}=5.0V, Pk \; I_L=9.5A, R_G=1k\Omega, L=3.5mH, Starting T_C=150^{\circ}C$	E _{AS}	158	mJ

Thermal Characteristics

Rating	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta_{ ext{JC}}}$	1.0	°C/W
Thermal Resistance, Junction-to-Ambient (Note 1)	$R_{ hetaJA}$	62.5	°C/W
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 seconds (Note 2)	T _L	275	°C

^{1.} When surface mounted to an FR4 board using the minimum recommended pad size.

^{2.} For further details, see Soldering and Mounting Techniques Reference Manual: SOLDERRM/D.

Electrical Characteristics - OFF Characteristics (Note 3)

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit		
		I _c = 2.0 mA	T _J = -40°C to 175°C	430	450	470			
Collector-Emitter	BV _{ces}	IC = 10 mA	T _J = -40°C to 175°C	450	475	500	V		
Clamp Voltage	CES	IC = 12 A, L = 3.5 mH, $R_G = 1 k\Omega$ (Note 4)	T _J = -40°C to 175°C	420	450	480			
Collector-Emitter	1	$V_{CE} = 15 V$ $V_{GE} = 0 V$	T _J = 25°C	-	0.002	1.0			
Leakage Current	CES	$V_{ce} = 250V$ $R_{g} = 1k\Omega$	T _J = -40°C to 175°C	0.5	2.0	100	μА		
	B _{VCES (R)}		T _J = 25°C	30	33	39			
Reverse Collector-Emitter Clamp Voltage		B _{VCES (R)}	B _{VCES (R)}	IC = -75 mA	T _J = 175°C	31	35	40	V
					T _J = -40°C	30	31	37	
			T _J = 25°C	-	0.4	1.0			
Reverse Collector-Emitter Leakage Current	I _{CES(R)}	$V_{CE} = -24 V$	T _J = 175°C	_	20	35	mA		
			T _J = -40°C	-	0.04	0.2			
Gate-Emitter Clamp Voltage	BV _{GES}	$I_{G} = \pm 5.0 \text{ mA}$	T _J = -40°C to 175°C	12	12.5	14	V		
Gate-Emitter Leakage Current	I _{GES}	$V_{GE} = \pm 5.0 V$	T _J = -40°C to 175°C	200	316	350	μА		
Gate Resistor	$R_{\rm G}$	-	T _J = -40°C to 175°C	-	70	-	Ω		
Gate-Emitter Resistor	R _{GE}	-	T _J = -40°C to 175°C	14.25	16	25	kΩ		

Electrical Characteristics - ON Characteristics (Note 3)

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit	
		$I_c = 1.0 \text{ mA},$ $V_{GE} = V_{CE}$	T _J = 25°C	1.5	1.8	2.1		
Gate Threshold Voltage	VGE (th)		T _J = 175°C	0.7	1.0	1.3	V	
		▼ GE	T _J = -40°C	1.7	2.0	2.3		
Threshold Temperature Coefficient (Negative)	_	-	-	4.0	4.6	5.2	mV/°C	
Collector-to-Emitter On-Voltage	VG _(on)		$V_{GE} = 3.7 \text{ V},$ $I_{C} = 10 \text{ A}$	T _J = -40°C to 175°C	0.8	1.11	1.97	
		$V_{GE} = 4.0 \text{ V},$ $I_{C} = 10 \text{ A}$	T _J = -40°C to 175°C	0.8	1.10	1.85	V	
		$V_{GE} = 4.0 \text{ V},$ $I_{C} = 15 \text{ A}$	T _J = -40°C to 175°C	0.8	1.24	2.00		
Forward Transconductance	gfs	$V_{CE} = 5.0 \text{ V},$ $I_{C} = 6.0 \text{ A}$	T _J = 25°C	10	19	25	Mhos	

Dynamic Characteristics (Note 3)

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit
Input Capacitance	C _{ISS}	$V_{CE} = 25 V$ $f = 10 MHz$		1100	1400	1600	
Output Capacitance	C _{oss}			T _J = 25°C	50	65	80
Transfer Capacitance	C _{RSS}			15	20	25	

Switching Characteristics (Note 3)

