The ICP2COMBO-DPX-12 Production Quality In-Circuit (ICSP) 12-Channel (expandable up to 60 channels) GANG Programmer is a cost-effective programmer that operates with a PC or as a standalone unit and simultaneously programs 8-bit PIC® MCUs, 16-bit PIC MCUs & dsPIC® DSCs, 32-bit PIC MCUs, and serial EEPROMs. Features:
 Ultra fast programming Built-in opto-relay barrier for target lines Galvanic isolation of control lines 250mA Vdd drive current (per channel) Programmable Vdd (2.0 to 5.5V) and Vpp (2.0 to 13.5V) Programmable delay between Vdd and Vpp (0.1 to 250ms) Programmable clock/dtat speed (500/KLz to 2.5MHz) On-board 4MByte flash memory per channel for non-volatile storage of the HEX (6 environments) Windows® DLL functions and command-line interface for high-volume automatic programming