

Dual Precision Retriggerable/Resettable Monostable Multivibrator

MC14538B

The MC14538B is a dual, retriggerable, resettable monostable multivibrator. It may be triggered from either edge of an input pulse, and produces an accurate output pulse over a wide range of widths, the duration and accuracy of which are determined by the external timing components, C_X and R_X . Output Pulse Width $T = R_X \cdot C_X$ (secs)

 C_X = Farads

Features

- Unlimited Rise and Fall Time Allowed on the A Trigger Input
- Pulse Width Range = 10 us to 10 s
- Latched Trigger Inputs
- Separate Latched Reset Inputs
- 3.0 Vdc to 18 Vdc Operational Limits
- Triggerable from Positive (A Input) or Negative–Going Edge (B–Input)
- Capable of Driving Two Low-Power TTL Loads or One Low-Power Schottky TTL Load Over the Rated Temperature Range
- Pin-for-pin Compatible with MC14528B and CD4528B (CD4098)
- Use the MC54/74HC4538A for Pulse Widths Less Than 10 µs with Supplies Up to 6 V
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	-0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
P _D	Power Dissipation, per Package (Note 1)	500	mW
T _A	Operating Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

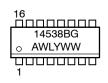
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

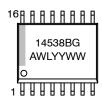
1. Temperature Derating: "D/DW" Packages: -7.0 mW/°C From 65°C To 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range $V_{SS} \le (V_{in} \text{ or } V_{out}) \le V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

SOIC-16 **D SUFFIX CASE 751B**




DW SUFFIX CASE 751G

TSSOP-16 DT SUFFIX CASE 948F

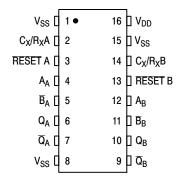
MARKING DIAGRAMS

SOIC-16

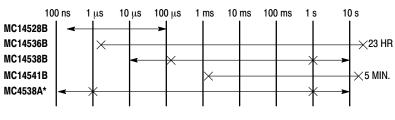
SOIC-16WB

TSSOP-16

= Assembly Location

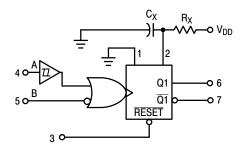

WL. L = Wafer Lot YY, Y = Year WW, W = Work Week = Pb-Free Indicator G or •

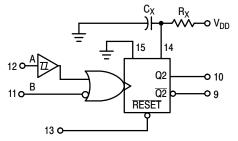
(Note: Microdot may be in either location)


ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

PIN ASSIGNMENT


ONE-SHOT SELECTION GUIDE



*LIMITED OPERATING VOLTAGE (2 - 6 V)

TOTAL OUTPUT PULSE WIDTH RANGE RECOMMENDED PULSE WIDTH RANGE X

BLOCK DIAGRAM

 R_X AND C_X ARE EXTERNAL COMPONENTS. V_{DD} = PIN 16 V_{SS} = PIN 8, PIN 1, PIN 15

ORDERING INFORMATION

Device	Package	Shipping [†]
MC14538BDG	SOIC-16 (Pb-Free)	48 Units / Rail
MC14538BDR2G	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel
NLV14538BDR2G*	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel
MC14538BDTR2G	TSSOP-16 (Pb-Free)	2500 Units / Tape & Reel
NLV14538BDTR2G*	TSSOP-16 (Pb-Free)	2500 Units / Tape & Reel
MC14538BDWG	SOIC-16 WB (Pb-Free)	47 Units / Rail
NLV14538BDWG*	SOIC-16 WB (Pb-Free)	47 Units / Rail
MC14538BDWR2G	SOIC-16 WB (Pb-Free)	1000 Units / Tape & Reel
NLV14538BDWR2G*	SOIC-16 WB (Pb-Free)	1000 Units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

		\ \ \	- 55°C		25°C			125°C		
Characteristic	Symbol	V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Max	Unit
Output Voltage "0" Level V _{in} = V _{DD} or 0	V _{OL}	5.0 10 15	- - -	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
V _{in} = 0 or V _{DD} "1" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15	- - -	4.95 9.95 14.95	- - -	Vdc
Input Voltage "0" Level (V _O = 4.5 or 0.5 Vdc) (V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)	V _{IL}	5.0 10 15	- - -	1.5 3.0 4.0	- - -	2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	Vdc
$(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$ $(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$ $(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$	V _{IH}	5.0 10 15	3.5 7.0 11	- - -	3.5 7.0 11	2.75 5.50 8.25	- - -	3.5 7.0 11	- - -	Vdc
	Іон	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	- - -	-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8	- - -	-1.7 -0.36 -0.9 -2.4	- - -	mAdc
$(V_{OL} = 0.4 \text{ Vdc})$ Sink $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	l _{OL}	5.0 10 15	0.64 1.6 4.2	- - -	0.51 1.3 3.4	0.88 2.25 8.8	- - -	0.36 0.9 2.4	- - -	mAdc
Input Current, Pin 2 or 14	l _{in}	15	-	±0.05	-	±0.00001	±0.05	-	±0.5	μAdc
Input Current, Other Inputs	l _{in}	15	-	±0.1	-	±0.00001	±0.1	-	±1.0	μAdc
Input Capacitance, Pin 2 or 14	C _{in}	-	-	-	-	25	-	-	-	pF
Input Capacitance, Other Inputs (Vin = 0)	C _{in}	-	-	-	-	5.0	7.5	-	-	pF
Quiescent Current (Per Package) Q = Low, Q = High	I _{DD}	5.0 10 15	- - -	5.0 10 20	- - -	0.005 0.010 0.015	5.0 10 20	- - -	150 300 600	μAdc
Quiescent Current, Active State (Both) (Per Package) Q = High, Q = Low	I _{DD}	5.0 10 15	- - -	2.0 2.0 2.0	- - -	0.04 0.08 0.13	0.20 0.45 0.70	- - -	2.0 2.0 2.0	mAdc
Total Supply Current at an external load capacitance (C _L) and at external timing network (R _X , C _X) (Note 3)	I _T	5.0 10		$I_T = (8.0 \text{ s})$ $I_T = (1.25 \text{ where:})$	x 10 ^{–2}) R 5 x 10 ^{–1}) I I _T in μA (σ C _X in μF,	$_{c}^{\prime}$ C _X f + 4C _X f - $_{c}$ C _X f + 9C _X f R _X C _X f + 12C cone monosta C _L in pF, R _X the input free	+ 2 x 10 ⁻⁽ xf + 3 x 10 ble switch in k ohms	⁵ C _L f 0 ^{–5} C _L f ning only),		μAdc

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

OPERATING CONDITIONS

External Timing Resistance	R _X	-	5.0	-	(Note 4)	kΩ
External Timing Capacitance	C _X	-	0	_	No Limit (Note 5)	μF

^{4.} The maximum usable resistance R_X is a function of the leakage of the capacitor C_X , leakage of the MC14538B, and leakage due to board layout and surface resistance. Susceptibility to externally induced noise signals may occur for $R_X > 1$ M Ω ..

^{2.} Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

^{3.} The formulas given are for the typical characteristics only at 25°C.

^{5.} If $C_X > 15 \mu F$, use discharge protection diode per Fig. 11.

SWITCHING CHARACTERISTICS (Note 6) (CL = 50 pF, T_A = 25°C)

		.,				
Characteristic	Symbol	V _{DD} Vdc	Min	Typ (Note 7)	Max	Unit
Output Rise Time $t_{TLH} = (1.35 \text{ ns/pF}) C_L + 33 \text{ ns} \\ t_{TLH} = (0.60 \text{ ns/pF}) C_L + 20 \text{ ns} \\ t_{TLH} = (0.40 \text{ ns/pF}) C_L + 20 \text{ ns} \\ \end{cases}$	t _{TLH}	5.0 10 15	- - -	100 50 40	200 100 80	ns
Output Fall Time $t_{THL} = (1.35 \text{ ns/pF}) \text{ C}_{L} + 33 \text{ ns}$ $t_{THL} = (0.60 \text{ ns/pF}) \text{ C}_{L} + 20 \text{ ns}$ $t_{THL} = (0.40 \text{ ns/pF}) \text{ C}_{L} + 20 \text{ ns}$	t _{THL}	5.0 10 15	- - -	100 50 40	200 100 80	ns
Propagation Delay Time A or B to Q or \overline{Q} t_{PLH} , t_{PHL} = (0.90 ns/pF) C_L + 255 ns t_{PLH} , t_{PHL} = (0.36 ns/pF) C_L + 132 ns t_{PLH} , t_{PHL} = (0.26 ns/pF) C_L + 87 ns	t _{PLH} , t _{PHL}	5.0 10 15		300 150 100	600 300 220	ns
		5.0 10 15	- - -	250 125 95	500 250 190	ns
Input Rise and Fall Times Reset	t _r , t _f	5 10 15	- - -	- - -	15 5 4	μs
B Input		5 10 15	- - -	300 1.2 0.4	1.0 0.1 0.05	ms
A Input		5 10 15		No Limit		-
Input Pulse Width A, B, or Reset	t _{WH} , t _{WL}	5.0 10 15	170 90 80	85 45 40	- - -	ns
Retrigger Time	t _{rr}	5.0 10 15	0 0 0	- - -	- - -	ns
Output Pulse Width — Q or \overline{Q} Refer to Figures 8 and 9 C_X = 0.002 μ F, R_X = 100 $k\Omega$	Т	5.0 10 15	198 200 202	210 212 214	230 232 234	μs
C_X = 0.1 μF, R_X = 100 kΩ		5.0 10 15	9.3 9.4 9.5	9.86 10 10.14	10.5 10.6 10.7	ms
C_X = 10 μF, R_X = 100 kΩ		5.0 10 15	0.91 0.92 0.93	0.965 0.98 0.99	1.03 1.04 1.06	S
Pulse Width Match between circuits in the same package. $C_X = 0.1 \ \mu F, \ R_X = 100 \ k\Omega$	100 [(T ₁ - T ₂)/T ₁]	5.0 10 15	- - -	±1.0 ±1.0 ±1.0	±5.0 ±5.0 ±5.0	%

^{6.} The formulas given are for the typical characteristics only at 25°C.
7. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

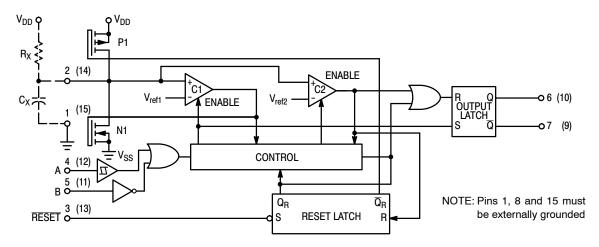


Figure 1. Logic Diagram (1/2 of Device Shown)

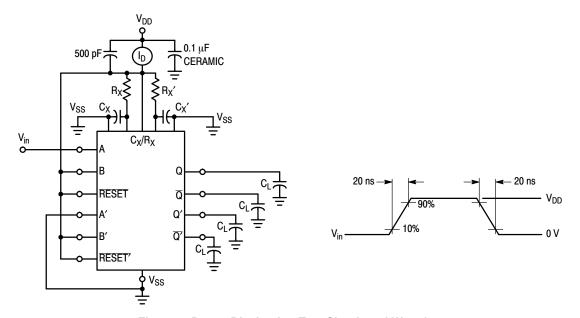


Figure 2. Power Dissipation Test Circuit and Waveforms

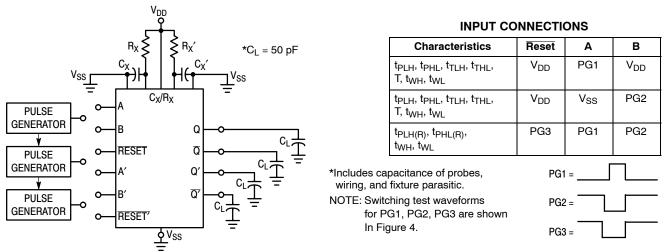


Figure 3. Switching Test Circuit

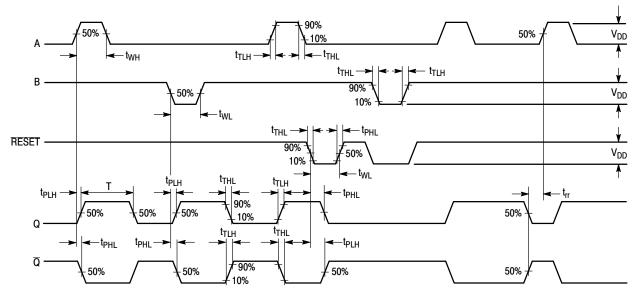


Figure 4. Switching Test Waveforms

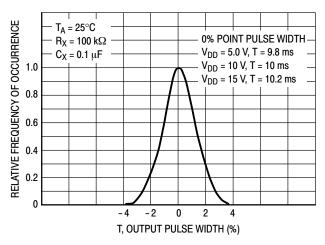


Figure 5. Typical Normalized Distribution of Units for Output Pulse Width

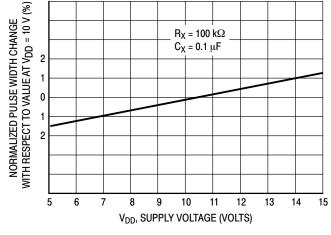


Figure 6. Typical Pulse Width Variation as a Function of Supply Voltage V_{DD}

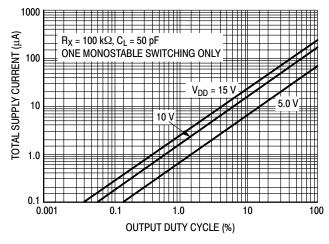


Figure 7. Typical Total Supply Current versus Output Duty Cycle

FUNCTION TABLE

	Inputs	Outputs			
Reset	Α	В	Q	Q	
H H	_∕ L	H _	<u>Г</u>	7.	
H H			Not Triggered Not Triggered		
H H	L, H, ℃ L	H L, H, <i>-</i> ∕⁻	Not Triggered Not Triggered		
	X X	X X	L Not Tri	H iggered	

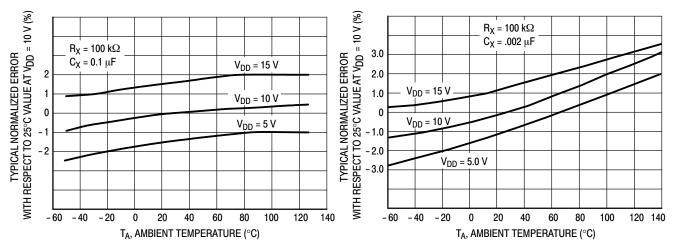


Figure 8. Typical Error of Pulse Width Equation versus Temperature

Figure 9. Typical Error of Pulse Width Equation versus Temperature

THEORY OF OPERATION

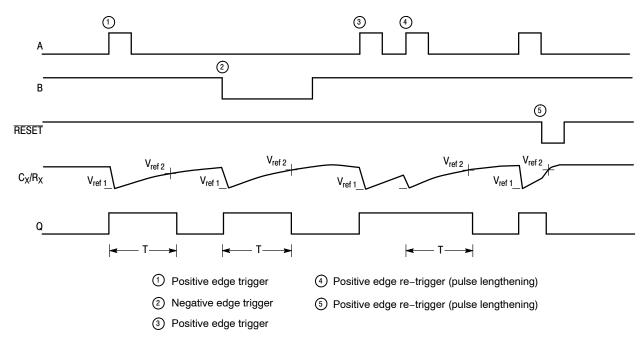


Figure 10. Timing Operation

TRIGGER OPERATION

The block diagram of the MC14538B is shown in Figure 1, with circuit operation following.

As shown in Figure 1 and 10, before an input trigger occurs, the monostable is in the quiescent state with the Q output low, and the timing capacitor C_X completely charged to V_{DD} . When the trigger input A goes from V_{SS} to V_{DD} (while inputs B and $\overline{\text{Reset}}$ are held to V_{DD}) a valid trigger is recognized, which turns on comparator C1 and N-channel transistor N1 1. At the same time the output latch is set. With transistor N1 on, the capacitor C_X rapidly discharges toward V_{SS} until V_{ref1} is reached. At this point the output of comparator C1 changes state and transistor N1 turns off. Comparator C1 then turns off while at the same time comparator C2 turns on. With transistor N1 off, the capacitor C_X begins to charge through the timing resistor, R_X , toward V_{DD} . When the voltage across C_X equals $V_{ref 2}$, comparator C2 changes state, causing the output latch to reset (Q goes low) while at the same time disabling comparator C2 2. This ends at the timing cycle with the monostable in the quiescent state, waiting for the next trigger.

In the quiescent state, C_X is fully charged to V_{DD} causing the current through resistor R_X to be zero. Both comparators are "off" with total device current due only to reverse junction leakages. An added feature of the MC14538B is that the output latch is set via the input trigger without regard to the capacitor voltage. Thus, propagation delay from trigger to Q is independent of the value of C_X , R_X , or the duty cycle of the input waveform.

RETRIGGER OPERATION

The MC14538B is retriggered if a valid trigger occurs ③ followed by another valid trigger ④ before the Q output has returned to the quiescent (zero) state. Any retrigger, after the timing node voltage at pin 2 or 14 has begun to rise from $V_{ref\ 1}$, but has not yet reached $V_{ref\ 2}$, will cause an increase in output pulse width T. When a valid retrigger is initiated ④, the voltage at C_X/R_X will again drop to $V_{ref\ 1}$ before progressing along the RC charging curve toward V_{DD} . The Q output will remain high until time T, after the last valid retrigger.

RESET OPERATION

The MC14538B may be reset during the generation of the output pulse. In the reset mode of operation, an input pulse

on \overline{Reset} sets the reset latch and causes the capacitor to be fast charged to V_{DD} by turning on transistor P1 $\[\]$. When the voltage on the capacitor reaches $V_{ref\ 2}$, the reset latch will clear, and will then be ready to accept another pulse. It the \overline{Reset} input is held low, any trigger inputs that occur will be inhibited and the Q and \overline{Q} outputs of the output latch will not change. Since the Q output is reset when an input low level is detected on the \overline{Reset} input, the output pulse T can be made significantly shorter than the minimum pulse width specification.

POWER-DOWN CONSIDERATIONS

Large capacitance values can cause problems due to the large amount of energy stored. When a system containing the MC14538B is powered down, the capacitor voltage may discharge from V_{DD} through the standard protection diodes at pin 2 or 14. Current through the protection diodes should be limited to 10 mA and therefore the discharge time of the V_{DD} supply must not be faster than (V_{DD}) . (C)/(10 mA). For example, if V_{DD} = 10 V and C_X = 10 μF , the V_{DD} supply should discharge no faster than (10 V) x (10 μF)/(10 mA) = 10 ms. This is normally not a problem since power supplies are heavily filtered and cannot discharge at this rate.

When a more rapid decrease of V_{DD} to zero volts occurs, the MC14538B can sustain damage. To avoid this possibility use an external clamping diode, D_X , connected as shown in Fig. 11.

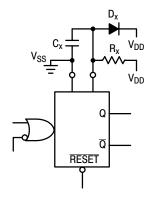
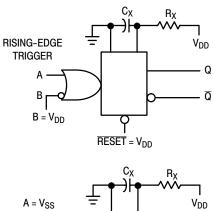



Figure 11. Use of a Diode to Limit Power Down Current Surge

TYPICAL APPLICATIONS

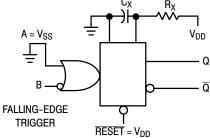


Figure 12. Retriggerable Monostables Circuitry

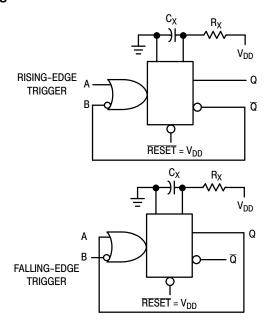
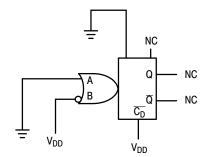
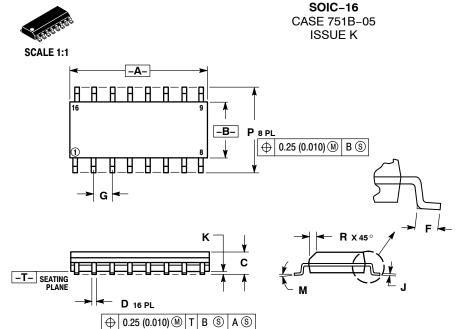




Figure 13. Non-Retriggerable Monostables Circuitry

Figure 14. Connection of Unused Sections

MECHANICAL CASE OUTLINE

DATE 29 DEC 2006

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- THE NOTION AND TOLETANOING FER ANSI'Y 14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- PHOI HUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION

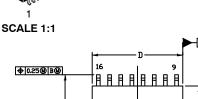
 SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D

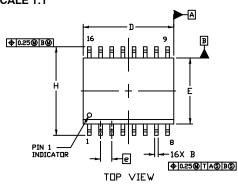
 DIMENSION AT MAXIMUM MATERIAL CONDITION.

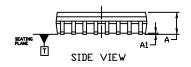
	MILLIMETERS		INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
C	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
P	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

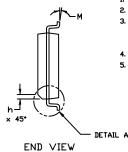
STYLE 1: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9.	COLLECTOR BASE EMITTER NO CONNECTION EMITTER BASE COLLECTOR COLLECTOR BASE EMITTER NO CONNECTION	2. 3. 4. 5. 6. 7. 8. 9.	CATHODE ANODE NO CONNECTION CATHODE CATHODE NO CONNECTION ANODE CATHODE CATHODE ANODE ANODE NO CONNECTION	2. 3. 4. 5. 6. 7. 8. 9.	COLLECTOR, DYE #1 BASE, #1 EMITTER, #1 COLLECTOR, #1 COLLECTOR, #2 BASE, #2 EMITTER, #2 COLLECTOR, #2 COLLECTOR, #2 COLLECTOR, #3	STYLE 4: PIN 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.		н	
12.	EMITTER		CATHODE		COLLECTOR, #3				
	BASE		CATHODE		COLLECTOR, #3	12.			
13.	COLLECTOR	13.	NO CONNECTION	13.		13.	BASE, #2 EMITTER. #2	SOLDERING	FOOTPRINT
14. 15.	EMITTER	14.		14. 15.		14. 15.	BASE, #1		
16.	COLLECTOR		CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1		BX
10.	COLLECTOR	10.	CATHODE	10.	COLLECTOR, #4	10.	LIVIII I LIT, # I	≺ 6.	.40
STYLE 5:		STYLE 6:		STYLE 7:					16X 1.12
PIN 1.	DRAIN, DYE #1		CATHODE	PIN 1.				<u> </u>	
2.	DRAIN, #1	2.	CATHODE	2.	COMMON DRAIN (OUTPUT			_	16
3.	DRAIN, #2	3.	CATHODE	3.	COMMON DRAIN (OUTPUT	Γ)		<u>* </u>	
4.	DRAIN, #2	4.	CATHODE	4.	GATE P-CH				
5.	DRAIN, #3	5.	CATHODE	5.	COMMON DRAIN (OUTPUT	Γ)	16)	× T	
6.	DRAIN, #3	6.	CATHODE	6.	COMMON DRAIN (OUTPUT		0.5	8	·
7.	DRAIN, #4	7.		7.	COMMON DRAIN (OUTPUT	Γ)			
8.	DRAIN, #4	8.	CATHODE	8.	SOURCE P-CH				
9.	GATE, #4	9.		9.	SOURCE P-CH				<u> </u>
10.	SOURCE, #4	10.	ANODE	10.	COMMON DRAIN (OUTPUT	Γ)			
11.	GATE, #3	11.	ANODE	11.	COMMON DRAIN (OUTPUT	Γ)			
12.	SOURCE, #3	12.	ANODE	12.	COMMON DRAIN (OUTPUT	Γ)			1 07
13.	GATE, #2	13.	ANODE	13.	GATE N-CH				
14.	SOURCE, #2	14.	ANODE	14.	COMMON DRAIN (OUTPUT	Γ)			↓ PITCH
15.	GATE, #1	15.	ANODE	15.	COMMON DRAIN (OUTPUT	Γ)			\ \tau=\frac{1}{2}
16.	SOURCE, #1	16.	ANODE	16.	SOURCE N-CH				
								8	9 = + -
									DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-16		PAGE 1 OF 1		

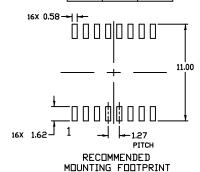

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.






SOIC-16 WB CASE 751G ISSUE E

DATE 08 OCT 2021



DETAIL A

NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS.
- MAXIMUM MOLD PROTRUSION OR FLASH TO BE 0.15 PER SIDE.

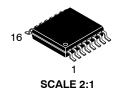
	MILLIMETERS			
DIM	MIN.	MAX.		
Α	2.35	2.65		
A1	0.10	0.25		
В	0.35	0.49		
С	0.23	0.32		
D	10.15	10.45		
E	7.40	7.60		
е	1.27	BSC		
Н	10.05	10.55		
h	0.53 REF			
١	0.50	0.90		
М	0*	7*		

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location

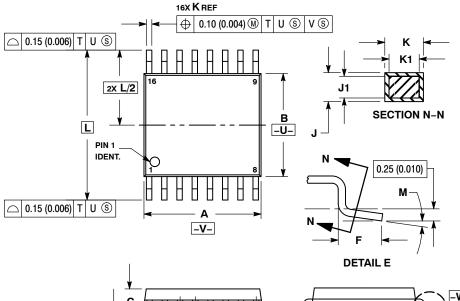
WL = Wafer Lot YY = Year ww = Work Week G = Pb-Free Package

DOCUMENT NUMBER:	98ASB42567B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	SOIC-16 WB		PAGE 1 OF 1		


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others.

^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "=", may or may not be present. Some products may not follow the Generic Marking.

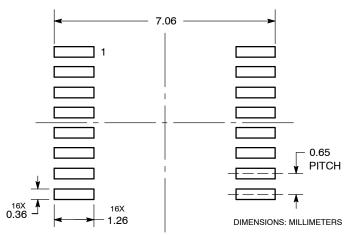
0.10 (0.004)


D

-T- SEATING PLANE

TSSOP-16 CASE 948F-01 ISSUE B

DATE 19 OCT 2006


NOTES

- JIES:
 DIMENSIONING AND TOLERANCING PER
 ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD
 FLASH. PROTRUSIONS OR GATE BURRS.
 MOLD EL ROLL OF GATE BURDS SUAL NO.
- MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
- DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.
- 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.90	5.10	0.193	0.200	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026 BSC		
Н	0.18	0.28	0.007	0.011	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40	6.40 BSC		BSC	
M	0°	8°	0°	8 °	

SOLDERING FOOTPRINT

G

GENERIC MARKING DIAGRAM*

168888888 XXXX XXXX **ALYW** 188888888

XXXX = Specific Device Code Α = Assembly Location

= Wafer Lot L Υ = Year W = Work Week = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1

DETAIL E

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales