Part Number TPG100016	Softlog 12-Channel ICP2-COMBO Gang Programmer
	The ICP2COMBO-12 Production Quality In-Circuit (ICSP) 12-Channel (expandable up to 60 channels) GANG Programmer is a cost-effective programmer that operates with a PC or as a standalone unit and simultaneousl programs 8-bit PIC® MCUs and serial EEPROMs. Features: Ultra-fast programming Built-in opto-relay barrier for target lines Galvanic isolation of control lines 250mA Vdd drive current (per channel) Programmable Vdd (2.0 to 5.5V) and Vpp (2.0 to 13.5V) Programmable delay between Vdd and Vpp (0.1 to 250ms) Programmable delay between Vdd and Vpp (0.1 to 250ms) Programmable clock/data speed (500KHz to 2.5MHz) On-board 4MByte flash memory per channel for non-volatile storage of the HEX (6 environments)
	Softlog is a trusted Third-Party Tool Provider