

Adafruit CC3000 WiFi
Created by Rick Lesniak

https://learn.adafruit.com/adafruit-cc3000-wifi

Last updated on 2022-12-01 02:02:27 PM EST

©Adafruit Industries Page 1 of 42

5

6

6

11

15

16

18

20

21

23

24

25

30

32

Table of Contents

Overview

Assembly and Wiring

CC3000 Breakout

• Assembly

• Wiring

CC3000 Shield

• Assembly

Connections

• Pinouts

• Optional Antenna

Using the CC3000

• Download the Library

• Sample Sketches

• WEP with HEX Passphrases

buildtest

• buildtest

WebClient

• WebClient

ntpTest

• ntpTest

InternetTime

• InternetTime

GeoLocation

• GeoLocation

SmartConfig

• SmartConfigCreate and SmartConfigReconnect

• SmartConfigCreate

• SmartConfigReconnect

• Using the SmartConfigCreate Sketch

• Step One: Install the SmartConfig App

• Step Two: Configure the SmartConfig App on your Phone

• Step Three: Open and Run 'SmartConfigCreate'

• Step Four: Start the SmartConfig app on your Phone

• Step Five: Stop the SmartConfig App on the Phone

• Using the SmartConfigReconnect Sketch

SendTweet

• SendTweet

Firmware Upgrades

©Adafruit Industries Page 2 of 42

34

38

Downloads

• Files & Downloads

• Dimensional diagram for the CC3000 breakout

FAQ

©Adafruit Industries Page 3 of 42

©Adafruit Industries Page 4 of 42

Overview

The CC3000 WiFi module from Texas Instruments is a small silver package which

finally brings easy-to-use, affordable WiFi functionality to your Arduino projects.

It uses SPI for communication (not UART!) so you can push data as fast as you want or

as slow as you want. It has a proper interrupt system with IRQ pin so you can have

asynchronous connections. It supports 802.11b/g, open/WEP/WPA/WPA2 security, TKIP

& AES. A built in TCP/IP stack with a "BSD socket" interface supports TCP and UDP in

both client and server mode, with up to 4 concurrent socket connections.

The CC3000 is available from Adafruit As a Breakout Board, and as an Arduino

Shield.

Both the shield and the breakout board have an onboard 3.3V regulator that can

handle the 350mA peak current, and a level shifter to allow 3 or 5V logic level. The

antenna layout is identical to TI's suggested layout and we're using the same

components, trace arrangement, and antenna so the board maintains its FCC emitter

compliance (you'll still need to perform FCC validation for a finished product, but the

WiFi part is taken care of). Even though it's got an onboard antenna we were pretty

surprised at the range, as good as a smartphone's.

The CC3000 does not support "AP" mode, it can connect to an access point but

it cannot be an access point.

©Adafruit Industries Page 5 of 42

The shield also features a MicroSD socket, and a reset button.

AND, the shield supports the Arduino SPI passthrough header pins, so it's compatible

with the Mega, Leonardo, and Due, right out of the box - no rewiring necessary! Just

solder closed the MISO, SCK, and MOSI jumpers on the back of the shield.

Assembly and Wiring

Check out the next couple of pages for detailed instructions for setting up your

CC3000 shield or breakout board!

CC3000 Breakout

©Adafruit Industries Page 6 of 42

Assembly
The CC3000 breakout board ships with a strip of header pins. Snip off a 9-pin section

and solder it to the 9 holes on the side of the board.

The easiest way to do this is to first insert the header pins into a breadboard, to hold

them securely while you solder.

Set the breakout board over the pins, and carefully solder each pin (see our Guide To

Excellent Soldering () for instructions and tips on getting the best results).

Wiring

Use jumper wires to attach the CC3000 breakout board to your arduino:

©Adafruit Industries Page 7 of 42

http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering

Connect GND to one of the Arduino GND pins:

Connect Vin to Arduino +5V

NOTE: If using an Arduino Due, which is not tolerant of 5V on its input pins, you must

instead connect the CC3000 3V3 pin to the Due's 3.3V power pin. Don't connect Vin

to the Due's +5V!

Next, connect the enable and interrupt lines:

VBEN to Digital 5

IRQ to Digital 3

©Adafruit Industries Page 8 of 42

Now, connect SPI:

CLK to Digital 13

MISO to Digital 12

MOSI to Digital 11

CS to Digital 10

If you're using a Mega, you'll need to connect to the hardware SPI pins:

CLK to Digital 52

MISO to Digital 50

MOSI to Digital 51

CS to Digital 10

If you're using an Arduino Due, you'll need to connect to the hardware SPI pins. See

the excellent diagram in this forum post () if you aren't sure where the hardware SPI

•

•

•

•

•

•

•

•

©Adafruit Industries Page 9 of 42

http://forum.arduino.cc/index.php/topic,132130.0.html

pins are located on the Due. You want to connect to the SCK, MISO, and MOSI pins

on the small 6 pin male header next to the Due's SAM3X8E processor:

CLK to SPI SCK

MISO to SPI MISO

MOSI to SPI MOSI

CS to Digital 10

•

•

•

•

3.3v is an output from the breakout board's voltage regulator - we won't be

connecting anything to it in this tutorial.

©Adafruit Industries Page 10 of 42

CC3000 Shield

Assembly

The CC3000 Shield ships with a strip of header pins.

Break off 6, 8, or 10-pin sections and insert them into the header sockets of your

Arduino

©Adafruit Industries Page 11 of 42

Place the shield over the pins, and carefully solder each one in place (see our Guide

To Excellent Soldering () for instructions and tips on getting the best results).