Characteristic	Symbol	Test Conditions	Temperature	Min	Тур	Max	Unit
Turn-On Delay Time (Resistive) 10% V _{GE} to 10% I _C	t _{d (on)R}		T _J = -40°C to 175°C	0.1	1.0	2.0	
Rise Time (Resistive) 10% I _c to 90% I _c	t _{rR}	$V_{CC} = 14 V$ $R_L = 1.0 \Omega$	T _J = -40°C to 175°C	1.0	3.4	6.0	
Turn-Off Delay Time (Resistive) 90% V _{GE} to 90% I _C	t _{d (off)R}	$V_{GE} = 5.0 \text{ V}$ $R_{G} = 1.0 \text{ k}\Omega$	T _J = -40°C to 175°C	2.0	4.5	8.0	_
Fall Time (Resistive) 90% I _c to 10% I _c	t _{fR}		T _J = -40°C to 175°C	3.0	8.0	12	μS
Turn-Off Delay Time (Inductive) 90% $\rm V_{\rm GE}$ to 90% $\rm I_{\rm C}$	t _{d(off)L}	$V_{CE} = BV_{CES}$, L = 0.5 mH,	T _J = -40°C to 175°C	6.5	9.7	12.5	
Fall Time (Inductive) 90% I _c to 10% I _c	t _{fL}	$R_G = 1.0 \text{ k}\Omega,$ $I_C = 10 \text{ A},$ $V_{GE} = 5.0 \text{ V}$	T _J = -40°C to 175°C	6.0	8.3	11	

^{3.} Electrical Characteristics at temperature other than 25°C, Dynamic and Switching characteristics are not subject to production testing

^{4.} Not subject to production testing.

