

ON Semiconductor®

NC7S00

TinyLogic® HS 2-Input NAND Gate

General Description

The NC7S00 is a single 2-Input high performance CMOS NAND Gate. Advanced Silicon Gate CMOS fabrication assures high speed and low power circuit operation over a broad V_{CC} range. ESD protection diodes inherently guard both inputs and output with respect to the V_{CC} and GND rails. Three stages of gain between inputs and output assures high noise immunity and reduced sensitivity to input edge rate.

Features

- Space saving SOT23 or SC70 5-lead package
- Ultra small MicroPak™ leadless package
- High speed: t_{PD} 3.5 ns typ
- \blacksquare Low Quiescent Power: $I_{CC} < 1~\mu\text{A}$
- Balanced Output Drive: 2 mA I_{OL}, -2 mA I_{OH}
- Broad V_{CC} Operating Range: 2V–6V
- Balanced Propagation Delays
- Specified for 3V operation

Ordering Code:

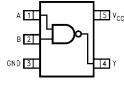
Order Number	Package	Product Code	Package Description	Supplied As	
	Number	Top Mark	Fackage Description		
NC7S00M5X	MA05B	7S00	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel	
NC7S00P5X	MAA05A	S00	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel	
NC7S00L6X	MAC06A	A3	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel	

Logic Symbol

Connection Diagrams

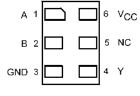
Pin Assignments for SC70 and SOT23

Pin Descriptions Pin Names Description A, B Input Y Output NC No Connect


Function Table

$$Y = \overline{AB}$$

Inp	Output				
Α	В	Y			
L	L	Н			
L	Н	Н			
Н	L	Н			
Н	Н	L			


H = HIGH Logic Level

 $\mathsf{L} = \mathsf{LOW} \; \mathsf{Logic} \; \mathsf{Level}$

(Top View)

Pad Assignments for MicroPak

(Top Thru View)

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions (Note 2)

Supply Voltage (V _{CC})	-0.5V to $+7.0V$	Conditions (Note 2)
DC Input Diode Current (I _{IK})		Supply Voltage (V _{CC})
$@V_{IN} \le -0.5V$	−20 mA	Input Voltage (V _{IN})
$@V_{IN} \ge V_{CC} + 0.5V$	+20 mA	Output Voltage (V _{OUT})
DC Input Voltage (V _{IN})	$-0.5V$ to $V_{CC} + 0.5V$	Operating Temperature (T _A)
DC Output Diode Current (I _{OK})		Input Rise and Fall Time (t_r, t_f)
$@V_{OUT} < -0.5V$	–20 mA	V _{CC} @ 2.0V
$@V_{OUT} > V_{CC} + 0.5V$	+20 mA	V _{CC} @ 3.0V
DC Output Voltage (V _{OUT})	–0.5V to V_{CC^+} 0.5V	V _{CC} @ 4.5V
DC Output Source		V _{CC} @ 6.0V
or Sink Current (I _{OUT})	±12.5 mA	Thermal Resistance (θ_{JA})
DC V _{CC} or Ground Current		SOT23-5
per Output Pin (I_{CC} or I_{GND})	±25 mA	SC70-5

-65°C to +150°C

200 mW

150 mW

0-1000 ns 0-750 ns 0-500 ns 0-400 ns

2.0V-6.0V

-40°C to +85°C

 $0V-V_{CC}$ $0V-V_{CC}$

300°C/W 425°C/W SC70-5

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, with-150°C out exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. ON Semiconductor does not recommend operation of circuits outside the 260°C

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Storage Temperature (T_{STG})

Junction Temperature (T_J)

(Soldering, 10 seconds)

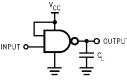
Power Dissipation (P_D) @ +85°C

Lead Temperature (T_L);

SOT23-5

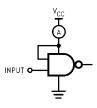
SC70-5

Symbol	Parameter	V _{CC}	T _A = +25°C		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	
Symbol		(V)	Min	Тур	Max	Min	Max	Office	Conditions
V _{IH}	HIGH Level Input Voltage	2.0	1.50			1.50		V	
		3.0 - 6.0	0.7 V _{CC}			0.7V _{CC}		v	
V _{IL}	LOW Level Input Voltage	2.0			0.50		0.50	V	
		3.0 - 6.0			$0.3V_{CC}$		$0.3\mathrm{V}_{\mathrm{CC}}$	v	
V _{OH}	HIGH Level Output Voltage	2.0	1.90	2.0		1.90			
		3.0	2.90	3.0		2.90		V	$I_{OH} = -20 \mu A$ $V_{IN} = V_{IL}$
		4.5	4.40	4.5		4.40		v	$V_{IN} = V_{IL}$
		6.0	5.90	6.0		5.90			
									$V_{IN} = V_{IL}$
		3.0	2.68	2.85		2.63		V	$I_{OH} = -1.3 \text{ mA}$
		4.5	4.18	4.35		4.13		v	$I_{OH} = -2 \text{ mA}$
		6.0	5.68	5.85		5.63			$I_{OH} = -2.6 \text{ mA}$
V _{OL}	LOW Level Output Voltage	2.0		0.0	0.10		0.10		
		3.0		0.0	0.10		0.10	V	$I_{OL} = 20 \mu A$ $V_{IN} = V_{IH}$
		4.5		0.0	0.10		0.10	•	$V_{IN} = V_{IH}$
		6.0		0.0	0.10		0.10		
									$V_{IN} = V_{IH}$
		3.0		0.1	0.26		0.33	V	$I_{OL} = 1.3 \text{ mA}$
		4.5		0.1	0.26		0.33	v	$I_{OL} = 2 \text{ mA}$
		6.0		0.1	0.26		0.33		I _{OL} = 2.6 mA
I _{IN}	Input Leakage Current	6.0			±0.1		±1.0	μΑ	$V_{IN} = V_{CC}$, GND
I _{CC}	Quiescent Supply Current	6.0			1.0		10.0	μΑ	$V_{IN} = V_{CC}$, GND


AC Electrical Characteristics

Symbol	Parameter	v _{cc}		$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	Figure
		(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PLH} ,	Propagation Delay	5.0		3.5	15			ns	$C_{L} = 15 \text{ pF}$	
t _{PHL}		2.0		19	100		125			1
		3.0		10.5	27		35	ns	C _L = 50 pF	Figures 1, 3
		4.5		7.5	20		25			
		6.0		6.5	17		21			
t _{TLH} ,	Output Transition Time	5.0		3.0	10			ns	C _L = 15 pF	
t_{THL}		2.0		25	125		155			l
		3.0		16	35		45	ns	C _L = 50 pF	Figures 1, 3
		4.5		11	25		31			
		6.0		9	21		26			
C _{IN}	Input Capacitance	Open		2	10		10	pF		
C _{PD}	Power Dissipation Capacitance	5.0		6				pF	(Note 3)	Figure 2

Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression:


I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CC}static).

AC Loading and Waveforms

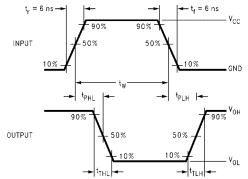
 C_L includes load and stray capacitance Input PRR = 1.0 MHz, t_w = 500 ns

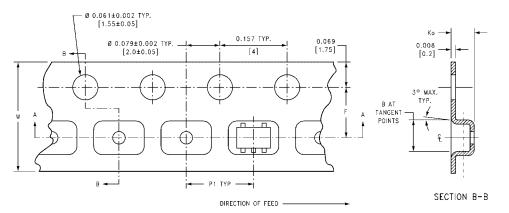
FIGURE 1. AC Test Circuit

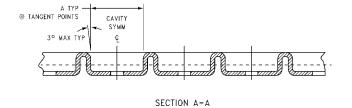
 $Input = AC\ Waveform;$

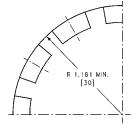
PRR = variable; Duty Cycle = 50%

FIGURE 2. I_{CCD} Test Circuit



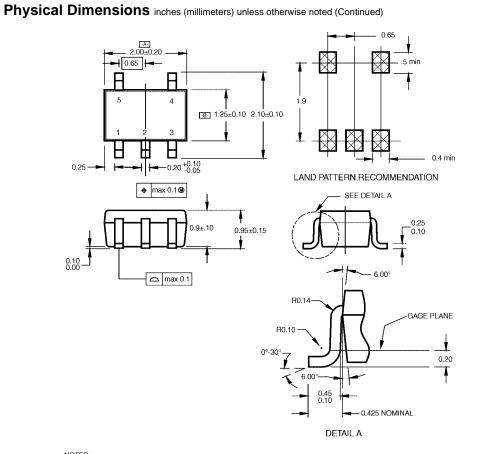

FIGURE 3. AC Waveforms


Tape and Reel Specification


TAPE FORMAT for SC70 and SOT23

TAI ET ORMAT TOT SCT V and SCT 25								
Package	Таре	Number	Cavity	Cover Tape				
Designator	Section	Cavities	Status	Status				
	Leader (Start End)	125 (typ)	Empty	Sealed				
M5X, P5X	Carrier	3000	Filled	Sealed				
	Trailer (Hub End)	75 (typ)	Empty	Sealed				

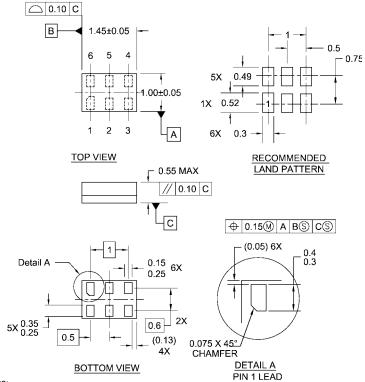
TAPE DIMENSIONS inches (millimeters)



BEND RADIUS NOT TO SCALE

Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W
SC70-5	8 mm	0.093	0.096	0.138 ±0.004	0.053 ±0.004	0.157	0.315 ±0.004
		(2.35)	(2.45)	(3.5 ±0.10)	(1.35 ±0.10)	(4)	(8 ±0.1)
SOT23-5	8 mm	0.130	0.130	0.138 ±0.002	0.055 ±0.004	0.157	0.315 ±0.012
		(3.3)	(3.3)	(3.5 ±0.05)	(1.4 ±0.11)	(4)	(8 ±0.3)

Tape and Reel Specification (Continued) TAPE FORMAT for MicroPak Package Tape Number Cavity Cover Tape Status Designator Section Cavities Status Leader (Start End) 125 (typ) Empty Sealed L6X Carrier 5000 Filled Sealed Trailer (Hub End) 75 (typ) **Empty** Sealed 4.00 1.75±0.10 В-8.00 +0.30 3.50±0.05 9 0.50 ±0.05 SECTION B-B DIRECTION OF FEED-SCALE:10X 0.254±0.020 r 0.70±0.05 -1.60±0.05 SECTION A-A SCALE:10X **REEL DIMENSIONS** inches (millimeters) TAPE SLOT DETAIL X **DETAIL X** SCALE: 3X Tape Α В С D N W1 W2 W3 Size 0.795 2.165 0.331 +0.059/-0.000 0.567 W1 +0.078/-0.039 0.059 0.512 8 mm (177.8)(1.50)(13.00)(20.20)(55.00)(8.40 +1.50/-0.00) (14.40)(W1 +2.00/-1.00)


NOTES:

A. CONFORMS TO EIAJ REGISTERED OUTLINE DRAWING SC88A. B. DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. C. DIMENSIONS ARE IN MILLIMETERS.

MAA05ARevC

5-Lead SC70, EIAJ SC-88a, 1.25mm Wide Package Number MAA05A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Notes:

- 1. JEDEC PACKAGE REGISTRATION IS ANTICIPATED 2. DIMENSIONS ARE IN MILLIMETERS 3. DRAWING CONFORMS TO ASME Y14.5M-1994

MAC06ARevB

6-Lead MicroPak, 1.0mm Wide Package Number MAC06A

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative