
Qualified Levels: RoHS **PNP Darlington Power Silicon Transistor** JAN, JANTX, and Available on JANTXV commercial Qualified per MIL-PRF-19500/505 versions DESCRIPTION This high speed PNP transistor is rated at 20 amps and is military qualified up to a JANTXV level. This TO-204AA isolated package features a 180 degree lead orientation. Important: For the latest information, visit our website http://www.microsemi.com. **TO-204AA** (TO-3) **FEATURES** Package JEDEC registered 2N6286 and 2N6287 • JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/505 RoHS compliant versions available (commercial grade only) **APPLICATIONS / BENEFITS** Military, space and other high reliability applications High frequency response TO-204AA case with isolated terminals MAXIMUM RATINGS @ T_C = +25 °C unless otherwise noted **Parameters/Test Conditions** Symbol Value Unit °C Junction and Storage Temperature T_J and T_{STG} -65 to +175 MSC – Lawrence Thermal Resistance Junction-to-Case R_{eJC} 0.855 °C/W 6 Lake Street, Lawrence, MA 01841 **Collector Current** lc -20 А 1-800-446-1158 Collector-Emitter Voltage 2N6286 -80 V VCEO (978) 620-2600 2N6287 -100 Fax: (978) 689-0803 V Collector-Base Voltage 2N6286 V_{CBO} -80 2N6287 -100 MSC – Ireland Gort Road Business Park, -7 V Emitter-Base Voltage V_{EBO} Ennis, Co. Clare, Ireland $@ T_{C} = +25 °C^{(1)}$ w PΤ **Total Power Dissipation** 175 Tel: +353 (0) 65 6840044 $@ T_{C} = +100 °C$ 87.5 Fax: +353 (0) 65 6822298 Notes: 1. Derate linearly 1.0 W/°C above T_C > +25 °C Website: www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Industry standard TO-204AA (TO-3), hermetically sealed, 0.040 inch diameter pins
- FINISH: Solder dipped tin-lead over nickel plated alloy 52 or RoHS compliant matte-tin plating. Solderable per MIL-STD-750 method 2026.
- POLARITY: PNP (see schematic)
- MOUNTING HARDWARE: Consult factory for optional insulator and sheet metal screws
- WEIGHT: Approximately 15 grams
- See <u>package dimensions</u> on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS					
Symbol	Definition					
Ι _Β	Base current: The value of the dc current into the base terminal.					
Ι _C	Collector current: The value of the dc current into the collector terminal.					
Ι _Ε	Emitter current: The value of the dc current into the emitter terminal.					
T _c	Case temperature: The temperature measured at a specified location on the case of a device.					
V _{CB}	Collector-base voltage: The dc voltage between the collector and the base.					
V _{CBO}	Collector-base voltage, base open: The voltage between the collector and base terminals when the emitter terminal is open-circuited.					
V _{cc}	Collector-supply voltage: The supply voltage applied to a circuit connected to the collector.					
V _{CEO}	Collector-emitter voltage, base open: The voltage between the collector and the emitter terminals when the base terminal is open-circuited.					
V _{EB}	Emitter-base voltage: The dc voltage between the emitter and the base.					
V _{EBO}	Emitter-base voltage, collector open: The voltage between the emitter and base terminals with the collector terminal open-circuited.					

ELECTRICAL CHARACTERISTICS @ $T_A = +25^{\circ}$	^b C unless otherwise noted
---	---------------------------------------

Characteristics	Symbol	Min.	Max.	Unit	
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage $I_{C} = -100 \text{ mA}$	2N6286 2N6287	$V_{(BR)CEO}$	-80 -100		V
Collector-Emitter Cutoff Current $V_{CE} = -40 V$ $V_{CE} = -50 V$	2N6286 2N6287	I _{CEO}		-1.0 -1.0	mA
Collector-Emitter Cutoff Current $V_{CE} = -80 \text{ V}, V_{BE} = +1.5 \text{ V}$ $V_{CE} = -100 \text{ V}, V_{BE} = +1.5 \text{ V}$	2N6286 2N6287	I _{CEX}		10 10	μA
Emitter-Base Cutoff Current V _{EB} = -7.0 V		I _{EBO}		-2.5	mA

ON CHARACTERISTICS

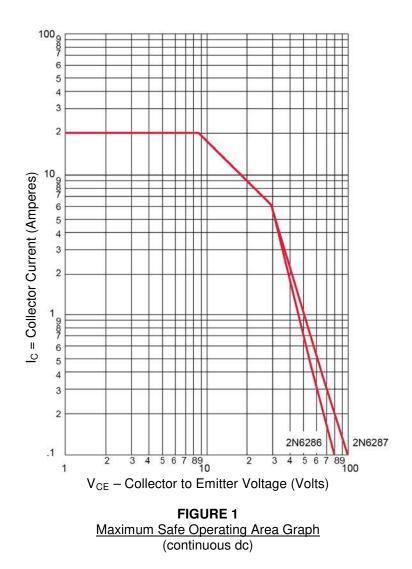
Forward-Current Transfer Ratio $I_C = -1.0 \text{ A}, V_{CE} = -3.0 \text{ V}$ $I_C = -10 \text{ A}, V_{CE} = -3.0 \text{ V}$ $I_C = -20 \text{ A}, V_{CE} = -3.0 \text{ V}$	h _{FE}	1,500 1,250 300	18,000	
Collector-Emitter Saturation Voltage $I_{C} = -20 \text{ A}, I_{B} = -200 \text{ mA}$ $I_{C} = -10 \text{ A}, I_{B} = -40 \text{ mA}$	V _{CE(sat)}		-3.0 -2.0	V
Base-Emitter Saturation Voltage $I_{C} = -20 \text{ A}, I_{B} = -200 \text{ mA}$	V _{BE(sat)}		-4.0	V
Base-Emitter Voltage Non-saturated $V_{CE} = -3.0 \text{ V}, I_C = -10 \text{ A}$	V _{BE}		-2.8	V

DYNAMIC CHARACTERISTICS

Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio $I_{C} = -10 \text{ A}, V_{CE} = -3.0 \text{ V}, f = 1 \text{ kHz}$	h _{fe}	300		
Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio $I_{C} = -10 \text{ A}, V_{CE} = -3.0 \text{ V}, f = 1 \text{ MHz}$	h _{fe}	8	80	
Output Capacitance $V_{CB} = -10 \text{ V}, \text{ I}_{E} = 0, 100 \text{ kHz} \le \text{f} \le 1 \text{ MHz}$	C _{obo}		400	pF

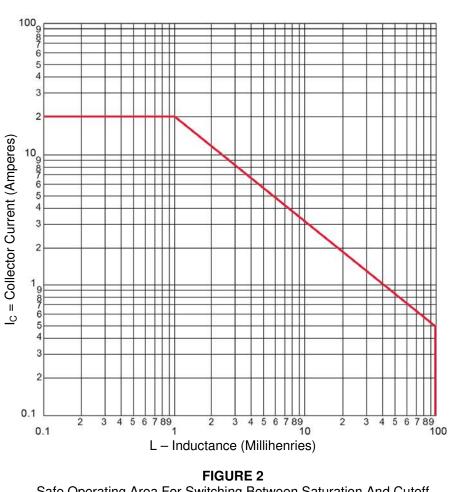
ELECTRICAL CHARACTERISTICS @ $T_c = 25 \,^{\circ}C$ unless otherwise noted. (continued)

SWITCHING CHARACTERISTICS

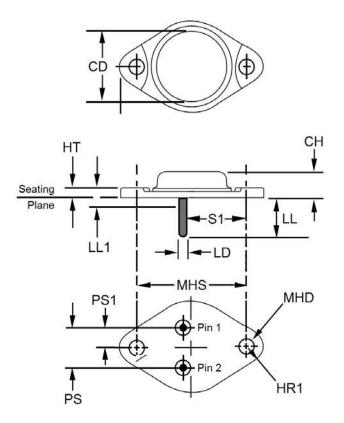

Turn-On Time $V_{CC} = -30 \text{ V}, I_C = -10 \text{ A}; I_B = -40 \text{ mA}$	t _{on}	2.0	μS
Turn-Off Time $V_{CC} = -30 \text{ V}, I_{C} = -10 \text{ A}; I_{B1} = I_{B2} = -40 \text{ mA}$	t _{off}	10	μS

SAFE OPERATING AREA (See figures 1 and 2 and <u>MIL-STD-750,Test Method 3053</u>)

 $\begin{array}{l} \textbf{DC Tests} \\ T_{C} = +25 \ ^{\circ}\text{C}, \ t = 1 \ \text{second}, \ 1 \ \text{Cycle} \\ \textbf{Test 1} \\ V_{CE} = -8.75 \ \text{V}, \ I_{C} = -20 \ \text{A} \\ \textbf{Test 2} \\ V_{CE} = -30 \ \text{V}, \ I_{C} = -5.8 \ \text{A} \\ \textbf{Test 3} \\ V_{CE} = -80 \ \text{V}, \ I_{C} = -100 \ \text{mA} \ (2\text{N6286}) \\ V_{CE} = -100 \ \text{V}, \ I_{C} = -100 \ \text{mA} \ (2\text{N6287}) \end{array}$

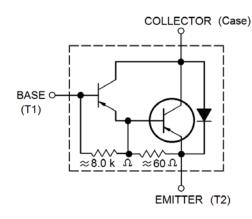


SAFE OPERATING AREA


SAFE OPERATING AREA (continued)

Safe Operating Area For Switching Between Saturation And Cutoff (unclamped inductive load).

PACKAGE DIMENSIONS



Ltr	Inches		Millimeters		Notes
	Min	Max	Min	Max	
CD	-	0.875	-	22.23	3
СН	0.250	0.360	6.35	9.14	
HR	0.495	0.525	12.57	13.34	
HR1	0.131	0.188	3.33	4.78	
HT	0.060	0.135	1.52	3.43	
LD	0.038	0.043	0.97	1.09	4, 8
LL	0.312	0.500	7.92	12.70	4
LL1	-	0.050	-	1.27	4, 8
MHD	0.151	0.165	3.84	4.19	6
MHS	1.177	1.197	29.90	30.40	
PS	0.420	0.440	10.67	11.18	3
PS1	0.205	0.225	5.21	5.72	
S1	0.655	0.675	16.64	17.15	
T1					
T2	Base				
Case	Collector				

NOTES:

- 1. Dimensions are in inches. Millimeters are given for information only.
- 2. Body contour is optional within zone defined by CD
- 3. These dimensions shall be measured at points 0.050 inch (1.27 mm) to 0.055 inch (1.40 mm) below seating plane.
- 4. Both terminals
- 5. At both ends
- 6. Two holes
- 7. Terminal 1 is the emitter, terminal 2 is base. The collector shall be electrically connected to the case.
- 8. LD applies between L1 and LL. Diameter is uncontrolled in L1.
- 9. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

SCHEMATIC