Ratings and Characteristic Curves

Figure 1. Self Clamped Inductive Switching

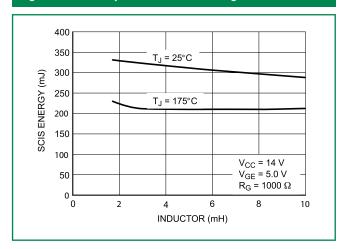


Figure 2. Open Secondary Avalanche Current vs. Temperature



Figure 3. Collector-to-Emitter Voltage vs. Junction Temperature

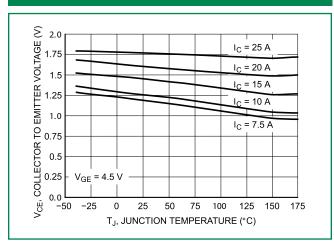


Figure 4. Collector Current vs. Collector-to-Emitter Voltage

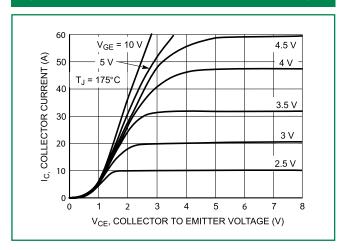


Figure 5. Collector Current vs. Collector-to-Emitter Voltage

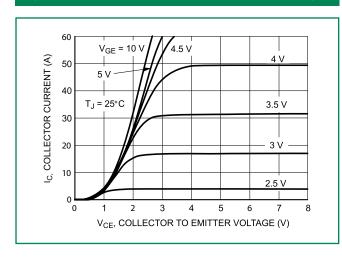


Figure 6. Collector Current vs. Collector-to-Emitter Voltage

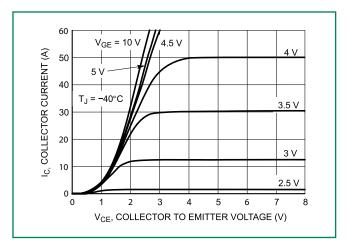


Figure 7. . Transfer Characteristics

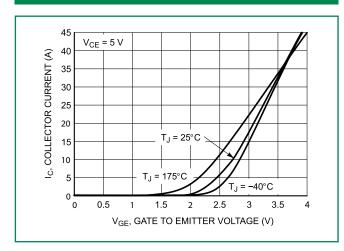


Figure 8. Collector-to-Emitter Leakage Current vs. Temperature

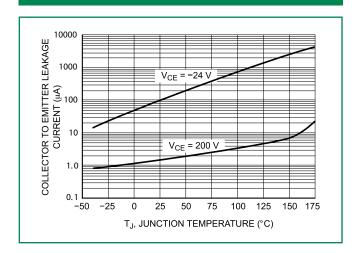


Figure 9. Gate Threshold Voltage vs. Temperature

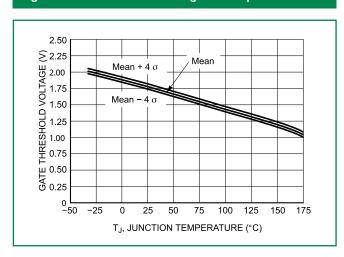


Figure 10. Capacitance vs. Collector-to-Emitter Voltage

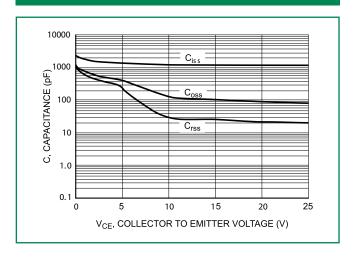


Figure 11. Resistive Switching Fall Time vs. Temperature

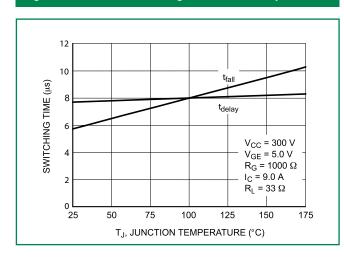
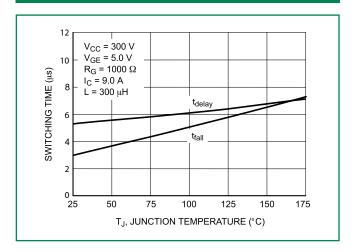



Figure 12. Inductive Switching Fall Time vs. Temperature

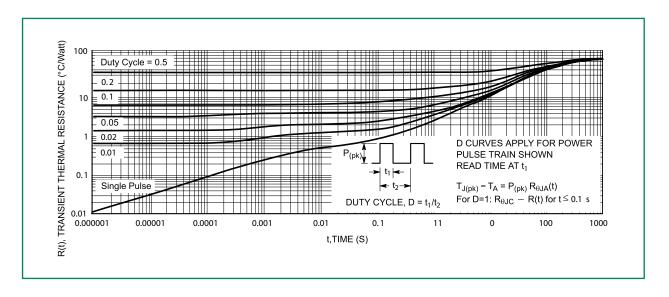
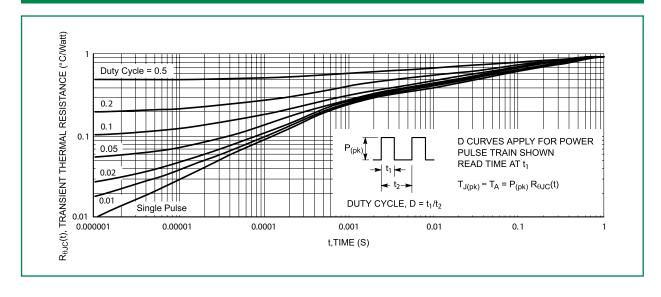
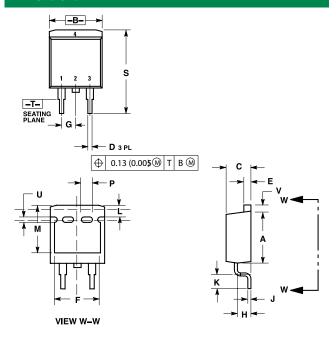
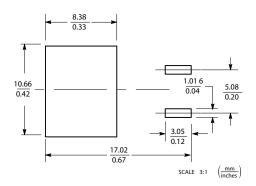
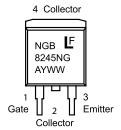




Figure 14. Best Case Transient Thermal Resistance (Non-normalized Junction-to-Case Mounted on Cold Plate)

Dimensions


Dim	Inches		Millin	neters
Dim	Min	Max	Min	Max
Α	0.340	0.380	8.64	9.65
В	0.380	0.405	9.65	10.29
С	0.160	0.190	4.06	4.83
D	0.020	0.035	0.51	0.89
Е	0.045	0.055	1.14	1.40
F	0.310	0.350	7.87	8.89
G	0.100 BSC		2.54 BSC	
Н	0.080	0.110	2.03	2.79
J	0.018	0.025	0.46	0.64
K	0.090	0.110	2.29	2.79
L	0.052	0.072	1.32	1.83
М	0.280	0.320	7.11	8.13
N	0.197	REF	5.00	REF
Р	0.079 REF		2.00 REF	
R	0.039 REF		0.99	REF
S	0.575	0.625	14.60	15.88
V	0.045	0.055	1.14	1.40

NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ANSIY14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. 418B-01THRU 418B-03 OBSOLETE, NEW STANDARD 418B-04. STYLE 4:

PIN: 1. GATE 2. COLLECTOR 3. EMITTER 4. COLLECTOR

Soldering Footrpint

Part Marking System

NGB8245N = Device Code

A = Assembly Location

Y = Year
WW = Work Week
G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
NGB8245NT4G	D²PAK (Pb-Free)	800 / Tape & Reel

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littelfuse.com/disclaimer-electronics.