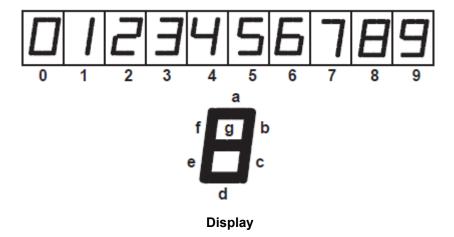


CD54HC4511, CD74HC4511, CD74HCT4511 SCHS279E - DECEMBER 1998 - REVISED AUGUST 2022

CDx4HC4511, CD74HCT4511 BCD-to-7 Segment Latch/Decoder/Drivers

1 Features

- 2-V to 6-V V_{CC} operation ('HC4511)
- 4.5-V to 5.5-V V_{CC} operation (CD74HCT4511)
- High-output sourcing capability
 - 7.5 mA at 4.5 V (CD74HCT4511)
 - 10 mA at 6 V ('HC4511)
- Input latches for BCD code storage
- Lamp test and blanking capability
- Balanced propagation delays and transition times
- Significant power reduction compared to LSTTL logic IC's
- 'HC4511
 - High noise immunity, N_{IL} or N_{IH} = 30% of V_{CC} at V_{CC} = 5 V
- CD74HCT4511
 - Direct LSTTL input logic compatibility, V_{IL} = 0.8 V Maximum, V_{IH} = 2 V minimum
 - CMOS input compatibility, I_I ≤ 1_{µA} at V_{OL}, V_{OH}


2 Description

The CD54HC4511, CD74HC4511, CD74HCT4511 are BCD-to-7 segment latch/decoder/ drivers with four address inputs (D₀-D₃), an activelow blanking (\overline{BL}) input, lamp-test (\overline{LT}) input, and a latch-enable (LE) input that, when high, enables the latches to store the BCD inputs. When LE is low, the latches are disabled, making the outputs transparent to the BCD inputs.

Device Information

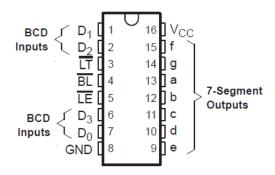
PART NUMBER	PACKAGE ⁽¹⁾	BODY SIZE (NOM)
CD54HC4511	J (CDIP, 16)	24.38 mm × 6.92 mm
CD74HC4511	N (PDIP, 16)	19.31 mm × 6.35 mm
	D (SOIC, 16)	9.90 mm × 3.90 mm
	PW (TSSOP, 16)	5.00 mm × 4.40 mm
CD74HCT4511	N (PDIP, 16)	19.31 mm × 6.35 mm

For all available packages, see the orderable addendum at the end of the data sheet.

Table of Contents

1 Features1	6 Parameter Measurement Information
2 Description1	
3 Revision History2	
4 Pin Configuration and Functions3	
5 Specifications4	
5.1 Absolute Maximum Ratings4	
5.2 Recommended Operating Conditions for	9 Layout11
'HC4511 ⁽¹⁾ 4	9.1 Layout Guidelines11
5.3 Recommended Operating Conditions for	10 Device and Documentation Support12
CD74HCT4511 ⁽¹⁾ 4	10.1 Receiving Notification of Documentation Updates 12
5.4 Thermal Information5	10.2 Support Resources12
5.5 'HC4511 Electrical Characteristics5	10.3 Trademarks12
5.6 CD74HCT4511 Electrical Characteristics5	10.4 Electrostatic Discharge Caution12
5.7 'HC4511 Timing Requirements6	10.5 Glossary12
5.8 Switching Characteristics6	
5.9 CD74HCT4511 Timing Requirements7	
5.10 CD74HCT4511 Switching Characteristics	11.1 Tape and Reel Information13
5.11 Operating Characteristics7	
· · · · · · · · ·	

3 Revision History


NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision D (October 2003) to Revision E (August 2022)

Page

4 Pin Configuration and Functions

J, N, D, PW package 16-Pin CDIP, PDIP, SOIC, TSSOP Top View

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature (unless otherwise noted)(1)

			MIN	MAX	UNIT
V _{CC}	Supply voltage		- 0.5	7	V
I _{IK}	Input diode current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}^{(1)}$		±20	mA
I _{OK}	Output diode current	$V_{\rm O}$ < -0.5 V or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5 V ⁽¹⁾		±20	mA
Io	Output source or sink current per output pin	$V_O = 0$ to V_{CC}		±25	mA
	Continuous current through V _{CC} or GND			±50	mA
TJ	Junction temperature			150	°C
T _{stg}	Storage temperature range		– 65	150	°C
		At distance 1/16 ± 1/32 in (1.59 ± 0.79 mm) from case for 10 s maximum		265	°C
	Lead temperature (During Soldering)	Unit inserted into a PC board (minimum thickness 1/16 in, 1.59 mm) (with solder contacting lead tips only)		300	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability

5.2 Recommended Operating Conditions for 'HC4511⁽¹⁾

	у се предостивните предости на		T _A = 2	5°C	T _A = - 55		T _A = -4 85°		UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
V _{CC}	Supply voltage		2	6	2	6	2	6	V
		V _{CC} = 2 V	1.5		1.5		1.5		
V _{IH}	High-level input voltage	V _{CC} = 4.5 V	3.15		3.15		3.15		V
		V _{CC} = 6 V	4.2		4.2		4.2		
		V _{CC} = 2 V		0.5		0.5		0.5	
V _{IL}	Low-level input voltage	V _{CC} = 4.5 V		1.35		1.35		1.35	V
		V _{CC} = 6 V		1.8		1.8		1.8	
VI	Input voltage		0	V _{CC}	0	V _{CC}	0	V _{CC}	V
Vo	Output voltage		0	V _{CC}	0	V _{CC}	0	V _{CC}	V
		V _{CC} = 2 V		1000		1000		1000	
t _t	Input transition rise/fall time	V _{CC} = 4.5 V		500		500		500	ns
		V _{CC} = 6 V		400		400		400	

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report Implications of Slow or Floating SMOS Inputs, literature number SCBA004.

5.3 Recommended Operating Conditions for CD74HCT4511⁽¹⁾

		T _A = - 55°C 1	o 125°C	T _A = - 55°C 1	o 125°C	T _A = - 40°C	C to 85°C	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	UNII
V _{CC}	Supply Voltage	4.5	5.5	4.5	5.5	4.5	5.5	V
V _{IH}	High-level input voltage	2		2		2		V
V _{IL}	Low-level input voltage		0.8		0.8		0.8	
VI	Input voltage		V _{CC}		V _{CC}		V _{CC}	V
Vo	Output voltage		V _{CC}		V _{CC}		V _{CC}	V

5.3 Recommended Operating Conditions for CD74HCT4511⁽¹⁾ (continued)

		T _A = - 55°C	to 125°C	$T_A = -55^{\circ}C$	to 125°C	$T_A = -40^\circ$	C to 85°C	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	ONII
t _t	Input transition (rise and fall) time		500		500		500	ns

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report Implications of Slow or Floating SMOS Inputs, literature number SCBA004.

5.4 Thermal Information

		D (SOIC)	N (PDIP)	PW (TSSOP)	
THERMAL MI	ETRIC ⁽¹⁾	16 PINS	16 PINS	16 PINS	UNIT
$R_{\theta JA}$	Package thermal impedance	67	73	108	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application report.

5.5 'HC4511 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	V _{cc}	T _A = 2	T _A = 25°C		55°C 5°C	T _A = - 40°C to 85°C		UNIT										
					MIN	MAX	MIN	MAX	MIN	MAX											
				2 V	1.9		1.9		1.9												
			I _{OH} = -20 μA	I _{OH} = -20 μA	4.5 V	4.4		4.4		4.4											
V _{OH}	High level output voltage	V _I = V _{IH} or V _{IL}		6 V	5.9		5.9		5.9		V										
			I _{OH} = -4 mA	4.5 V	3.98		3.7		3.84												
			I _{OH} = −5.2 mA	6 V	5.48		5.2		5.34												
				2 V		0.1		0.1		0.1											
							i							I _{OL} = 20 μA	4.5 V		0.1		0.1		0.1
V _{OL}	Low level output voltage			6 V		0.1		0.1		0.1	V										
								I _{OL} = 4 mA	4.5 V		0.26		0.4		0.33						
			I _{OL} = 5.2 mA	6 V		0.26		0.4		0.33											
I _I	Input leakage current V	$V_I = V_{CC}$ or 0		6 V		±0.1		±1		±1	μΑ										
I _{CC}	Supply current	$V_I = V_{CC}$ or 0,	I _O = 0	6 V		8		160		80	μA										
C _i	Input Capacitance			2 V to 6 V		10		10		10	pF										

5.6 CD74HCT4511 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		V _{cc}	T _A = 25°C		T _A = -55°C to 125°C		T _A = - 40°C to 85°C		UNIT	
					MIN	TYP	MAX	MIN	MAX	MIN	MAX	
V _{OH}	High level output	V _I = V _{IH} or V _{IL}	I _{OH} = -20 μA	4.5 V	4.4			4.4		4.4		
VOH	voltage	VI - VIH OI VIL	I _{OH} = -4 mA	4.5 V	3.98			3.7		3.84		V
V	Low level output	$V_I = V_{IH}$ or V_{IL}	I _{OL} = 20 μA	4.5 V			0.1		0.1		0.1	, '
V _{OL}	voltage	VI - VIH OI VIL	I _{OL} = 4 mA	4.5 V			0.26		0.4		0.33	
I ₁	Input leakage current V	V _I = V _{CC} to GND		5.5 V			±0.1		±1		±1	μΑ
I _{CC}	Supply current	$V_I = V_{CC}$ or 0,	I _O = 0	5.5 V			8		160		80	μA
(4)	Supply-Current	LT, LE inputs held	at V _{CC} – 2.1 V	4.5 V		100	540		735		675	
ΔI _{CC} (1)	Change	BL, Dn inputs held	l at V _{CC} – 2.1 V	to 5.5 V		100	108		147		135	μA

5.6 CD74HCT4511 Electrical Characteristics (continued)

over recommended operating free-air temperature range (unless otherwise noted)

PARA	PARAMETER	ARAMETER TEST CONDITIONS V				T _A = 25°C			T _A = - 40°C to 85°C		UNIT
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
Ci	Input Capacitance					10		10		10	pF

⁽¹⁾ Additional supply current per input pin, TTL inputs high, 1 unit load. For dual-supply systems, theoretical worst-case (V_I = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

5.7 'HC4511 Timing Requirements

	Ţ .	V _{cc}	T _A = 25	i°C	T _A = - 55° 125°C		T _A = - 40 85°C		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
		2 V	80		120		100		
t _W	Pulse duration, LE low	4.5 V	16		24		20		ns
		6 V	14		20		17		
		2 V	60		90		75		
t _{su}	Setup time, BCD inputs before $\overline{\text{LE}}\uparrow$	4.5 V	12		18		15		ns
		6 V	10		15		13		
		2 V	3		3		3		
t _h H	Hold time, BCD inputs before $\overline{\text{LE}}\uparrow$	4.5 V	3		3		3		ns
		6 V	3		3		3		

5.8 Switching Characteristics

PARAMETER	FROM (INPUT)	TO	LOAD CAPACITANCE	V _{cc}	1	Γ _A = 25°C	;	T _A = - 55°C TO 125°C	T _A = -40°C TO 85°C	UNIT	
t _{pd}	(INPUT)	(OUTPUT)	CAPACITANCE		MIN	TYP	MAX	MIN MAX	MIN MAX		
				2 V			300	450	375		
	D _n	Output	C _L = 50 pF	4.5 V			60	90	75		
	D _n	Output		6 V			51	77	64		
			C _L = 15 pF	5 V		25					
				2 V			270	405	340		
	ĪĒ	Output	C _L = 50 pF	4.5 V			54	81	68		
t _{pd} -	LE	C _L = 15 pF		6 V			46	69	58		
			C _L = 15 pF	5 V		23					
	BL (2 V			220	330	275
			C _L = 50 pF	4.5 V			44	66	55		
	DL	Output		6 V			37	56	47		
			C _L = 15 pF	5 V		18					
				2 V			160	240	200		
	ΙT	0	C _L = 50 pF	4.5 V			32	48	40		
	LI	Output		6 V			27	41	34		
			C _L = 15 pF	5 V		13					
				2 V			75	110	95		
t _t		Any	ny C _L = 50 pF	4.5 V			15	22	19	ns	
				6 V			13	19	16		

5.9 CD74HCT4511 Timing Requirements

		T _A = 25	°C	T _A = - 55°C °C	TO 125	T _A = - 40°C	UNIT	
		MIN	MAX	MIN	MAX	MIN	MAX	
t _w	Pulse duration, LE low	16		24		20		ns
t _{su}	Setup time, BCD inputs before LE↑	16		24		20		ns
t _h	Hold time, BCD inputs before LE↑	5		5		5		ns

over operating free-air temperature range (unless otherwise noted)

5.10 CD74HCT4511 Switching Characteristics

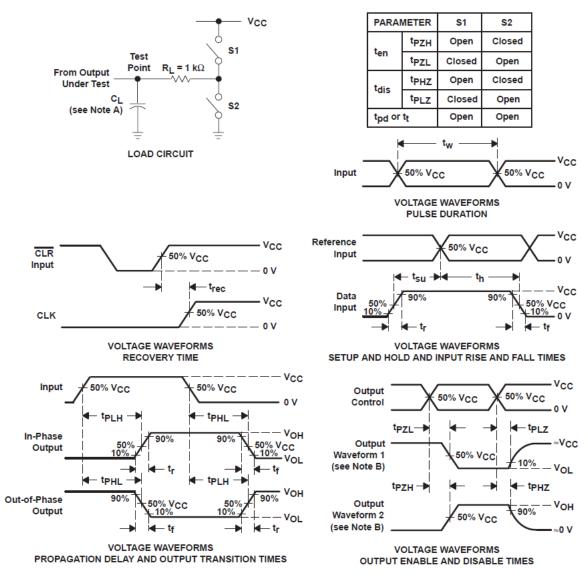
PARAMETER	FROM (INPUT)	TO	LOAD CAPACITANCE	V _{CC}	Т	_A = 25°C	;	T _A = - 55°C to 125°C		T _A = - 40°C to 85°C		UNIT
	(INPUT)	(OUTPUT)	CAPACITANCE		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
	D _n	Output	C _L = 50 pF	4.5 V			60		90		75	
			C _L = 15 pF	5 V		25						
	ΙĒ	Output	C _L = 50 pF	4.5 V			54		81		68	
			C _L = 15 pF	5 V		23						ns
t _{pd}	BL	BL Output	C _L = 50 pF	4.5 V			44		66		55	115
			C _L = 15 pF	5 V		18						
	LT Out	Output	C _L = 50 pF	4.5 V			33		50		41	
			C _L = 15 pF	5 V		13						
t _t		Any	C _L = 50 pF	4.5 V			15		22		19	ns

