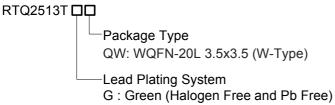


3A, 6.5V, Ultra Low Noise, Ultra Low Dropout Linear Regulator


General Description

The RTQ2513T is a high-current (3A), low-noise ($7\mu V_{RMS}$), high accuracy (1% over line, load, and temperature), low-dropout linear regulator (LDO), and is capable of sourcing 3A with extremely low dropout (max. 180mV). The device output voltage is pin-selectable (up to 3.65V) using a PCB layout without the need of external resistors, thus reducing overall component count. Designers can achieve higher output voltage with the use of external resistor divider. The device supports single input supply voltage as low as 1.1V that makes it easy to use.

The low noise, high PSRR, and high output current capability make the RTQ2513T ideal to power noise-sensitive devices such as analog-to-digital converters (ADCs), digital-to-analog converters (DACs), and RF components. To reduce inrush current with very high accuracy, remote sensing, and soft-start capabilities, the RTQ2513T is ideal for powering digital loads such as FPGAs, DSPs, and ASICs.

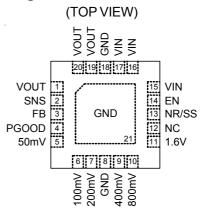
The external enable control and power good indicator function make the sequence control easier. The output noise immunity is enhanced by adding external bypass capacitor on NR/SS pin. The device is fully specified over the temperature range of $T_J = -40^{\circ}\text{C}$ to 125°C and is offered in a WQFN-20L 3.5x3.5 package.

Ordering Information

Note:

Richtek products are:

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- ▶ Suitable for use in SnPb or Pb-free soldering processes.


Features

- Input Voltage Range: 1.1V to 6.5V
- Two Output Voltage Modes
 - ▶ 0.5V to 5.5V (Set by a Resistive Divider)
 - 0.5V to 3.65V (Set via PCB Layout, No External Resistor Required)
- Accurate Output Voltage Accuracy (1%) Over Line, Load and Temperature
- Ultra High PSRR: 40dB at 500kHz
- Excellent Noise Immunity
 - ▶ 7µV_{RMS} at 0.5V Output
 - ▶ 10µV_{RMS} at 3.3V Output
- Ultra Low Dropout Voltage: 180mV at 3A
- Enable Control
- Programmable Soft-Start Output
- Stable with 10μF or higher Output Ceramic Capacitor
- Support Power-Good Indicator Function
- RoHS Compliant and Halogen Free

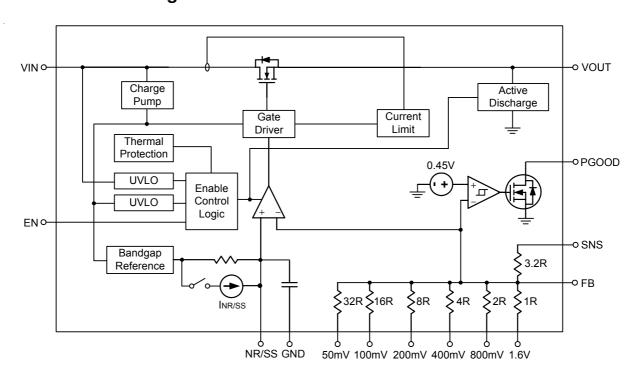
Applications

- Portable Electronic Devices
- Wireless Infrastructure : SerDes, FPGA, DSP
- RF, IF Components: VCO, ADC, DAC, LVDS

Pin Configuration

WQFN-20L 3.5x3.5

Marking Information


1L=YM DNN 1L= : Product Code YMDNN: Date Code

Functional Pin Description

Pin No.	Pin Name	Pin Function
1, 19, 20	VOUT	LDO output pins. A $10\mu F$ or larger ceramic capacitor (4.7 μF or greater of effective capacitance) is required for stability. Place the output capacitor as close to the device as possible and minimize the impedance between the VOUT pin and load.
2	SNS	Output voltage sense input pin. Connect this pin only when setting the VOUT voltage by using PCB layout (No external resistor required). Keep SNS pin floating if the VOUT voltage is set by external resistor.
3	FB	Feedback voltage input. This pin is used to set the desired output voltage via an external resistive divider. The feedback reference voltage is 0.5V typically.
4	PGOOD	Power good indicator output. It's an open-drain output and is active high when the output voltage reaches 88% of the target. The pin is pulled to ground when the output voltage is lower than its specified threshold, EN shutdown, OCP and OTP.
5, 6, 7, 9, 10, 11	50mV, 100mV, 200mV, 400mV, 800mV, 1.6V	Output voltage setting pins. Connect these pins to ground or leave floating. Connecting these pins to ground increases the output voltage by the value of the pin name. Multiple pins can be simultaneously connected to GND to select the desired output voltage. Leave these pins floating (open) if the VOUT voltage is set by external resistor.
8, 18, 21 (Exposed Pad)	GND	Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum the power dissipation.
12	NC	No internal connection. Leave these pins floating doesn't affect the chip functionality. By connecting these pins to GND, design engineers can extend the GND copper coverage on the PCB top layer to enhance the thermal convection.
13	NR/SS	Noise-reduction and soft-start pin. Decouple this pin to GND with an external capacitor $C_{NR/SS}$ can not only reduce output noise to very low levels but also slow down the VOUT rise like a soft-start behavior. For low noise applications, a 10nF to 1 μ F $C_{NR/SS}$ is suggested.
14	EN	Enable control input. Connecting this pin to logic high enables the regulator or driving this pin low make the device enters shutdown mode. The device can operate with V_{IN} and V_{EN} sequenced in any order. Mostly, enabling the device after V_{IN} is present can achieve precise timing control.
15, 16, 17	VIN	Supply input. A minimum of $22\mu F$ ceramic capacitor should be placed as close as possible to this pin for better noise rejection.