©Adafruit Industries Page 12 of 42

http://learn.adafruit.com/adafruit-guide-excellent-soldering
http://learn.adafruit.com/adafruit-guide-excellent-soldering

The shield also comes with a 2X3 pin female header socket. This will plug into the

2X3 ICSP pin header on your Arduino, to bring SPI up to the shield. This allows you to

use the shield with an Arduino Mega, Leonardo, or Due without having to cut traces

or solder jumper wires for SPI.

Set the socket header into the holes on the shield, then flip the shield over and solder

the pins. The height of the header block matches the height of the rest of the shield

header pins, so the block should be perfectly positioned for soldering!

By default, SPI through the ICSP header is not connected. To enable the ICSP header

connections, you'll have to connect three solder jumpers on the bottom of the

©Adafruit Industries Page 13 of 42

CC3000 shield.

Simply melt a blob of solder, connecting the pads, on each of the three solder

jumpers (keep your solder inside the white boxes - don't let the solder cross between

boxes!)

And that's it! Your CC3000 Shield is ready to use. Move on to the next tutorial page to

get started!

Soldering these jumpers is required if you are using the shield with a Mega,

Leonardo, or Due, but is not required for use with an UNO!

©Adafruit Industries Page 14 of 42

Connections

Pinouts

The CC3000 is (electrically) fairly simple to use. The module requires an SPI

connection, including a clock (CLK), data in from a microcontroller (MOSI) and data out

to the microcontroller (MISO). It also uses a chip-select line (CS) for SPI to indicate

when a data transfer as started

Along with the SPI interface, there is a power-enable type pin called VBAT_EN which

we use to start the module properly and also an IRQ pin, which is the interrupt from

the CC3000. The IRQ pin is required to communicate and must be tied to an interrupt-

in pin on the Arduino. On the Mega/UNO, we suggest #2 or #3

On the CC3000 shield, we use the following pin connections

SCK - #13

MISO #12

MOSI #11

CS for CC3000 #10

VBAT_EN #5

•

•

•

•

•

©Adafruit Industries Page 15 of 42

CS for SD Card #4

IRQ #3

On the breakout, be aware that the MISO (data out from module) pin does not go

'high impedance' when CS is driven high. Check the shield for how we use a

74AHC125 to manually tri-state this pin when it's shared with an SD card.

Optional Antenna
If you have a shield or breakout with a uFL connector (instead of an on-board ceramic

antenna) you can use a uFL to RP-SMA (http://adafru.it/852) or uFL to SMA (http://

adafru.it/851) (less common) adapter and then connect to any 2.4 GHz antenna (http://

adafru.it/945). This is handy when you want to place the module in a box but have the

antenna on the outside, or when you need a signal boost

Please note that when using an external antenna, the module is no longer FCC-

compliant, so if you want to sell the product with FCC certification, it must be retested.

Using the CC3000

Download the Library

We will start by downloading the Adafruit CC3000 Library, available from the Arduino

library manager.

Open up the Arduino library manager:

Search for the Adafruit CC3000 library and install it

•

•

Make sure your Arduino is powered by a 1 amp or higher rated external power

supply when using with the CC3000! Powering an Arduino + CC3000 from a

computer/laptop USB port will lead to unstable behavior and lockups because

the USB port can't supply enough power!

Use the Arduino 1.6.4 version or newer with the CC3000, EXCEPT for the

firmware update sketches in the library examples folder. Use 1.0.6 for those!

©Adafruit Industries Page 16 of 42

http://www.adafruit.com/products/852
http://www.adafruit.com/products/851
http://www.adafruit.com/products/945

If you're not familiar with installing Arduino libraries, please visit our tutorial: All About

Arduino Libraries ()!

Sample Sketches
The Adafruit CC3000 Library contains several example sketches, demonstrating

different capabilities of the CC3000 along with some useful programming techniques.

To run the sample sketches, you'll have to edit them to include the SSID and

password of your access point.

#define WLAN_SSID "myNetwork" // cannot be longer than 32 characters!
#define WLAN_PASS "myPassword"

Also, make sure that the right wireless security scheme is selected (unsecured, WEP,

WPA, or WPA2)

// Security can be WLAN_SEC_UNSEC, WLAN_SEC_WEP, WLAN_SEC_WPA or WLAN_SEC_WPA2
#define WLAN_SECURITY WLAN_SEC_WPA2

WEP with HEX Passphrases

If you are using WEP security, and your passphrase is a series of HEX digits, you can't

simply enter it as a literal string. Instead you have to define is as an actual binary

sequence.

For example, if your passphrase is 8899aabbccdd, you would define it as follows:

// #define WLAN_PASS "8899aabbccdd" //don't do it this way!
//do it this way:
const char WLAN_PASS[] = {0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0x00};

Remember to append 0x00 to the declaration, after the passphrase, as shown in

the example!

©Adafruit Industries Page 17 of 42

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

buildtest

buildtest

The buildtest sketch does a full test of core WiFi connectivity:

Initialization

SSID Scan

Access Point connection

DHCP address assignment

DNS lookup of www.adafruit.com ()

Ping www.adafruit.com ()

Disconnect

It's a good idea to run this sketch when first setting up the module. It will let you know

that everything is working correctly.

Before you run the sketch, edit it to replace the dummy SSID and password with your

own:

#define WLAN_SSID "yourNetwork" // cannot be longer than 32 characters!
#define WLAN_PASS "yourPassword"

If you're using WEP, the password should look like this:

const char WLAN_PASS[] = {0x1A, 0x2B, 0x3C, 0x4D, 0x5E, 0x00};

Since it's a collection of bytes not 'passphrase' style key

Also, make sure that the right wireless security scheme is selected (unsecured, WEP,

WPA, or WPA2)

// Security can be WLAN_SEC_UNSEC, WLAN_SEC_WEP, WLAN_SEC_WPA or WLAN_SEC_WPA2
#define WLAN_SECURITY WLAN_SEC_WPA2

Here's a sample of the Serial Monitor output of buildtest. You should see something

similar:

Be aware the library does not currently support WEP passphrases with 0x00 null

characters! See this bug for more details: https://github.com/adafruit/

Adafruit_CC3000_Library/issues/97

•

•

•

•

•

•

•

©Adafruit Industries Page 18 of 42

https://github.com/adafruit/Adafruit_CC3000_Library/issues/97
https://github.com/adafruit/Adafruit_CC3000_Library/issues/97
http://www.adafruit.com
http://www.adafruit.com

Hello, CC3000!