5.11 Operating Characteristics

	TYP	UNIT		
C	Power dissipation capacitance	'HC4511	114	pF
Opd		CD74HCT4511	110	PΓ

 $[\]mathbf{C}_{\mathrm{pd}}$ is used to determine the dynamic power consumption, per package.

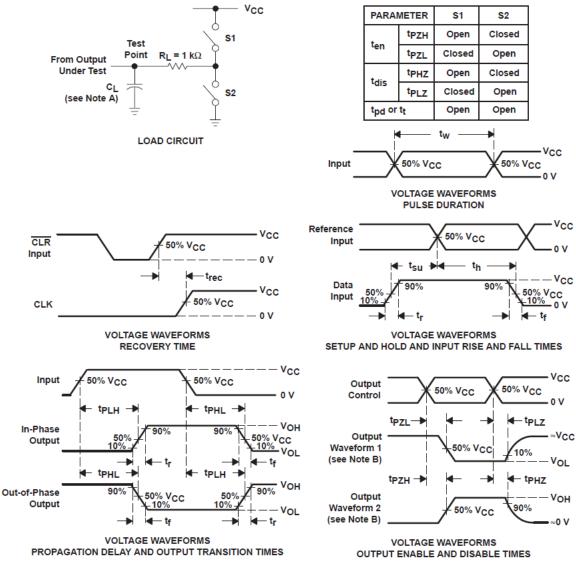
 $P_D = C_{pd}V_{CC}^2 f_i + \Sigma C_L V_{CC}^2 f_o$ where: $f_i = \text{input frequency}$


f_o = output frequency

C_L = output load capacitance

V_{CC} = supply voltage

6 Parameter Measurement Information



NOTES: A. C_L includes probe and test-fixture capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, Z_O = 50 Ω, t_r = 6 ns, t_f = 6 ns.
- D. For clock inputs, f_{max} is measured with the input duty cycle at 50%.
- E. The outputs are measured one at a time with one input transition per measurement.
- F. tpLZ and tpHZ are the same as tdis.
- G. tpzL and tpzH are the same as ten.
- H. t_{PLH} and t_{PHL} are the same as t_{pd}.

Figure 6-1. 'HC4511

- NOTES: A. C_L includes probe and test-fixture capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \ \Omega$, $t_r = 6 \ ns$, $t_f = 6 \ ns$.
 - D. For clock inputs, f_{max} is measured with the input duty cycle at 50%.
 - E. The outputs are measured one at a time with one input transition per measurement.
 - F. tpLz and tpHz are the same as t_{dis}.
 - G. tpzL and tpzH are the same as ten.
 - H. tpLH and tpHL are the same as tpd.

Figure 6-2. CD74HCT4511

7 Detailed Description

7.1 Overview

The CD54HC4511, CD74HC4511, and CD74HCT4511 are BCD-to-7 segment latch/decoder/drivers with four address inputs (D_0 – D_3), an active-low blanking (\overline{BL}) input, lamp-test (\overline{LT}) input, and a latch-enable (\overline{LE}) input that, when high, enables the latches to store the BCD inputs. When \overline{LE} is low, the latches are disabled, making the outputs transparent to the BCD inputs.

These devices have standard-size output transistors, but are capable of sourcing (at standard V_{OH} levels) up to 7.5 mA at 4.5 V. The HC types can supply up to 10 mA at 6 V.

7.2 Functional Block Diagram

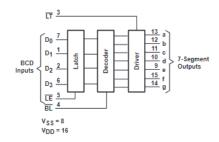


Figure 7-1. Function Diagram

7.3 Device Functional Modes

Table 7-1. Function Table

		[INPUTS ⁽¹)			OUTPUTS ⁽²⁾									
LE	BL	ΙΤ	D ₃	D ₂	D ₁	D ₀	а	b	С	d	е	f	g	DISPLAY		
Х	Х	L	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	8		
Х	L	Н	Х	Х	Х	Х	L	L	L	L	L	L	L	Blank		
L	Н	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	L	0		
L	Н	Н	L	L	L	Н	L	Н	Н	L	L	L	L	1		
L	Н	Н	L	L	Н	L	Н	Н	L	Н	Н	L	Н	2		
L	Н	Н	L	L	Н	Н	Н	Н	Н	Н	L	L	Н	3		
L	Н	Н	L	Н	L	L	L	Н	Н	L	L	Н	Н	4		
L	Н	Н	L	Н	L	Н	Н	L	Н	Н	L	Н	Н	5		
L	Н	Н	L	Н	Н	L	L	L	Н	Н	Н	Н	Н	6		
L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	L	L	L	7		
L	Н	Н	Н	L	L	L	Н	Н	Н	Н	Н	Н	Н	8		
L	Н	Н	Н	L	L	Н	Н	Н	Н	L	L	Н	Н	9		
L	Н	Н	Н	L	Н	L	L	L	L	L	L	L	L	Blank		
L	Н	Н	Н	L	Н	Н	L	L	L	L	L	L	L	Blank		
L	Н	Н	Н	Н	L	L	L	L	L	L	L	L	L	Blank		
L	Н	Н	Н	Н	L	Н	L	L	L	L	L	L	L	Blank		
L	Н	Н	Н	Н	Н	L	L	L	L	L	L	L	L	Blank		
L	Н	Н	Н	Н	Н	Н	L	L	L	L	L	L	L	Blank		
Н	Н	Н	Х	Х	Х	Х	t	t	t	t	t	t	t	t		

⁽¹⁾ H = High Voltage Level, L = Low Voltage Level, X = Don't caret = Depends on BCD code previously applied when $\overline{\text{LE}}$ = LNOTE: Display is blank for all illegal input codes (BCD > HLLH).

⁽²⁾ H = Driving High, L = Driving Low, Z = High Impedance State

8 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*. Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. A 0.1- μ F capacitor is recommended for this device. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. The 0.1- μ F and 1- μ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.

9 Layout

9.1 Layout Guidelines

When using multiple-input and multiple-channel logic devices inputs must not ever be left floating. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such unused input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular unused input depends on the function of the device. Generally, the inputs are tied to GND or V_{CC} , whichever makes more sense for the logic function or is more convenient.

10 Device and Documentation Support

TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below.

10.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

10.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

10.3 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

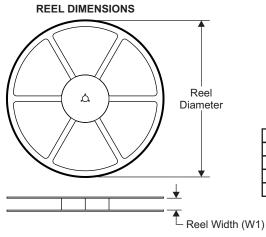
10.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

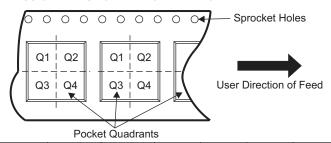
10.5 Glossary

TI Glossary

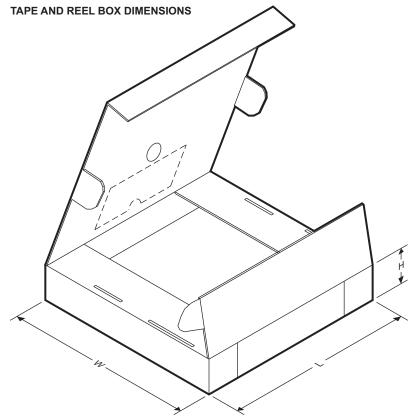

This glossary lists and explains terms, acronyms, and definitions.

11 Mechanical, Packaging, and Orderable Information

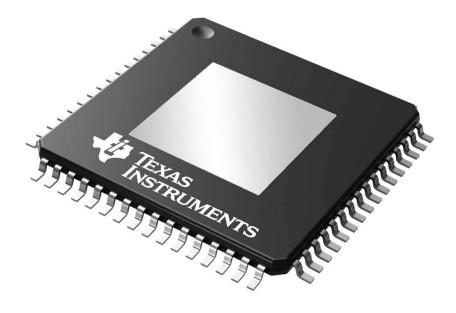
The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.


11.1 Tape and Reel Information

TAPE DIMENSIONS KO P1 BO W Cavity A0

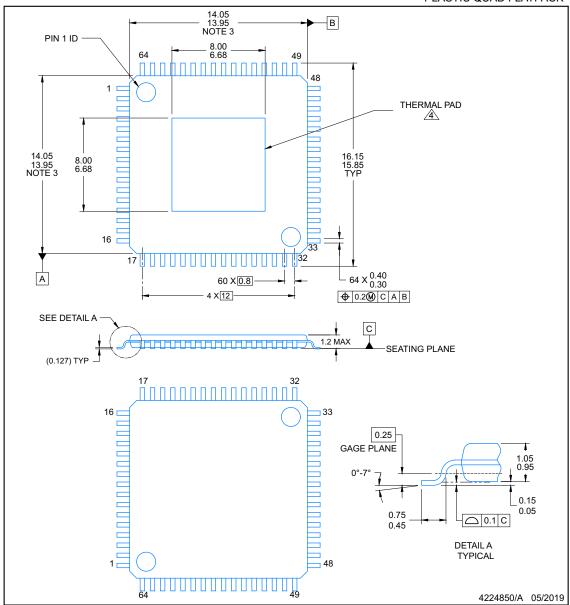

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers
	Then between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
PTAS6584QDKQQ1	HTQFP	PHD	64	1000	330.0	24.4	17.0	17.0	1.5	20.0	24.0	Q2

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
PTAS6584QPHDRQ1	HTQFP	PHD	64	1000	350.0	350.0	43.0

11.2 Mechanical Data



PACKAGE OUTLINE

PHD0064B

HTQFP - 1.2 mm max height

PLASTIC QUAD FLATPACK

NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per side
- See technical brief. PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004) for information regarding recommended board layout.

EXAMPLE BOARD LAYOUT

PHD0064B

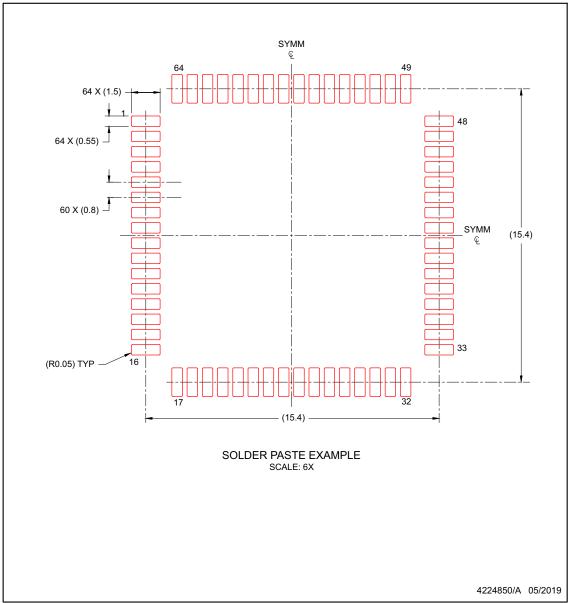
HTQFP - 1.2 mm max height

PLASTIC QUAD FLATPACK SYMM Œ 49 64 X (0.55) 60 X (0.8) SYMM (15.4)(R0.05) TYP (15.4)LAND PATTERN EXAMPLE **EXPOSED METAL SHOWN** SCALE: 6X 0.05 MAX 0.05 MIN ALL AROUND ALL AROUND SOLDER MASK METAL **OPENING EXPOSED EXPOSED** METAL METAL SOLDER MASK OPENING METAL UNDER SOLDER MASK NON SOLDER MASK SOLDER MASK **DEFINED DEFINED** SOLDER MASK DETAILS

NOTES: (continued)

- Publication IPC-7351 may have alternate designs.
- Solder mask tolerances between and around signal pads can vary based on board fabrication site.
- Vias are optional depending on application, refer to device data sheet. It is recommended that vias under paste be filled, plugged or tented.

4224850/A 05/2019



EXAMPLE STENCIL DESIGN

PHD0064B

HTQFP - 1.2 mm max height

PLASTIC QUAD FLATPACK

NOTES: (continued)

- Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 8. Board assembly site may have different recommendations for stencil design.

www.ti.com 8-Sep-2023

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-8773301EA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8773301EA CD54HC4511F3A	Samples
CD54HC4511F3A	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-8773301EA CD54HC4511F3A	Samples
CD74HC4511E	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC4511E	Samples
CD74HC4511EE4	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD74HC4511E	Samples
CD74HC4511M96	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU SN	Level-1-260C-UNLIM	-55 to 125	HC4511M	Samples
CD74HC4511PWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4511	Samples
CD74HC4511PWRE4	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4511	Samples
CD74HC4511PWRG4	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4511	Samples
CD74HC4511PWT	LIFEBUY	TSSOP	PW	16	250	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HJ4511	
CD74HCT4511E	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	-55 to 125	CD74HCT4511E	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

RoHS Exempt: Til defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

PACKAGE OPTION ADDENDUM

www.ti.com 8-Sep-2023

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

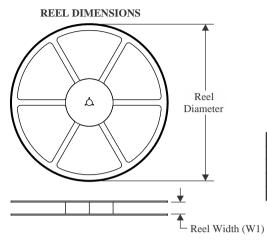
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

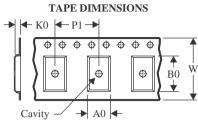
OTHER QUALIFIED VERSIONS OF CD54HC4511, CD74HC4511:

Catalog : CD74HC4511

Military: CD54HC4511

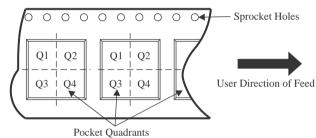
NOTE: Qualified Version Definitions:


Catalog - TI's standard catalog product

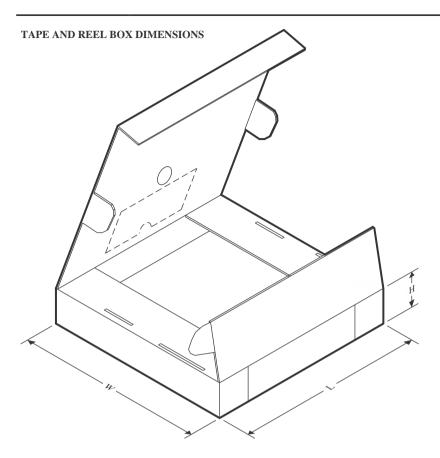

• Military - QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Jul-2023


TAPE AND REEL INFORMATION

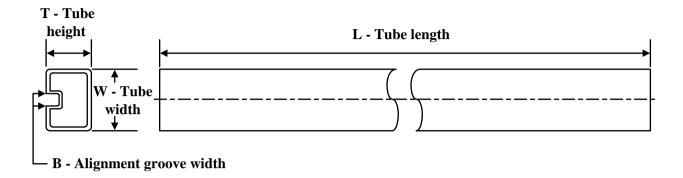
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74HC4511M96	SOIC	D	16	2500	330.0	16.4	6.6	9.3	2.1	8.0	16.0	Q1
CD74HC4511M96	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
CD74HC4511PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CD74HC4511PWT	TSSOP	PW	16	250	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 26-Jul-2023

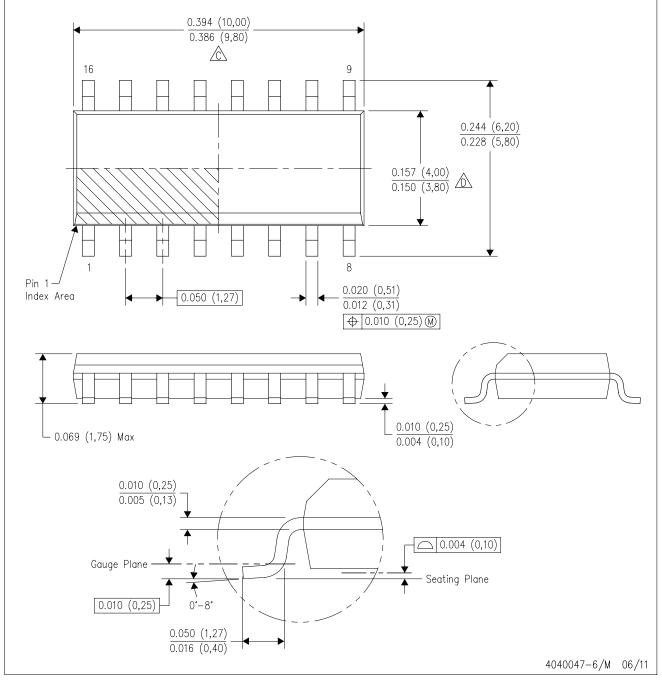

*All dimensions are nominal

	7 till dillitoriolorio di o riorriiridi							
	Device	Package Type Package Drawing		Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
	CD74HC4511M96	SOIC	D	16	2500	366.0	364.0	50.0
ı	CD74HC4511M96	SOIC	D	16	2500	356.0	356.0	35.0
	CD74HC4511PWR	TSSOP	PW	16	2000	356.0	356.0	35.0
	CD74HC4511PWT	TSSOP	PW	16	250	356.0	356.0	35.0

PACKAGE MATERIALS INFORMATION

www.ti.com 26-Jul-2023

TUBE

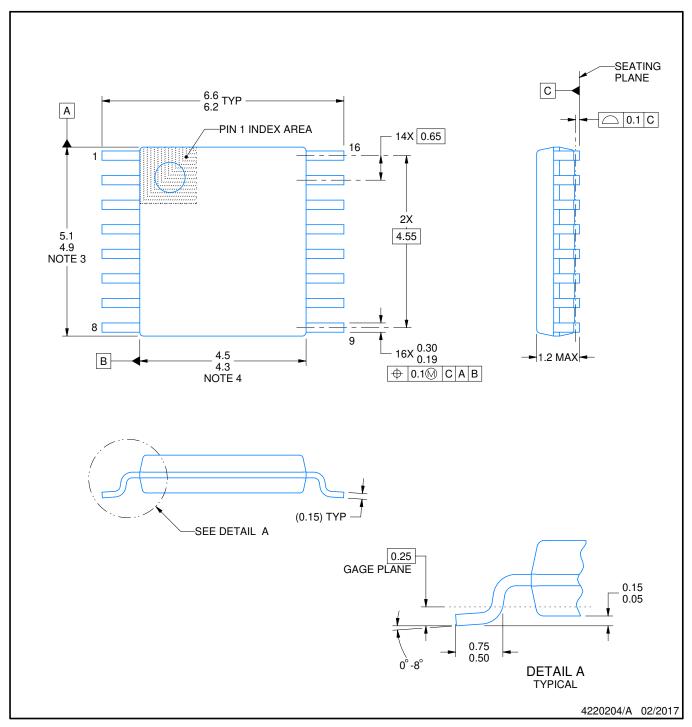


*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
CD74HC4511E	N	PDIP	16	25	506	13.97	11230	4.32
CD74HC4511E	N	PDIP	16	25	506	13.97	11230	4.32
CD74HC4511EE4	N	PDIP	16	25	506	13.97	11230	4.32
CD74HC4511EE4	N	PDIP	16	25	506	13.97	11230	4.32
CD74HCT4511E	N	PDIP	16	25	506	13.97	11230	4.32
CD74HCT4511E	N	PDIP	16	25	506	13.97	11230	4.32

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

SMALL OUTLINE PACKAGE

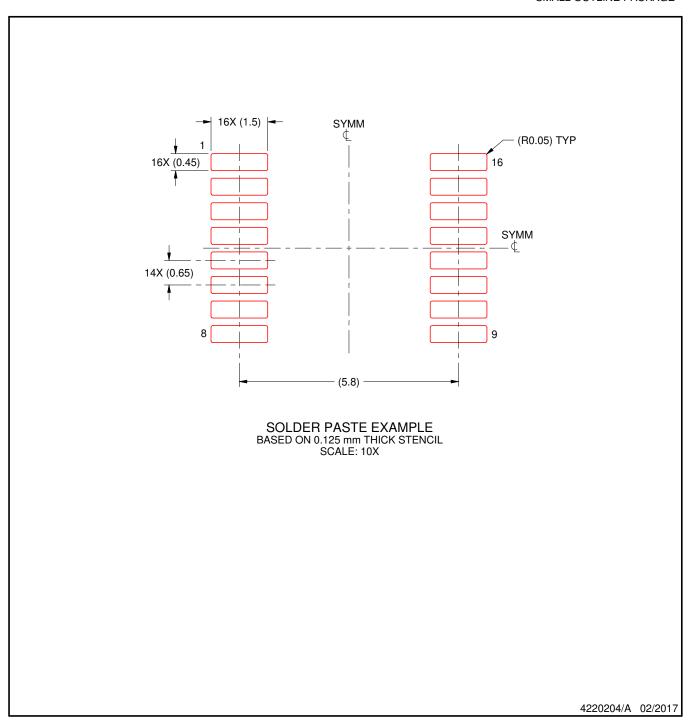
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

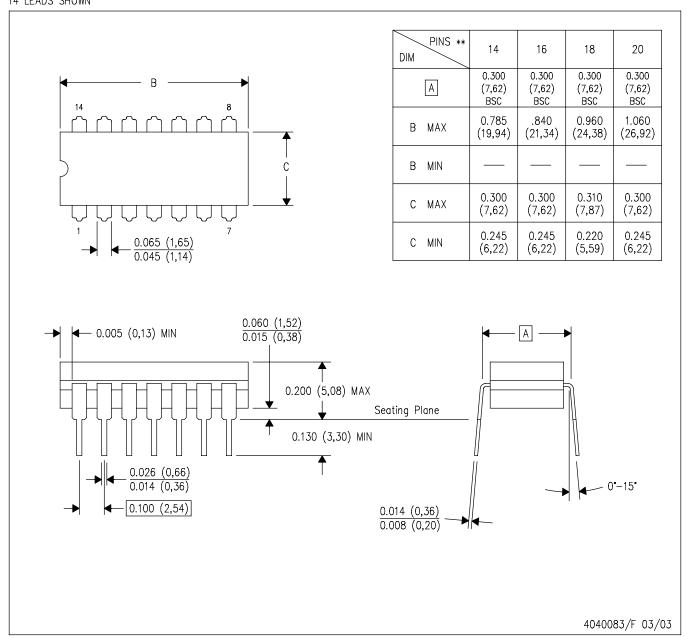
SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

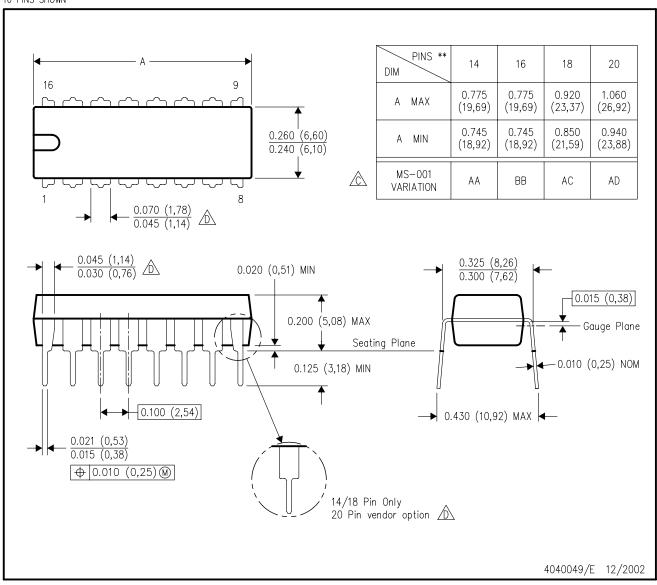
SMALL OUTLINE PACKAGE



NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

14 LEADS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated