

STWA48N60DM2

N-channel 600 V, 0.065 Ω typ., 40 A MDmesh™ DM2 Power MOSFET in a TO-247 long leads package

Datasheet - production data

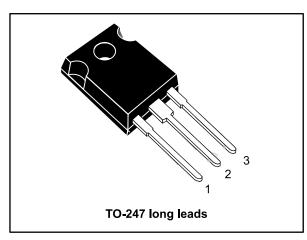
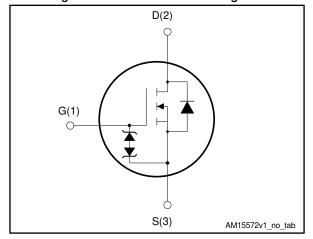



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ID
STWA48N60DM2	600 V	0.079 Ω	40 A

- Fast-recovery body diode
- Extremely low gate charge and input capacitance
- Low on-resistance
- 100% avalanche tested
- Extremely high dv/dt ruggedness
- Zener-protected

Applications

Switching applications

Description

This high voltage N-channel Power MOSFET is part of the MDmesh $^{\text{TM}}$ DM2 fast recovery diode series. It offers very low recovery charge (Q_{rr}) and time (t_{rr}) combined with low R_{DS(on)}, rendering it suitable for the most demanding high efficiency converters and ideal for bridge topologies and ZVS phase-shift converters.

Table 1: Device summary

Order code	Marking	Package	Packing	
STWA48N60DM2	48N60DM2	TO-247 long leads	Tube	

Contents STWA48N60DM2

Contents

1	Electric	al ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	TO-247 long leads package information	9
5	Revisio	n history	11

STWA48N60DM2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _G s	Gate-source voltage	±25	V	
1_	Drain current (continuous) at T _{case} = 25 °C	40	Α	
l _D	Drain current (continuous) at T _{case} = 100 °C		A	
I _{DM} ⁽¹⁾	Drain current (pulsed)	160	Α	
P _{TOT}	Total dissipation at T _{case} = 25 °C	300	W	
dv/dt ⁽²⁾	Peak diode recovery voltage slope	50 14		
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50 V/ı		
T _{stg}	Storage temperature range	-55 to 150 °C		
Tj	Operating junction temperature range	-55 to 150 °C		

Notes:

Table 3: Thermal data

Symbol	Parameter		Unit
R _{thj-case}	Thermal resistance junction-case	0.42	0000
R _{thj-amb}	Thermal resistance junction-ambient	50	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter		Unit
lar	Avalanche current, repetitive or not repetitive (Pulse width limited by T_{jmax})	7	А
E _{AR}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	950	mJ

 $^{^{\}left(1\right) }$ Pulse width is limited by safe operating area

 $^{^{(2)}}$ $I_{SD} \leq 40$ A, di/dt=900 A/ μ s; V $_{DS}$ peak < V $_{(BR)DSS},$ V $_{DD}$ = 400 V

 $^{^{(3)}} V_{DS} \le 480 V$

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 5: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	600			V
	Zara gata valtaga drain	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V}$			1	
IDSS	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V},$ $T_{case} = 125 \text{ °C}^{(1)}$			100	μΑ
I _{GSS}	Gate-body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 25 \text{ V}$			±5	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 20 A		0.065	0.079	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		ı	3250	1	
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$ $I_{D} = 0 \text{ A}$	1	142	1	pF
Crss	Reverse transfer capacitance	10 - 0 71	1	4.5	1	
C _{oss} eq. (1)	Equivalent output capacitance	$V_{DS} = 0$ to 480 V, $V_{GS} = 0$ V	ı	258	ı	pF
R _G	Intrinsic gate resistance	$f = 1 \text{ MHz}, I_D = 0 \text{ A}$	1	4	1	Ω
Q_g	Total gate charge	$V_{DD} = 480 \text{ V}, I_D = 40 \text{ A},$	1	70	-	
Qgs	Gate-source charge	V _{GS} = 10 V (see <i>Figure 14: "Test circuit</i>	1	18	1	nC
Q_{gd}	Gate-drain charge	for gate charge behavior")	ı	28	-	

Notes:

 $^{^{(1)}\}mbox{Defined}$ by design, not subject to production test

 $^{^{(1)}}$ Coss eq. is defined as a constant equivalent capacitance giving the same charging time as Coss when VDS increases from 0 to 80% VDSS.

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_D = 20 \text{ A}$	ı	27	1	
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 13: "Test circuit	ı	27	1	
t _{d(off)}	Turn-off delay time	for resistive load switching	1	131	1	ns
t _f	Fall time	times" and Figure 18: "Switching time waveform")	-	9.8	-	

Table 8: Source-drain diode

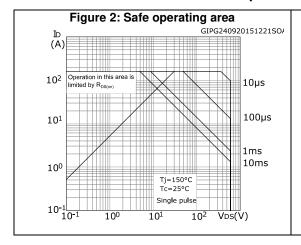
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} ⁽¹⁾	Source-drain current		1		40	Α
I _{SDM} ⁽²⁾	Source-drain current (pulsed)		ı		160	Α
V _{SD} (3)	Forward on voltage	$V_{GS} = 0 \text{ V}, I_{SD} = 40 \text{ A}$	1		1.6	V
t _{rr}	Reverse recovery time	$I_{SD} = 40 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	1	140		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 15: "Test circuit for	1	0.7		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	1	10		Α
t _{rr}	Reverse recovery time	$I_{SD} = 40 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	256		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 \text{ °C}$ (see Figure 15: "Test circuit for	-	2.5		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	1	20		Α

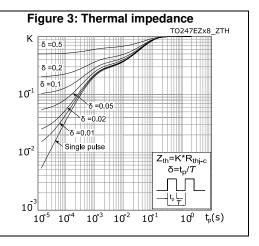
Notes:

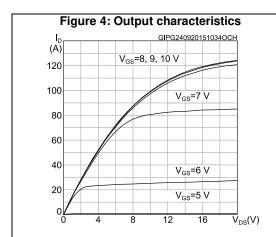
Table 9: Gate-source Zener diode

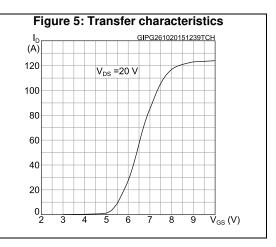
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _{(BR)GSO}	Gate-source breakdown voltage	$I_{GS} = \pm 250 \ \mu A, \ I_{D} = 0 \ A$	±30	-	-	٧	

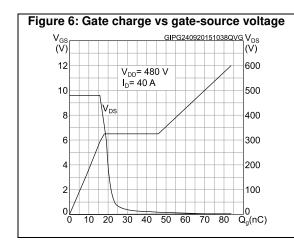
The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

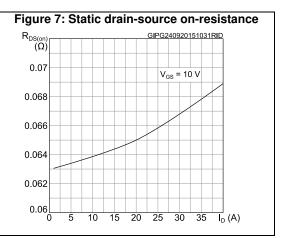



⁽¹⁾Limited by maximum junction temperature


⁽²⁾ Pulse width is limited by safe operating area.


 $^{^{(3)}}$ Pulse test: pulse duration = 300 $\mu s,$ duty cycle 1.5%.


2.1 Electrical characteristics (curves)



STWA48N60DM2 Electrical characteristics

Figure 8: Capacitance variations C (pF) GIPG240920151034CVR 10⁴ C_{ISS} 10^{3} C_{oss} 10² f=1MHz C_{RSS} 10¹ 10⁰ $\ddot{V}_{DS}(V)$ 10¹ 10² 10 10⁰

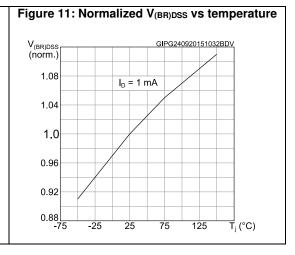
Figure 9: Normalized gate threshold voltage vs temperature V_{GS(th)} (norm.) GIPG240920151209VTH $I_D = 250 \mu A$ 1.1 1.0 0.9 0.8 0.7 0.6 -75 T
_j (°C) -25 25 75 125

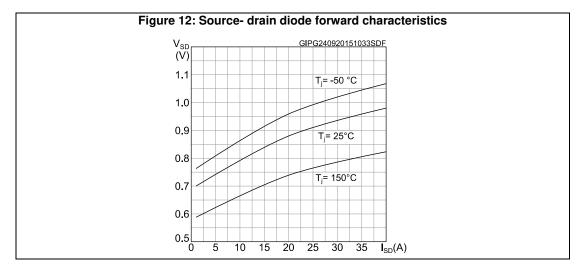
Figure 10: Normalized on-resistance vs temperature

R_{DS(on)} GIPG240920151029RON

2.2 V_{GS} = 10 V

1.8


1.4


1.0

0.6

0.2

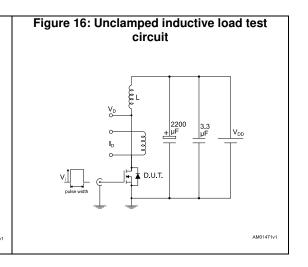
-75 -25 25 75 125 T_j (°C)

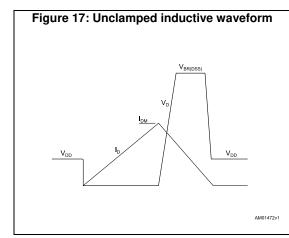
Test circuits STWA48N60DM2

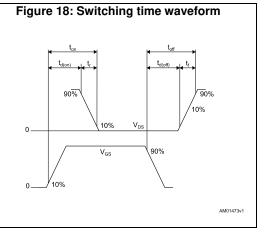
3 Test circuits

Figure 13: Test circuit for resistive load switching times

Figure 14: Test circuit for gate charge behavior


12 V 47 KΩ 100 Ω D.U.T.


12 V 47 KΩ VG


14 KΩ VG

AM01468v1

Figure 15: Test circuit for inductive load switching and diode recovery times

477

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-247 long leads package information

HEAT-SINK PLANE <u>E</u>3 **A2** *b2* (3x) b BACK VIEW 8463846_A_F

Figure 19: TO-247 long leads package outline

Table 10: TO-247 long leads package mechanical data

Dim	l l l l l l l l l l l l l l l l l l l	mm	
Dim.	Min.	Тур.	Max.
А	4.90	5.00	5.10
A1	2.31	2.41	2.51
A2	1.90	2.00	2.10
b	1.16		1.26
b2			3.25
b3			2.25
С	0.59		0.66
D	20.90	21.00	21.10
Е	15.70	15.80	15.90
E2	4.90	5.00	5.10
E3	2.40	2.50	2.60
е	5.34	5.44	5.54
L	19.80	19.92	20.10
L1			4.30
Р	3.50	3.60	3.70
Q	5.60		6.00
S	6.05	6.15	6.25

STWA48N60DM2 Revision history

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
20-Dec-2016	1	First release

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