Functional Block Diagram

Operation

The RTQ2513T operates with single supply input ranging from 1.1V to 6.5V and is capable to deliver 3A current to the output. The device features high PSRR and low noise providing a clean supply to the application.

A low-noise reference and error amplifier are included to reduce device noise. The NR/SS capacitor filters the noise from the reference and feed-forward capacitor filters the noise from the error amplifier. The high power-supply rejection ratio (PSRR) of the RTQ2513T minimizes the coupling of input supply noise to the output.

Enable and Shutdown

The RTQ2513T provides an EN pin, as an external chip enable control, to enable or disable the device. The regulator is turned off and enters the shutdown mode when V_{EN} is below 0.5V. When V_{EN} is above 1.1V, the regulator is turned on. When the regulator is shut down, the ground current is reduced to a maximum of 25 μA . The enable circuitry has hysteresis (typically 50mV) for use with relatively slowly ramping analog signals.

If the enable timing control is not used, connect EN to the largest capacitance on the input as close as possible to prevent voltage droops on the VIN line from triggering the enable circuit. The RTQ2513T enables normally start-up even with a negative pre-bias voltage at output.

VOUT Programming Pins

The RTQ2513T has built-in matched feedback resistor network to set output voltage. The output voltage can be programmed from 0.5V to 3.65V in 50mV steps when tying these programming pins (Pins 5 to 11) to ground. Tying any of the VOUT programming pins to SNS can lower the value of the upper resistor divider. Hence, the VOUT programming resolution is increased.

Programmable Soft-Start

The noise-reduction capacitor ($C_{NR/SS}$) accomplishes dual purpose of noise-reduction and programming the soft-start ramp time during turn-on. When EN and UVLO exceeds the respective threshold voltage, the RTQ2513T activates a quick-start circuit to charge the noise reduction capacitor ($C_{NR/SS}$) and then the output voltage ramps up.

Power Good

The power-good circuit monitors the feedback pin voltage to indicate the status of the output voltage. The opendrain PGOOD pin requires an external pull-up resistor to an external supply, any downstream device can receive power-good as a logic signal that can be used for sequencing. The pull-up resistor from $10k\Omega$ to $100k\Omega$ is recommended. Make sure that the external pull-up supply voltage results in a valid logic signal for the receiving device or devices.

After start-up, the PGOOD pin becomes high impedance when the feedback voltage exceeds V_{PGOOD HYS} (Typically 90% of 0.5V reference voltage level). The PGOOD is pulled to GND when the feedback pin voltage falls below the V_{IT PGOOD}, EN low, Current limit, and OTP.

Under-Voltage Lockout (UVLO)

The UVLO circuit monitors the input voltage to prevent the device from turning on before VIN rises above the V_{UVLO} threshold. The UVLO circuit also disables the output of the device when VIN falls below the lockout voltage $(V_{UVLO} - \Delta V_{UVLO})$. The UVLO circuit is activated to disable the output of the device if VIN collapses.

Internal Current Limit (I_{LIM})

The RTQ2513T continuously monitors the output current to protect the pass transistor against abnormal operations. When an overload or short circuit is encountered, the current limit circuitry controls the pass transistor's gate voltage to limit the output within the predefined range.

Thermal shutdown can be activated during a current limit event because of the high power dissipation typically found in these conditions. To ensure proper operation of the current limit, minimize the inductances of the input and load. Continuous operation in current limit is not recommended.

By reason of the build-in body diode, the pass transistor conducts current when the output voltage exceeds input voltage. Since the current is not limited, external current protection should be added if the device may work at reverse voltage state.

Over-Temperature Protection (OTP)

The RTQ2513T implements thermal shutdown protection. The device is disabled when the junction temperature (T_J) exceeds 160°C (typical). The LDO automatically turns on again when the temperature falls below 140°C (typical).

For reliable operation, limit the junction temperature to a maximum of 125°C. Continuously running the RTQ2513T into thermal shutdown or above junction temperature of 125°C reduces long-term reliability.

Output Active Discharge

When the device is disabled, the RTQ2513T discharges the LDO output (via VOUT pins) through an internal several hundred ohms impedance to ground. Do not rely on the active discharge circuit for discharging a large amount of output capacitance after the input supply has collapsed because reverse current can possibly flow from the output to the input. External current protection should be added if the device may work at reverse voltage state.

www.richtek.com

Absolute Maximum Ratings (Note 1)

• VIN, PGOOD, EN	- −0.3V to 7V
• VOUT	$-0.3V$ to $(V_{IN} + 0.3V)$
• NR/SS, FB	0.3V to 3.6V
 Power Dissipation, P_D @ T_A = 25°C 	
WQFN-20L 3.5x3.5	- 3.5W
Package Thermal Resistance (Note 2)	
WQFN-20L 3.5x3.5, θ_{JA}	- 28.5°C/W
WQFN-20L 3.5x3.5, θ_{JC}	- 7.2°C/W
• Lead Temperature (Soldering, 10 sec.)	- 260°C
• Junction Temperature	- 150°C
Storage Temperature Range	- −65°C to 150°C
ESD Susceptibility (Note 3)	
HBM (Human Body Model)	- 2kV
CDM (Charged Device Model)	- 1kV

Recommended Operating Conditions (Note 4)

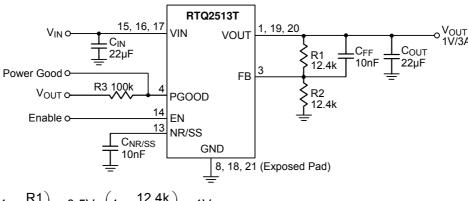
- Supply Input Voltage, VIN ----- 1.1V to 6.5V
- Junction Temperature Range ----- -40°C to 125°C

Electrical Characteristics

Over operating temperature range ($T_J = -40^{\circ}C$ to 125°C), (1.1V \leq V_{IN} < 6.5V and V_{IN} \geq V_{OUT(TARGET)} + 0.3 V, V_{OUT(TARGET)} = 0.5V, VOUT connected to 50 Ω to GND, V_{EN} = 1.1 V, C_{IN} = 10 μ F, C_{OUT} = 22 μ F, C_{NR/SS} = 0nF, C_{FF} = 0nF, and PGOOD pin pulled up to V_{IN} with 100 k Ω , unless otherwise noted. (Note 5)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Operating Input Voltage Range	VIN		1.1	-	6.5	٧
Feedback Reference Voltage	V _{REF}			0.5		٧
NR/SS Pin Voltage	V _{NR/SS}		1	0.5		V
Under-Voltage	Vuvlo	V _{IN} increasing	I	1.02	1.085	V
Lockout	$\Delta V_{\sf UVLO}$	Hysteresis		150		mV
Output Voltage Dange		Using voltage setting pins (50mV, 100mV, 200mV, 400mV, 800mV, and 1.6V)	0.5	1	3.65	V
Output Voltage Range		Using external resistors	0.5		5.5	٧
Output Voltage Accuracy (Note 6)	Vout	$\begin{split} V_{IN} &= V_{OUT} + 0.3 V, \ 0.5 V \leq V_{OUT} \leq 5.5 V, \\ 5 mA &\leq I_{OUT} \leq 3 A \end{split}$	-1		1	%
Line Regulation	$\Delta V_{OUT}/\Delta V_{IN}$ I _{OUT} = 5mA, 1.4V \leq V _{IN} \leq 6.5 V			0.05		%/V
Load Regulation	ΔV _{OUT} /Δl _{OUT}	$5mA \leq I_{OUT} \leq 3A$		0.08		%/A

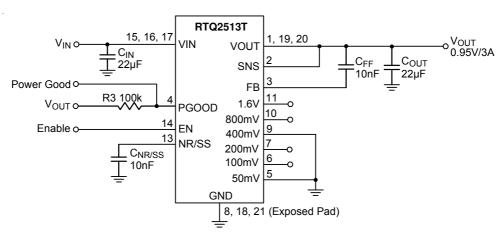
Parameter	Symbol	Test Conditi	ons	Min	Тур	Max	Unit	
Dropout Voltage	VDROP	V_{IN} = 1.1V to 6.5V, I_{OU} V_{FB} = 0.5V - 3%	_T = 3A,		110	180	mV	
Output Current Limit	I _{LIM}	V _{OUT} = 90% V _{OUT(TARGET)} + 4		3.7	4.2	4.7	Α	
		Minimum load, $V_{IN} = 6$. $I_{OUT} = 5mA$	5V,		2.8	4	4	
Ground Pin Current	I _{GND}	Maximum load, V _{IN} = 1 I _{OUT} = 3A	.4V,		4.2	5.5	mA	
		Shutdown, PGOOD = 0 V _{IN} = 6.5V, V _{EN} = 0.5V				25	μΑ	
EN Pin Current	I _{EN}	V _{IN} = 6.5V, V _{EN} = 0V a	nd 6.5V	-0.1		0.1	μΑ	
EN Pin High-Level Input Voltage	VEN_H	Enable device		1.1		6.5	V	
EN Pin Low-Level Input Voltage	V _{EN_L}	Disable device		0		0.5	v	
PGOOD Pin Threshold	VIT_PGOOD	For the direction PGOC falling with decreasing	0.82 x Vout	0.883 x Vout	0.93 x Vout	٧		
PGOOD Pin Hysteresis	Vpgood_hys	For PGOOD signal risi	ng		0.025 x V _{OUT}		V	
PGOOD Pin Low- Level Output Voltage	V _P GOOD_L	V _{OUT} < V _{IT_PGOOD} , I _{PGOOD} = -1mA (currer			0.4	V		
PGOOD Pin Leakage Current	IPGOOD_LK	V _{OUT} > V _{IT_PGOOD} , V _{PGOOD} = 6.5V			1	μΑ		
NR/SS Pin Charging Current	INR/SS	V _{NR/SS} = GND, V _{IN} = 6	4	6.2	9	μΑ		
FB Pin Leakage Current	I _{FB}	V _{IN} = 6.5V		-100		100	nA	
			f = 10kHz, V _{OUT} = 0.5V, V _{IN} = 1.2V		42			
Power Supply	DODD	I _{OUT} = 3A, C _{NR/SS} = 100nF,	f = 500kHz, V _{OUT} = 0.5V, V _{IN} = 1.2V		30			
Rejection Ratio	PSRR	C _{FF} = 10nF, C _{OUT} = 22μF	f = 10kHz, V _{OUT} = 5V , V _{IN} = 5.5V		40		dB	
			f = 500kHz, V _{OUT} = 5V , V _{IN} = 5.5V		25			
Output Noise Voltage	e _{NO}	BW = 10Hz to 100kHz, I _{OUT} = 3A, C _{NR/SS} = 100nF,	V _{IN} = 1.1V, V _{OUT} = 0.5V	, 7			μV _{RMS}	
, 1111111111111111111111111111111111111		C _{FF} = 10nF, C _{OUT} = 22μF	V _{OUT} = 3.3V		10		,	



Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Thermal Shutdown Threshold	T _{SD}	Temperature increasing		160)
		Temperature decreasing		140		C

- Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
- Note 2. θ_{JA} is measured under natural convection (still air) at T_A = 25°C with the component mounted on a high effectivethermal-conductivity four-layer test board on a JEDEC 51-7 thermal measurement standard. θ_{JC} is measured at the exposed pad of the package.
- Note 3. Devices are ESD sensitive. Handling precaution is recommended.
- Note 4. The device is not guaranteed to function outside its operating conditions.
- Note 5. $V_{OUT(TARGET)}$ is the expected V_{OUT} value set by the external feedback resistors. The 50 Ω load is disconnected when the test conditions specify an I_{OUT} value.
- Note 6. External resistor tolerance is not taken into account.

Typical Application Circuit



$$V_{OUT} = V_{REF} \times \left(1 + \frac{R1}{R2}\right) = 0.5V \times \left(1 + \frac{12.4k}{12.4k}\right) = 1V$$

Figure 1. Configuration Circuit for V_{OUT} Adjusted by a Resistive Divider

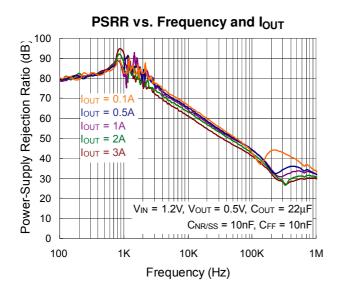
Table 1. Recommended Feedback-Resistor values									
Output Valtage (V)	External Restive Divider Combinations								
Output Voltage (V)	R1 (k Ω)	R2 (k Ω)							
0.7	12.4	31							
1	12.4	12.4							
1.2	12.4	8.86							
1.5	12.4	6.2							
1.8	12.4	4.77							
2.5	12.4	3.1							
3.3	12.4	2.21							
4.5	12.4	1.55							
5	12.4	1.38							

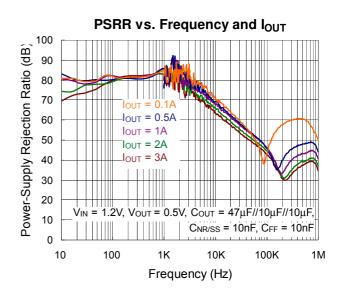
Table 1 Recommended Feedback-Resistor Values

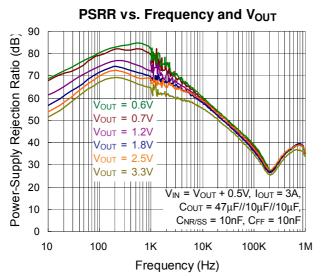
 $V_{OUT} = V_{REF} + 50mV + 400mV = 0.5V + 50mV + 400mV = 0.95V$

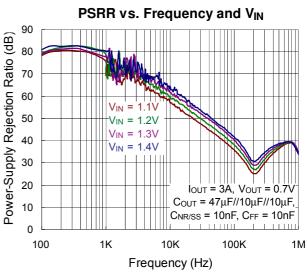
(Table 2. provides a full list for different V_{OUT} target and the corresponding pin settings.)

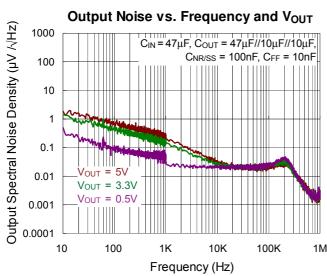
Figure 2. Configuration Circuit for V_{OUT} Adjusted via PCB Layout

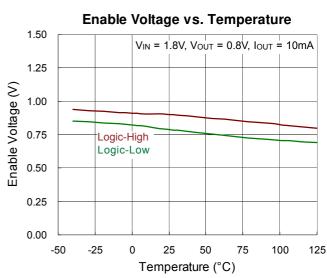


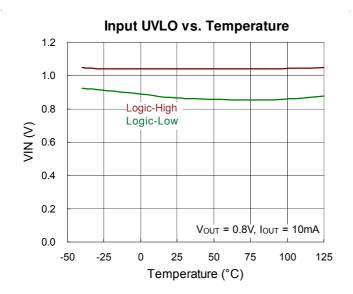

Table 2. V_{OUT} Select Pin Settings for Different Targets

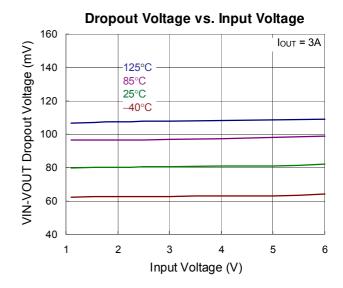

Vout (V)	50mV	100mV	200mV	400mV	800mV	1.6V	V _{OUT} (V)	50mV	100mV	200mV	400mV	800mV	1.6V
0.5	Open	Open	Open	Open	Open	Open	2.1	Open	Open	Open	Open	Open	GND
0.55	GND	Open	Open	Open	Open	Open	2.15	GND	Open	Open	Open	Open	GND
0.6	Open	GND	Open	Open	Open	Open	2.2	Open	GND	Open	Open	Open	GND
0.65	GND	GND	Open	Open	Open	Open	2.25	GND	GND	Open	Open	Open	GND
0.7	Open	Open	GND	Open	Open	Open	2.3	Open	Open	GND	Open	Open	GND
0.75	GND	Open	GND	Open	Open	Open	2.35	GND	Open	GND	Open	Open	GND
0.8	Open	GND	GND	Open	Open	Open	2.4	Open	GND	GND	Open	Open	GND
0.85	GND	GND	GND	Open	Open	Open	2.45	GND	GND	GND	Open	Open	GND
0.9	Open	Open	Open	GND	Open	Open	2.5	Open	Open	Open	GND	Open	GND
0.95	GND	Open	Open	GND	Open	Open	2.55	GND	Open	Open	GND	Open	GND
1	Open	GND	Open	GND	Open	Open	2.6	Open	GND	Open	GND	Open	GND
1.05	GND	GND	Open	GND	Open	Open	2.65	GND	GND	Open	GND	Open	GND
1.1	Open	Open	GND	GND	Open	Open	2.7	Open	Open	GND	GND	Open	GND
1.15	GND	Open	GND	GND	Open	Open	2.75	GND	Open	GND	GND	Open	GND
1.2	Open	GND	GND	GND	Open	Open	2.8	Open	GND	GND	GND	Open	GND
1.25	GND	GND	GND	GND	Open	Open	2.85	GND	GND	GND	GND	Open	GND
1.3	Open	Open	Open	Open	GND	Open	2.9	Open	Open	Open	Open	GND	GND
1.35	GND	Open	Open	Open	GND	Open	2.95	GND	Open	Open	Open	GND	GND
1.4	Open	GND	Open	Open	GND	Open	3	Open	GND	Open	Open	GND	GND
1.45	GND	GND	Open	Open	GND	Open	3.05	GND	GND	Open	Open	GND	GND
1.5	Open	Open	GND	Open	GND	Open	3.1	Open	Open	GND	Open	GND	GND
1.55	GND	Open	GND	Open	GND	Open	3.15	GND	Open	GND	Open	GND	GND
1.6	Open	GND	GND	Open	GND	Open	3.2	Open	GND	GND	Open	GND	GND
1.65	GND	GND	GND	Open	GND	Open	3.25	GND	GND	GND	Open	GND	GND
1.7	Open	Open	Open	GND	GND	Open	3.3	Open	Open	Open	GND	GND	GND
1.75	GND	Open	Open	GND	GND	Open	3.35	GND	Open	Open	GND	GND	GND
1.8	Open	GND	Open	GND	GND	Open	3.4	Open	GND	Open	GND	GND	GND
1.85	GND	GND	Open	GND	GND	Open	3.45	GND	GND	Open	GND	GND	GND
1.9	Open	Open	GND	GND	GND	Open	3.5	Open	Open	GND	GND	GND	GND
1.95	GND	Open	GND	GND	GND	Open	3.55	GND	Open	GND	GND	GND	GND
2	Open	GND	GND	GND	GND	Open	3.6	Open	GND	GND	GND	GND	GND
2.05	GND	GND	GND	GND	GND	Open	3.65	GND	GND	GND	GND	GND	GND

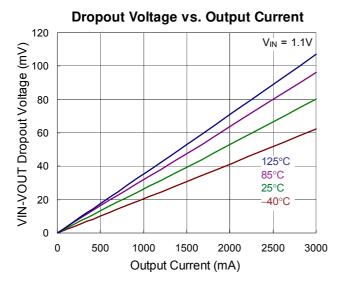



Typical Operating Characteristics









Application Information

The RTQ2513T is a high current, low-noise, high accuracy, low-dropout linear regulator which is capable of sourcing 3A with only maximum 180mV dropout. The input voltage operating range is from 1.1V to 6.5V, and the adjustable output voltage is from 0.5V to 5.5V by setting external resistor or from 0.5V to 3.65V by shorting specific pins on PCB layout to get required output target.

Output Voltage Setting

The output voltage of the RTQ2513T can be set by external resistors or by output voltage setting pins (50mV, 100mV, 200mV, 400mV, 800mV and 1.6V) to achieve different output targets.

By using external resistors, the output voltage is determined by the values of R1 and R2 as Figure 3. The values of R1 and R2 can be calculated by the formula below:

$$V_{OUT} = 0.5 \times \frac{R1 + R2}{R2}$$

$$V_{IN} \circ \frac{}{} = C_{IN} V_{OUT} \circ V_{OUT}$$

Figure 3. Output Voltage Set by External Resistors

The RTQ2513T also can short the pins 5, 6, 7, 9, 10, and 11 to ground and program the regulated output voltage level without external resistors after the SNS pin is connected to the VOUT pin .The pins 5, 6, 7, 9, 10, and 11 are connected with internal resistor pairs, and each pin is either connected to ground (active) or left open (floating).

The voltage programming is set as the sum of the internal reference voltage (V_{REF} = 0.5V) plus the accumulated sum of the respective voltages assigned to each active pin as illustrated in Figure 4.

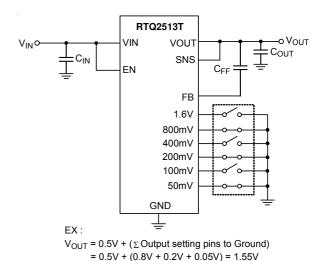


Figure 4. Output Setting without External Resistors

Table 2 summarizes these voltage values associated with each active pin setting for reference. By leaving all program pins open or floating, the output is thereby programmed to the minimum possible output voltage which equals to V_{REF} (0.5V). The maximum output target can be supported up to 3.65V after all pins 5, 6, 7, 9, 10 are shorted to ground at the same time.

Dropout Voltage

The dropout voltage refers to the voltage difference between the VIN and VOUT pins while operating at specific output current. The dropout voltage V_{DROP} also can be expressed as the voltage drop on the pass-FET at specific output current (I_{RATED}) while the pass-FET is fully operating at ohmic region, and the pass-FET can be characterized as an resistance $R_{DS(ON)}$. Thus, the dropout voltage can be defined as ($V_{DROP} = V_{IN} - V_{OUT} = R_{DS(ON)} \times I_{RATED}$). For normal operation, the suggested LDO operating range is ($V_{IN} > V_{OUT} + V_{DROP}$) for good transient response and PSRR ability. On the contrary, while operating at the ohmic region will degrade the performance severely.

CIN and COUT Selection

The RTQ2513T is designed to support the low equivalent series resistance (ESR) ceramic capacitors. The X7R, X5R, and COG-rated ceramic capacitors are recommended due to its good capacitive stability across temperature, whereas the use of Y5V-rated capacitors is discouraged because of large variations in capacitance.

RICHTEK is a registered trademark of Richtek Technology Corporation.

However, the ceramic capacitance varies with operating voltage and temperature, and the design engineers must be aware of these characteristics. It is recommended to use a capacitor no less than $10\mu F$ (4.7 μF or greater of effective capacitance) to ensure stability. Typically, 22µF is used in most applications. The PCB trace impedance also contributes to stability for higher capacitance. If a higher capacitance (> 22µF) is required, place the additional capacitors after 2 inches and connect with a trace width of less than 0.25 inches. The input capacitance is selected to minimize transient input droop during load current steps. For general applications, an input capacitor of at least 22µF is highly recommended for minimal input impedance. If the trace inductance between the RTQ2513T and input supply is high, a fast load transient may cause VIN voltage level ringing and exceeds the absolute maximum voltage rating that also damage the device. Adding more input capacitors can restrict the ringing and keep it not exceeding the device absolute maximum ratings.

Place these capacitors as close to the pins as possible for optimizing performance and ensuring stability.

Feed-Forward Capacitor (CFF)

The RTQ2513T is designed to be stable without the external feed-forward capacitor (C_{FF}). However, a 10nF external feed-forward capacitor optimizes the transient, noise, and PSRR performance. A higher capacitance C_{FF} can also be used, but the start-up time is longer and the power-good signal will incorrectly indicate that the output voltage is settled.

Soft-Start and Noise Reduction (CNR/SS)

The RTQ2513T is designed for a programmable, monotonic soft-start time of output rising, and it can be achieved via an external capacitor ($C_{NR/SS}$) on NR/SS pin. Using an external $C_{NR/SS}$ is recommended for general application. It not only minimizes the in-rush current but also helps reduce the noise component from internal reference.

During the monotonic start-up procedure, the error amplifier of the RTQ2513T tracks the voltage ramp of the external soft-start capacitor($C_{NR/SS}$) until the voltage approaches the internal reference 0.5V. The soft-start ramp time can be calculated by Equation a1, and is related to the soft-

start charging current ($I_{NR/SS}$), the soft-start capacitance ($C_{NR/SS}$), and the internal reference 0.5V (V_{REF}).

$$t_{SS} = \frac{(V_{REF} \times C_{NR/SS})}{I_{NR/SS}}$$
 (a1)

For noise-reduction consideration, the $C_{NR/SS}$ combines conjunction with an internal noise-reduction resistor to form a low-pass filter (LPF), and filters out the noise from the internal bandgap reference before it is gained up via the error amplifier, thus reducing the total device noise floor.

Input Inrush Current

During start-up process, the input Inrush current goes into VIN pin is consists of the sum of load current and the charging current of the output capacitor. The inrush current is difficult to measure because the input capacitor must be removed which is not recommended. Generally, the soft-start inrush current can be estimated by Equation b1, which $V_{OUT}(t)$ is the instantaneous output voltage of the power-up ramp, $dV_{OUT}(t)$ / dt is the slope of the V_{OUT} ramp, and R_{LOAD} is the resistive load impedance.

$$I_{OUT}(t) = \frac{\left(C_{OUT} \times dV_{OUT}(t)\right)}{dt} + \left(\frac{V_{OUT}(t)}{R_{LOAD}}\right) \quad (b1)$$

Under-Voltage Lockout (UVLO)

The under-voltage lockout (UVLO) threshold is the minimum input operational voltage range that ensures the device stays disabled. Figure 5 explains the UVLO circuit is triggered between three different input voltage events(duration a, b and c), assuming $V_{EN} \ge V_{EN}$ H for all time duration. For duration "a", input power starts rising and V_{IN} exceeds the UVLO rising threshold. The V_{OUT} starts to power on then reached the target level and under regulated. Duration "b" shows a case that V_{IN} occurs instant power line unstable and droops severely. However, the V_{IN} droop level is not lower than UVLO falling threshold, the device remains normal work status, and V_{OUT} is still under regulated. The duration "c" happens when the V_{IN} droop level is lower than UVLO falling threshold. The control loop of device is disabled and does not have the regulation ability, and the V_{OUT} droops at the same time. For general application, instant power line transient with long power trace between VIN pin and power supply may have VIN level unstable which forces the device trap into duration c

and makes output voltage collapse. In this case, adding more input capacitance or improving input trace layout on PCB are effective to make sure the stability of input power stabilization.

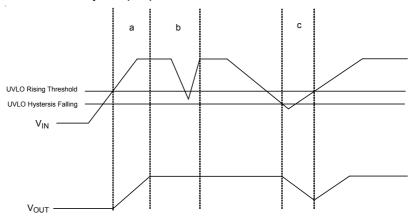


Figure 5. Under-Voltage Lockout Trigging Conditions and Output Variation

Power-Good (PGOOD) Function

The Power-Good function monitors the voltage level at the feedback pin to indicate whether the output voltage status is normal or not. This function enables other devices to receive the RTQ2513T's Power-Good signal as a logic signal that can be used for the sequence design of the system application. The PGOOD pin is an open-drain structure and an external pull-up resistor, connecting to an external supply is necessary. The pulled-up resistor value between $10k\Omega$ to $100k\Omega$ is recommended for proper operation. The lower limit of $10k\Omega$ results from the maximum pulled-down strength of the power-good transistor, and the upper limit of $100k\Omega$ results from the maximum leakage current at the power-good node.

Figure 6 demonstrates some PGOOD scenarios versus

the VIN, EN and protection status. Duration "a" presents that the device is under the operation while V_{EN} is higher than V_{EN H} threshold. After the output voltage V_{OUT} starts rising(the rising time has related with soft-start capacitor C_{NR/SS}), the V_{OUT} exceeds PGOOD hysteresis threshold, the reflected feedback voltage V_{FB} exceeds V_{PGOOD HYS} threshold, and the PGOOD pin is high impedance. The duration "b" indicates some unpredictable operation happens (ex: OTP, OCP or output voltage droop severely caused by very fast load variation). Where the VFB is lower than $V_{IT\ PGOOD}$ threshold and the V_{PGOOD} is pulled to GND for the indication that output voltage status is not ready. Duration "c" assumes V_{OUT} has small droop that is not lower than PGOOD falling threshold, the PGOOD pin remain high impedance. After V_{EN} goes logic low level, V_{PGOOD} is pulled to GND as presented in duration "d".

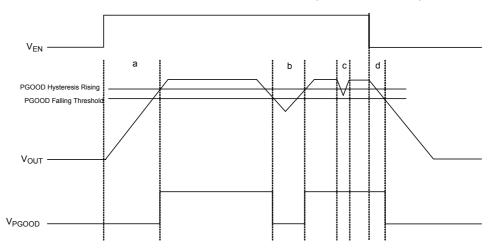


Figure 6. PGOOD Trigger Scenario with Different Operating Status

Reverse Current Protection

If the maximum V_{OUT} exceeds V_{IN} + 0.3V, that may induce reverse current from VOUT to VIN which flows through the body diode of pass element instead of the normal conducting channel. In this case, the pass element may be damaged. For example, the output is biased above input supply voltage level or input supply has instant collapse at light load operation that makes $V_{\text{IN}} < V_{\text{OUT}}$. As shown in Figure 7, an external Schottky diode can be added to prevent the pass element from being damaged by the reverse current.

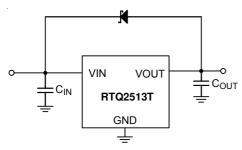


Figure 7. Application Circuit for Reverse Current Protection

Thermal Considerations

Thermal protection limits power dissipation in the RTQ2513T. When power dissipation on pass element ($P_{DIS} = (V_{IN} - V_{OUT}) \times I_{OUT}$) is too much that causes the operation junction temperature exceeds 160°C, the OTP circuit starts the thermal shutdown function and turns the pass element off. The pass element turns on again after the junction temperature cools down by 20°C. The RTQ2513T output voltage will be closed to zero when output short circuit occurs as shown in Figure 8. It reduces the chip temperature and provides maximum safety to end users when output short circuit occurs.

The junction temperature should never exceed the absolute maximum junction temperature $T_{J(MAX)}$, listed under Absolute Maximum Ratings, to avoid permanent damage to the device. The maximum allowable power dissipation depends on the thermal resistance of the IC package, the PCB layout, the rate of surrounding airflow, and the difference between the junction and ambient temperatures. The maximum power dissipation can be calculated using the following formula :

 $P_{D(MAX)} = (T_{J(MAX)} - T_A) / \theta_{JA}$

where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction-to-ambient thermal resistance.

For continuous operation, the maximum operating junction temperature indicated under Recommended Operating Conditions is 125°C. The junction-to-ambient thermal resistance, θ_{JA} , is highly package dependent. For a WQFN-20L 3.5x3.5 package, the thermal resistance, θ_{JA} , is 28.5°C/W on a standard JEDEC 51-7 high effective-thermal-conductivity four-layer test board. The maximum power dissipation at T_A = 25°C can be calculated as below :

 $P_{D(MAX)} = (125^{\circ}C - 25^{\circ}C) / (28.5^{\circ}C/W) = 3.5W$ for a WQFN-20L 3.5x3.5 package.

The maximum power dissipation depends on the operating ambient temperature for the fixed $T_{J(MAX)}$ and the thermal resistance, θ_{JA} . The derating curves in Figure 9 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

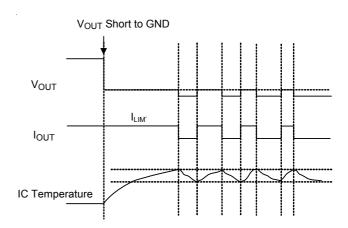


Figure 8. Short-Circuit Protection when Output Short-Circuit Occurs

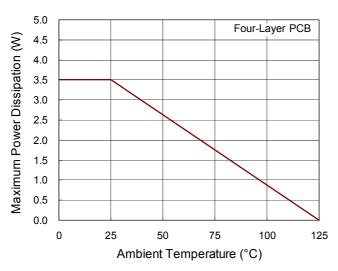


Figure 9. Derating Curve of Maximum Power Dissipation

Layout Considerations

For best performance of the RTQ2513T, the PCB layout suggestions below are highly recommend. All circuit components should be placed on the same side and as near to the respective LDO pin as possible. The ground return path connection should be placed to the input and output capacitor, and the ground plane should be connected by a wide copper surface for good thermal dissipation. Using vias and long power traces for the input and output capacitors connection is discouraged and has negatively affects on performance. Figure 10 shows an example for the layout reference that reduces conduction trace loop, helping to minimize inductive parasitic, and keep good circuit stability.

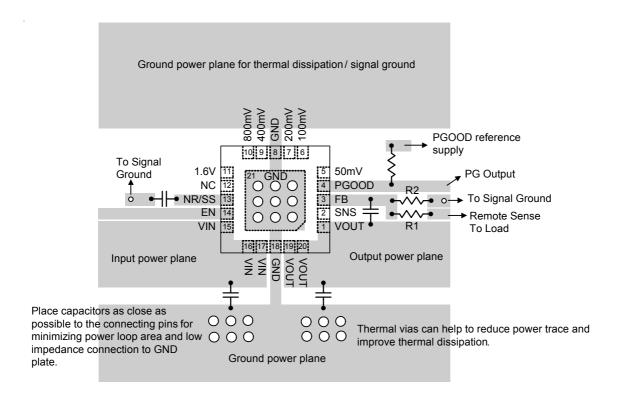
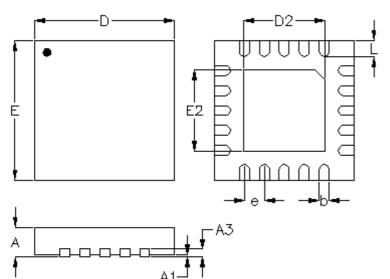
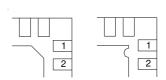
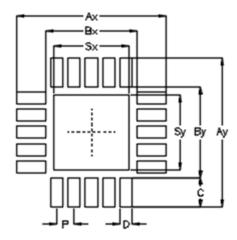




Figure 10. PCB Layout Guide

Outline Dimension

DETAIL A

Pin #1 ID and Tie Bar Mark Options


Note: The configuration of the Pin #1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions I	n Millimeters	Dimensions In Inches				
Symbol	Min	Max	Min	Max			
А	0.700	0.800	0.028	0.031			
A1	0.000	0.050	0.000	0.002			
А3	0.175	0.250	0.007	0.010			
b	0.200	0.300	0.008	0.012			
D	3.400	3.600	0.134	0.142			
D2	2.000	2.100	0.079	0.083			
E	3.400	3.600	0.134	0.142			
E2	2.000	2.100	0.079	0.083			
е	0.5	600	0.020				
L	0.350	0.450	0.014	0.018			

W-Type 20L QFN 3.5x3.5 Package

Footprint Information

Package	Number of	Footprint Dimension (mm)							Tolerance		
	Pin	Р	Ax	Ay	Вх	Ву	С	D	Sx	Sy	Tolerance
V/W/U/XQFN3.5*3.5-20	20	0.50	4.30	4.30	2.60	2.60	0.85	0.35	2.15	2.15	±0.05

Richtek Technology Corporation

14F, No. 8, Tai Yuen 1^{st} Street, Chupei City Hsinchu, Taiwan, R.O.C.

Tel: (8863)5526789

Richtek products are sold by description only. Richtek reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.