RX Buffer : 131 bytes
TX Buffer : 131 bytes
Free RAM: 1237

Initialising the CC3000 ...
Firmware V. : 1.19
MAC Address : 0x08 0x00 0x28 0x01 0xA8 0x8A
Started AP/SSID scan

Networks found: 3
==
SSID Name : Extreme
RSSI : 58
Security Mode: 3

SSID Name : Express
RSSI : 59
Security Mode: 3

SSID Name : fios63
RSSI : 57
Security Mode: 3

==

Deleting old connection profiles

Attempting to connect to fios63
Started AP/SSID scan

Connecting to fios63...Waiting to connect...Connected!
Request DHCP

IP Addr: 192.168.1.23
Netmask: 255.255.255.0
Gateway: 192.168.1.1
DHCPsrv: 192.168.1.1
DNSserv: 192.168.1.1
www.adafruit.com -> 207.58.139.247

Pinging 207.58.139.247...5 replies
Ping successful!

Closing the connection

Make sure you can see and recognize all of the access points around, connect to the

access point, get a good connection with DHCP, can do a DNS lookup on www.adafrui

t.com () and ping it successfully. If all this works, then your hardware is known good!

©Adafruit Industries Page 19 of 42

http://www.adafruit.com
http://www.adafruit.com

WebClient

WebClient

The WebClient sketch does a test of the TCP client capability:

Initialization

Optional SSID Scan (uncomment code section to enable)

Access Point connection

DHCP address assignment

DNS lookup of www.adafruit.com ()

Optional Ping of www.adafruit.com () (uncomment code section to enable)

Connect to website and print out webpage contents

Disconnect

The sketch connects to www.adafruit.com () and opens a special webpage () we have

prepared for this example. It reads the contents of the page and prints that out to the

Serial Monitor.

Before you run the sketch, edit it to replace the dummy SSID and password with your

own:

#define WLAN_SSID "yourNetwork" // cannot be longer than 32 characters!
#define WLAN_PASS "yourPassword"

Also, make sure that the right wireless security scheme is selected (unsecured, WEP,

WPA, or WPA2)

// Security can be WLAN_SEC_UNSEC, WLAN_SEC_WEP, WLAN_SEC_WPA or WLAN_SEC_WPA2
#define WLAN_SECURITY WLAN_SEC_WPA2

Here's a sample of the Serial Monitor output of WebClient. You should see something

similar:

Hello, CC3000!

Free RAM: 1157

Initializing...
Started AP/SSID scan

Connecting to fios63...Waiting to connect...Connected!
Request DHCP

IP Addr: 192.168.1.23

•

•

•

•

•

•

•

•

©Adafruit Industries Page 20 of 42

http://www.adafruit.com
http://www.adafruit.com
http://www.adafruit.com
http://www.adafruit.com/testwifi/index.html

Netmask: 255.255.255.0
Gateway: 192.168.1.1
DHCPsrv: 192.168.1.1
DNSserv: 192.168.1.1
www.adafruit.com -> 207.58.139.247

Connect to 207.58.139.247:80

HTTP/1.1 200 OK
Date: Thu, 12 Sep 2013 11:04:02 GMT
Server: Apache
Access-Control-Allow-Origin: http://learn.adafruit.com
Access-Control-Allow-Headers: Origin, X-Requested-With, Content-Type, Accept,
Accept-Encoding, Authorization, Referer, User-Agent
Access-Control-Allow-Methods: GET, POST, OPTIONS
Access-Control-Allow-Credentials: true
Access-Control-Max-Age: 1728000
Last-Modified: Thu, 27 Jun 2013 14:13:27 GMT
Accept-Ranges: bytes
Content-Length: 74
Connection: close
Content-Type: text/html

This is a test of the CC3000 module!
If you can read this, its working :)

Disconnecting

Once you get this working, you can change the webpage you want to access to any

kind of webpage on the Internet

ntpTest

ntpTest

The ntpTest sketch does a test of the library's SNTP (Simple Network Time Protocol)

client:

Initialization

SSID Scan

Access Point connection

DHCP address assignment

SNTP time synchronization

Extract and print current time and date

The sntp client performs a time synchronization with servers from us.pool.ntp.org and

pool.ntp.org. You can also optionally provide it the addresses of one or two of your

own time servers. The ntpTest sketch tries time.nist.gov first, before falling back to

one of the pool servers.

The client also breaks out the synchronized network time into a structure containing

•

•

•

•

•

•

©Adafruit Industries Page 21 of 42

current date and time fields. The sketch formats and prints this information to the

Serial Monitor.

Before you run the sketch, edit it to replace the dummy SSID and password with your

own:

#define WLAN_SSID "yourNetwork" // cannot be longer than 32 characters!
#define WLAN_PASS "yourPassword"

Also, make sure that the right wireless security scheme is selected (unsecured, WEP,

WPA, or WPA2)

// Security can be WLAN_SEC_UNSEC, WLAN_SEC_WEP, WLAN_SEC_WPA or WLAN_SEC_WPA2
#define WLAN_SECURITY WLAN_SEC_WPA2

Here's a sample of the Serial Monitor output of ntpTest. You should see something

similar:

 Hello, CC3000!

Free RAM: 843

Initialising the CC3000 ...
Firmware V. : 1.19

Deleting old connection profiles

Attempting to connect to fios63
Started AP/SSID scan

Connecting to fios63...Waiting to connect...Connected!
Request DHCP
UpdateNTPTime
Current local time is:
7:18:52.65445
Thursday, September 12, 2013
Day of year: 255

Closing the connection

To avoid unnecessary loading of NTP servers, please perform the time

synchronization as infrequently as possible. Once per day or longer should be

plenty to maintain reasonably accurate time.

©Adafruit Industries Page 22 of 42

InternetTime

InternetTime

The InternetTime sketch is a simplifies version of the ntpTest sketch. It does not use

the library's SNTP client, but directly queries an NTP time server from pool.ntp.org to

get the current "UNIX time" (seconds since 1/1/1970, UTC (GMT)).

The sketch then uses the Arduino's internal timer to keep relative time. The clock is

re-synchronized roughly once per day. This minimizes NTP server misuse/abuse.

The RTClib library (a separate download, and not used here) contains functions to

convert UNIX time to other formats if needed.

Before you run the sketch, edit it to replace the dummy SSID and password with your

own:

#define WLAN_SSID "yourNetwork" // cannot be longer than 32 characters!
#define WLAN_PASS "yourPassword"

Also, make sure that the right wireless security scheme is selected (unsecured, WEP,

WPA, or WPA2)

// Security can be WLAN_SEC_UNSEC, WLAN_SEC_WEP, WLAN_SEC_WPA or WLAN_SEC_WPA2
#define WLAN_SECURITY WLAN_SEC_WPA2

Here's a sample of the Serial Monitor output of InternetTime. You should see

something similar:

Hello, CC3000!

RX Buffer : 131 bytes
TX Buffer : 131 bytes

Initialising the CC3000 ...
Firmware V. : 1.19
MAC Address : 0x08 0x00 0x28 0x01 0xA8 0x8A

Deleting old connection profiles

Attempting to connect to fios63
Started AP/SSID scan

To avoid unnecessary loading of NTP servers, please perform the time

synchronization as infrequently as possible. Once per day or longer should be

plenty to maintain reasonably accurate time.

©Adafruit Industries Page 23 of 42

Connecting to fios63...Waiting to connect...Connected!
Request DHCP

IP Addr: 192.168.1.23
Netmask: 255.255.255.0
Gateway: 192.168.1.1
DHCPsrv: 192.168.1.1
DNSserv: 192.168.1.1
Locating time server...
Attempting connection...
Connect to 62.116.162.126:123
connected!
Issuing request...
Awaiting response...OK
Current UNIX time: 1378987424 (seconds since 1/1/1970 UTC)
Current UNIX time: 1378987439 (seconds since 1/1/1970 UTC)
Current UNIX time: 1378987454 (seconds since 1/1/1970 UTC)
Current UNIX time: 1378987469 (seconds since 1/1/1970 UTC)
… etc …

GeoLocation

GeoLocation

This example sketch queries the freegeoip.net service to get the local approximate

geographic location based on IP address.

Combined with code in the ntpTest or InternetTime sketches, this can give absolute

position and time, extremely useful for seasonal calculations like sun position,

insolation, day length, etc. One could always add a GPS module or just plug in values

from your GPS or phone, but for applications where extreme accuracy isn't required,

this has the luxury of coming 'free' with the CC3000 already in use.

Position should be polled only once, at startup, or very infrequently if making a mobile

network-hopping thing, so as not to overwhelm the kindly-provided free geolocation

service.

Before you run the sketch, edit it to replace the dummy SSID and password with your

own:

#define WLAN_SSID "yourNetwork" // cannot be longer than 32 characters!
#define WLAN_PASS "yourPassword"

Positional accuracy depends on the freegeoip.net database, in turn based on

data collected by maxmind.com. No guarantees this will work for every location.

This software is provided as-is.

©Adafruit Industries Page 24 of 42

Also, make sure that the right wireless security scheme is selected (unsecured, WEP,

WPA, or WPA2)

// Security can be WLAN_SEC_UNSEC, WLAN_SEC_WEP, WLAN_SEC_WPA or WLAN_SEC_WPA2
#define WLAN_SECURITY WLAN_SEC_WPA2

Here's a sample of the Serial Monitor output of GeoLocation. You should see

something similar:

Hello, CC3000!
Free RAM: 837
Initializing...OK.
Connecting to network...Started AP/SSID scan

Connecting to Turlingdrome...Waiting to connect...connected!
Requesting address from DHCP server...OK

IP Addr: 192.168.0.4
Netmask: 255.255.255.0
Gateway: 192.168.0.1
DHCPsrv: 192.168.0.1
DNSserv: 192.168.0.1

Getting server IP address...192.151.154.154
Connecting to geo server...
Connect to 192.151.154.154:80
connected.
Requesting data...
Reading response...OK

Disconnecting

RESULTS:
 Country: United States
 Region: California
 City: Richmond
 Longitude: -122.35
 Latitude: 37.94

SmartConfig

SmartConfig is the special functionality in the CC3000 that allows setting the SSID

and password settings without having to type or re-program the module. Any iOS/

Android device can be used to set the configuration - solving the annoying

deployment problem of how to set the connection details for a new device.

SmartConfigCreate and SmartConfigReconnect

These two SmartConfig sketches should be used together to demonstrate how the

SmartConfig app can be used on your smartphone to pass connection details to your

CC3000.

©Adafruit Industries Page 25 of 42

SmartConfigCreate

This sketch will initialise the CC3000, erasing any previous connection details stored

on the device. It will then enter SmartConfig mode with a 60 second timeout where it

waits for configuration data to arrive from the SmartPhone.

If a connection was successfully established, the connection details will be stored in

the non-volatile memory of the CC3000, and the module will be configured to

automatically reconnect to this network on startup (meaning you don't need to run the

SmartConfig app unless your AP details change or you erase the stored connection

details on the module).

There's no need to edit the sketch to add your SSID and password - the SmartConfig

app does that for you!

SmartConfigReconnect

This sketch shows how to use the CC3000 in 'reconnect' mode, and avoid erasing all

stored connection profiles, which is unfortunately necessary with other sketches

where manual config data is provided.

Initializates the CC3000 with a special SmartConfig flag so it doesn't erase the

profile data

Access Point connection (based on saved AP details)

DHCP address assignment

Disconnect

Using the SmartConfigCreate Sketch

Step One: Install the SmartConfig App

Before you can use SmartConfig to provide your AP connection details, you need to

install the SmartConfig app:

For iOS devices simply search for the TI WiFi SmartConfig app () from the app

store.

For Android devices, you can download the app directly from TI's CC3000 Wiki (

)

•

•

•

•

SmartConfig is still in beta testing! It might not work on all networks!

•

•

©Adafruit Industries Page 26 of 42

https://itunes.apple.com/us/app/ti-wifi-smartconfig/id580969322?mt=8
http://processors.wiki.ti.com/index.php/CC3000_Wi-Fi_Downloads#CC3000_SmartConfig_.26_Home_Automation

Step Two: Configure the SmartConfig App on your Phone

Once you've installed the SmartConfig app, you need to connect to the AP that the

CC3000 will be using (HOMENETWORK in the images below), and then load the app.

You should see a screen similar to the following, with the AP's SSID, Gateway IP

Address and Device Name fields already populated:

Add the password for your Access Point, but don't click the START button yet!

This tutorial will use an iPad to provide the SmartConfig details, but the process

is basically the same on Android.

Don't change the Key or DeviceName fields!

©Adafruit Industries Page 27 of 42

Step Three: Open and Run
'SmartConfigCreate'

In the File > Examples > Adafruit_CC3000 menu select the SmartConfigCreate

sketch.

Run the sketch and open the Serial Monitor via Tools > Serial Monitor.

You should see something similar to the following text:

Hello, CC3000!

RX Buffer : 131 bytes
TX Buffer : 131 bytes
Free RAM: 595

Initialising the CC3000 ...
Firmware V. : 1.24
MAC Address : 0x08 0x00 0x28 0x01 0xA8 0x1F
Waiting for a SmartConfig connection (~60s) ...

Step Four: Start the SmartConfig app on
your Phone
Before the Android sketch times out, click to 'Start' button in your TI app, and watch

the serial monitor window of your sketch. After about 30 seconds you should see

something similar to the following:

Got smart config data
Saved connection details and connected to AP!
Request DHCP

IP Addr: 192.168.0.103
Netmask: 255.255.255.0
Gateway: 192.168.0.1
DHCPsrv: 192.168.0.1
DNSserv: 192.168.0.1

To use these connection details be sure to use
'.begin(false, true)' with your Adafruit_CC3000
code instead of the default '.begin()' values!

Closing the connection

Step Five: Stop the SmartConfig App on the Phone

If everything worked out and you successfully connected to your AP, the connection

details were also stored in non-volatile memory on the CC3000 module. You can now

use the SmartConfigReconnect sketch to test the connection details, specifically

paying attention to the extra flags in the Adafruit_CC3000.begin() function compared

to other sketches..

•

•

•

©Adafruit Industries Page 28 of 42

Did the sketch timeout before connecting?

Be sure to click 'Stat' in the SmartPhone app as soon as the 'Waiting for

SmartConfig connection (~60s) ...' message pops up. The SmartConfig device

will timeout after 60 seconds, so you may need to run the sketch again and

be a bit quicker with your fingers.

Make sure that the iPad or SmartPhone is connected to the same AP that you

want the CC3000 to connect to!

Check your password in case there is a typo

Using the SmartConfigReconnect Sketch
The SmartConfigReconnect sketch shows how to use (and retain) the connection

details that were written to the device in the example above.

The key to using and maintaining the connection details is to pass an optional flag to

the Adafruit_CC3000 classes .begin() function to tell the driver NOT to delete existing

connections, and to stay in auto connect mode:

 /* !!! */
 /* !!! Note the additional arguments in .begin that tell the !!! */
 /* !!! app NOT to deleted previously stored connection details !!! */
 /* !!! and reconnected using the connection details in memory! !!! */
 /* !!! */
 if (!cc3000.begin(false, true))
 {
 Serial.println(F("Unable to re-connect!? Did you run the SmartConfigCreate"));
 Serial.println(F("sketch to store your connection details?"));
 while(1);
 }

The first flag should always be false, and is used to indicate that we are going to

perform a firmware update. The second flag should always be true when using

SmartConfig data, and puts the CC3000 in an auto-reconnect mode and maintains

existing connection details in non-volatile memory.

If you were able to successfully connect using the SmartConfigCreate sketch,

SmartConfigReconnect should give you something similar to the following output:

Hello, CC3000!

Trying to reconnect using SmartConfig values ...
Reconnected!

Requesting DHCP

IP Addr: 192.168.0.103
Netmask: 255.255.255.0
Gateway: 192.168.0.1
DHCPsrv: 192.168.0.1

•

•

•

©Adafruit Industries Page 29 of 42

DNSserv: 192.168.0.1

Closing the connection

SendTweet

SendTweet

This example sketch sends “tweets” (Twitter messages) from an Arduino with CC3000

WiFi. Usually this requires extra proxy software running on another computer, but this

sketch operates directly from the Arduino.

This is a barebones example that issues a single fixed message, but it’s easily

adapted to send different information such as a periodic sensor reading.

In addition to the WiFi setup explained below, it’s necessary to set up a Twitter

developer account and complete an application form before this can be used. That

procedure is explained on the Twitter Setup page of the Internet of Things Printer

tutorial ().

One additional configuration step is required on the Twitter developer site: from your

applications “Settings” tab, set access to “Read and Write.” This is necessary so our

sketch can send tweets; the printer sketch only reads tweets.

Any time you don't provide the extra flags to the .begin method, all connection

details will be erased and auto-reconnect mode will be disabled! Unfortunately,

this is necessary when providing manual connection details, so be careful using

non SmartConfig* sketches if you don't want to lose your connection details.

Unfortunately Twitter changed their API and require SSL connections which the

CC3000 does not support. This page is only for reference as the SendTweet

example does not work anymore and is not included in the latest library.

©Adafruit Industries Page 30 of 42

http://learn.adafruit.com/internet-of-things-printer/twitter-setup
http://learn.adafruit.com/internet-of-things-printer/twitter-setup
http://learn.adafruit.com/internet-of-things-printer/twitter-setup
http://learn.adafruit.com/internet-of-things-printer/twitter-setup

Before you run the sketch, edit it to replace the dummy SSID and password with your

own:

#define WLAN_SSID "yourNetwork" // cannot be longer than 32 characters!
#define WLAN_PASS "yourPassword"

Also, make sure that the right wireless security scheme is selected (unsecured, WEP,

WPA, or WPA2)

// Security can be WLAN_SEC_UNSEC, WLAN_SEC_WEP, WLAN_SEC_WPA or WLAN_SEC_WPA2
#define WLAN_SECURITY WLAN_SEC_WPA2

Here's a sample of the Serial Monitor output of SendTweet. You should see something

similar:

Hello! Initializing CC3000...Firmware V. : 1.19
OK
Deleting old connection profiles...OK
Connecting to network...Started AP/SSID scan

Connecting to Turlingdrome...Waiting to connect...OK
Requesting address from DHCP server...OK
IP Addr: 192.168.0.4
Netmask: 255.255.255.0
Gateway: 192.168.0.1
DHCPsrv: 192.168.0.1
DNSserv: 192.168.0.1
Locating time server...found
Connecting to time server...
Connect to 155.101.3.115:123
connected!
Issuing request...OK
Awaiting response...success!
Locating Twitter server...OK
Connecting to server...

Connect to 199.59.150.9:80
OK
Issuing HTTP request...OK

©Adafruit Industries Page 31 of 42

Awaiting response...success!
Waiting ~1 hour...

Firmware Upgrades

The CC3000 is a complex chip that has its own firmware published by Texas

Instruments. You might find it necessary to upgrade the firmware, for example to use

the latest version with recent bug fixes. Luckily it's easy to upgrade (and downgrade)

firmware on the chip using a few included examples in the Adafruit CC3000

Arduino library.

Currently there are two firmware versions provided in the library:

Version 1.12 - This is a minor bug fix release with release notes here ().

The 1.12 and earlier firmware versions are known to have problems with

heavy load and certain network conditions which can cause the CC3000

to lock up. Consider upgrading to the more recent 1.13 release if you run

into stability issues.

Version 1.13 - This is another bug fix release with release notes here ().

The 1.13 release has a fix for internal CC3000 issues which cause lock ups

under heavy usage and certain network conditions. However note that the

1.13 release also appears to have bugs with UDP traffic (). Most internet

traffic uses TCP instead of UDP so you likely won't run into problems and

should consider upgrading to the latest 1.13 firmware.

Version 1.14 - This is a bug fix release with release notes here ().

To upgrade to a specific version first make sure you have the most recent Adafruit

CC3000 Arduino library () installed. If you installed the CC3000 library some time ago

•

◦

•

◦

•

Do not power your Arduino & CC3000 from a computer/laptop USB port during a

firmware upgrade! You MUST use an external power supply with at least 1 amp of

current capacity. This is to ensure the Arduino and CC3000 have enough power

to operate during the firmware upgrade.

Make sure to run firmware updates using Arduino IDE version 1.0.6 and NOT the

later beta versions 1.5.7, 1.5.8, or 1.6. The newer toolchain in the beta versions

causes problems with the firmware update process.

©Adafruit Industries Page 32 of 42

http://processors.wiki.ti.com/index.php/CC3000_Release_Notes#Version_1.12:
http://processors.wiki.ti.com/index.php/CC3000_Release_Notes#Version_1.13:
http://e2e.ti.com/support/wireless_connectivity/f/851/t/342177.aspx
http://processors.wiki.ti.com/index.php/CC3000_Release_Notes#Version_1.14:
https://github.com/adafruit/Adafruit_CC3000_Library
https://github.com/adafruit/Adafruit_CC3000_Library

make sure to download and install it again as fixes and new firmware versions are

added periodically.

Next make sure your CC3000 is wired to your Arduino and can successfully run

CC3000 sketches like buildtest. If there's a problem communicating with the CC3000

you want to find out before your start the firmware upgrade. Also be sure you're

using a good quality 1 amp or more external power supply and not a computer/laptop

USB port to power the Arduino & CC3000!

Now in the Arduino IDE load one of the driverpatch_X_XX CC3000 examples, where

X_XX is the version like driverpatch_1_13 for version 1.13. Adjust any of the pins to

communicate with your Arduino just like you would to run buildtest. Compile and load

the sketch on your Arduino.

Open the serial monitor at 115200 baud and you should see a message such as a the

following (try pressing the Arduino's reset button if you see no message):

Enter some text and press send to start the firmware upgrade process. The upgrade

will happen fairly quickly and should be done in a minute or two. Here's what you

should see during an upgrade:

©Adafruit Industries Page 33 of 42

After the upgrade finishes load the buildtest example and run it again. Confirm that

everything works as expected with the connection to your wireless network and ping

of adafruit.com. Congratulations you've upgraded the firmware on the CC3000!

Note: The version number displayed during the firmware upgrade and from sketches

like buildtest includes the major, minor, and patch numbers so it doesn't exactly match

the version number from TI. Here's a handy conversion between reported version

number and CC3000 firmware version:

Buildtest reports version 1.32 = CC3000 firmware v1.14

Buildtest reports version 1.28 = CC3000 firmware v1.13

Buildtest reports version 1.26 = CC3000 firmware v1.12

Buildtest reports version 1.24 = CC3000 firmware v1.11

Downloads

Files & Downloads

For more information on the CC3000, check out TI's product page () and wiki

microsite (), its got tons and tons of information about their WiFi module

EagleCAD PCB files for the breakout on GitHub ()

EagleCAD PCB files for the shield on GitHub ()

Fritzing objects available in Adafruit Fritzing library ()

•

•

•

•

•

•

•

•

©Adafruit Industries Page 34 of 42

http://www.ti.com/product/cc3000
http://processors.wiki.ti.com/index.php/CC3000
http://processors.wiki.ti.com/index.php/CC3000
https://github.com/adafruit/Adafruit-CC3000-Breakout-PCB
https://github.com/adafruit/Adafruit_CC3000_Shield_PCB
https://github.com/adafruit/Fritzing-Library

List of wifi access points used to test the CC3000 (by TI, not verified by

Adafruit) ()

Using an Apple Airport? Check this thread for details on how to set it up for use

with the CC3000 ()

Schematic for the CC3000 breakout board v1.0 (no buffer on the MISO pin)

Schematic for v1.1 with a buffer on MISO

Schematic for the CC3000 shield

•

•

©Adafruit Industries Page 35 of 42

https://cdn-shop.adafruit.com/datasheets/IOP_AP_List_production_year.pdf
https://cdn-shop.adafruit.com/datasheets/IOP_AP_List_production_year.pdf
http://www.forums.adafruit.com/viewtopic.php?f=22&p=213972#p213972
http://www.forums.adafruit.com/viewtopic.php?f=22&p=213972#p213972

Dimensional diagram for the CC3000
breakout

The dimentions are the same for v1 and v1.1

Inches:

©Adafruit Industries Page 36 of 42

mm:

©Adafruit Industries Page 37 of 42

FAQ

I'm using WEP - how do I configure my HEX passphrase?

If your passphrase is a series of HEX digits, you can't simply enter it as a literal

string. Instead you have to define is as an actual binary sequence.

For example, if your passphrase is 8899aabbccdd, you would define it as follows

(note the 0x00 at the end! It's important!):

// #define WLAN_PASS "8899aabbccdd" //don't do it this way!
//do it this way:
const char WLAN_PASS = {0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0x00};

I'm using WEP and I tried that but it still doesn't work

Make sure you have WLAN_SECURITY defined as WEP:

©Adafruit Industries Page 38 of 42

#define WLAN_SECURITY WLAN_SEC_WEP

What is the gain of the ceramic antenna? How does it
compare to the external antennas?

We use the Johannson 2500AT44M0400 () which has 0.5 dBi gain. Compare this to

the external antennas with 2 dBi and 5dBi. Since antenna 'range' is not linear with

the gain and antenna range has with what else is transmitting or receiving, physical

barriers, noise, etc. We can roughly say that the ceramic antenna has half the range

of the 2dBi antenna, and the 5dBi antenna has double the range of the 2dBi

antenna

There is no way to know the actual range you will get unless you experiment with

your setup since there is so many variables, but the ceramic antenna gets about

the same range we expect with an every day cellphone

 ()

How can I use the CC3000 with a static IP?

WiFi device IPs are dynamic 99% of the time, but it is possible to assign a static IP if

your router permits it. Check out this forum post for how to go about it ()

I'm having difficulty seeing/connecting to my network...

If you have an '802.11n only' router please configure it to add 'b or g' support. The

CC3000 is 802.11b or g only, it does not do 'n'!

I'm not in the USA and my CC3000 can't see my router

The CC3000 only operates on channels 1 through 11. Outside of the United States,

you may be able to configure your router to a channel number outside of that

range. Make sure your router is configured for a channel in the range 1 through 11.

My CC3000 sketch locks up when initializing the
CC3000...

A lockup during initialization is a very common issue when there isn't enough

power to supply both the Arduino and CC3000 board. Make sure you're powering

the Arduino from a 1 amp or higher rated external power supply. Don't try to power

the Arduino from a computer/laptop USB port because those ports typically can't

provide enough power and will cause lockups!

©Adafruit Industries Page 39 of 42

http://www.johansontechnology.com/images/stories/ip/rf-antennas/JTI_Antenna_2500AT44M0400_11-09-2006.pdf
http://www.johansontechnology.com/images/stories/ip/rf-antennas/JTI_Antenna_2500AT44M0400_11-09-2006.pdf
https://forums.adafruit.com/viewtopic.php?f=19&t=58350&p=297756&hilit=cc3000+dns+setStaticIPAddress#p297756

If you're using an Arduino UNO you can plug in a 7-12 volt power supply to the

barrel jack on the board. A supply like this 9V 1amp wall wart (http://adafru.it/63) is

perfect for the Arduino UNO and CC3000.

Also if your Arduino supports changing the voltage of the digital I/O pins (like some

3rd party Arduino clones), make sure the voltage is set to 5 volts and not 3.3 volts.

My CC3000 sketch locks up after running for a while or
under heavy load...

Unfortunately there is a well known internal issue with the CC3000 which can

cause lock ups and instability over time or under heavy load. This thread on the

Spark Core forums () dives deeply into the issue and investigation with Texas

Instruments. Ultimately the latest firmware version 1.13 was released with a

potential fix for the stability problems. If you'd like to upgrade to firmware version

1.13 see the page on firmware upgrades in this guide ().

How do I set a static IP address?

By default the CC3000 is configured to get an IP address automatically from your

router using DHCP. In most cases this works well, however if you run into trouble

getting an IP address or DNS server you should consider setting a static IP address

and DNS server.

To set a static IP address make sure you have the latest version of the CC3000

library and load the buildtest example. Scroll down to the commented section of

code in the setup function which discusses setting a static IP address:

/*

uint32_t ipAddress = cc3000.IP2U32(192, 168, 1, 19);

uint32_t netMask = cc3000.IP2U32(255, 255, 255, 0);

uint32_t defaultGateway = cc3000.IP2U32(192, 168, 1, 1);

uint32_t dns = cc3000.IP2U32(8, 8, 4, 4);

if (!cc3000.setStaticIPAddress(ipAddress, netMask, defaultGateway, dns)) {

Serial.println(F("Failed to set static IP!"));

while(1);

}

*/

Remove the /* and */ comment delineators and fill in the IP address, net mask,

default gateway, and DNS server values for your network. You might need to check

your router's configuration page to find these details.

©Adafruit Industries Page 40 of 42

https://www.adafruit.com/products/63
https://community.spark.io/t/bug-bounty-kill-the-cyan-flash-of-death/1322
https://community.spark.io/t/bug-bounty-kill-the-cyan-flash-of-death/1322
file:///home/adafruit-cc3000-wifi/firmware-upgrades

Run the buildtest sketch and the CC3000 should be configured to use the static IP

address and configuration you assigned. You can actually remove or comment out

the IP assignment code because the CC3000 will remember the configuration in its

internal non-volatile storage.

If you'd ever like to enable DHCP again, load buildtest and uncomment the section

below the static IP address configuration:

/*

if (!cc3000.setDHCP()) {

Serial.println(F("Failed to set DHCP!"));

while(1);

}

*/

How do I connect to a college/hotel/airport WiFi network
that requires using a web page to authenticate?

Unfortunately these networks are difficult or sometimes impossible for the CC3000

to connect to because they require using a web browser to authenticate with the

network. However a couple options to pursue are:

Try contacting the network support team / administrator and see if they can

allow the CC3000 onto the network based on its MAC address. When you run

the buildtest sketch it will print out the CC3000 MAC address so you can

copy it from there. This option is the easiest and most reliable way to get

onto the network, but might not be available depending on the network's

policies.

The second option is to clone the MAC address of a laptop or device you've

gotten on the network already. For this you'll want to find the MAC address of

the laptop/computer (usually in network settings, search online to get a direct

answer depending on the OS you're using). Then uncomment and adjust the

commented code in the setup function of the buildtest example which sets

the MAC address of the CC3000. Fill in your laptop/computer's MAC address

and run the sketch to have the CC3000 start using the provided MAC addres.

 Unfortunately at this point you have to turn off the cloned laptop/computer or

at least disconnect it from the network because two devices with the same

MAC can't be on the network at the same time (they'll get confused and start

seeing each other's traffic).

•

•

©Adafruit Industries Page 41 of 42

I'm using the IPAddress class or an example from the
Ethernet library and it doesn't work, what's wrong?

The IPAddress class is not compatible with the IP addresses the CC3000 classes

expect. However you can switch to using the CC3000.IP2U32 function to generate

an IP address. See this line in the buildtest example () for how to use this function,

and what type to use to store the IP address (an unsigned 32-bit integer).

 Unfortunately the Arduino compiler will try to convert an IPAddress into this type

so ethernet library code might compile, but when the code actually runs it will fail

because the data is not in the right order. Stick to using the IP2U32 function!

©Adafruit Industries Page 42 of 42

https://github.com/adafruit/Adafruit_CC3000_Library/blob/master/examples/buildtest/buildtest.ino#L115

	Adafruit CC3000 WiFi
	Table of Contents
	Overview
	Assembly and Wiring
	CC3000 Breakout
	CC3000 Shield
	Connections
	Using the CC3000
	buildtest
	WebClient
	ntpTest
	InternetTime
	GeoLocation
	SmartConfig
	SendTweet
	Firmware Upgrades
	Downloads
	FAQ

	Overview
	Assembly and Wiring
	CC3000 Breakout
	Assembly
	Wiring

	CC3000 Shield
	Assembly

	Connections
	Pinouts
	Optional Antenna
	Using the CC3000
	Download the Library
	Sample Sketches
	WEP with HEX Passphrases

	buildtest
	buildtest

	WebClient
	WebClient

	ntpTest
	ntpTest

	InternetTime
	InternetTime

	GeoLocation
	GeoLocation

	SmartConfig
	SmartConfigCreate and SmartConfigReconnect
	SmartConfigCreate
	SmartConfigReconnect

	Using the SmartConfigCreate Sketch
	Step One: Install the SmartConfig App
	Step Two: Configure the SmartConfig App on your Phone

	Step Three: Open and Run 'SmartConfigCreate'
	Step Four: Start the SmartConfig app on your Phone
	Step Five: Stop the SmartConfig App on the Phone
	Did the sketch timeout before connecting?

	Using the SmartConfigReconnect Sketch
	SendTweet
	SendTweet

	Firmware Upgrades
	Downloads
	Files & Downloads
	Dimensional diagram for the CC3000 breakout
	FAQ
	I'm using WEP - how do I configure my HEX passphrase?
	I'm using WEP and I tried that but it still doesn't work
	What is the gain of the ceramic antenna? How does it compare to the external antennas?
	How can I use the CC3000 with a static IP?
	I'm having difficulty seeing/connecting to my network...
	I'm not in the USA and my CC3000 can't see my router
	My CC3000 sketch locks up when initializing the CC3000...
	My CC3000 sketch locks up after running for a while or under heavy load...
	How do I set a static IP address?
	How do I connect to a college/hotel/airport WiFi network that requires using a web page to authenticate?
	I'm using the IPAddress class or an example from the Ethernet library and it doesn't work, what's wrong?

