

MPSH₁₀

MMBTH10

NPN RF Transistor

This device is designed for use in low noise UHF/VHF amplifiers, with collector currents in the 100 μA to 20 mA range in common emitter or common base mode of operations, and in low frequency drift, high output UHF oscillators. Sourced from Process 42.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	25	V
V _{CBO}	Collector-Base Voltage	30	V
V _{EBO}	Emitter-Base Voltage	3.0	V
I _C	Collector Current - Continuous	50	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic	М	Units	
		MPSH10	*MMBTH10	
P_D	Total Device Dissipation Derate above 25°C	350 2.8	225 1.8	mW mW/∘C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	125		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	357	556	°C/W

^{*}Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

¹⁾ These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

(continued)

Electrical Characteristics

TA = 25°C unless otherwise noted

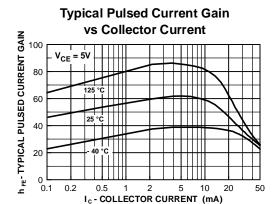
Parameter	Test Conditions	Min	Max	Units		
OFF CHARACTERISTICS						
	$I_{\rm C} = 1.0 \text{mA}. I_{\rm R} = 0$	25		V		
Collector-Base Breakdown Voltage	$I_C = 100 \mu\text{A}, I_E = 0$	30		V		
Emitter-Base Breakdown Voltage	$I_E = 10 \mu A, I_C = 0$	3.0		V		
Collector Cutoff Current	$V_{CB} = 25 \text{ V}, I_{E} = 0$		100	nA		
Emitter Cutoff Current	$V_{EB} = 2.0 \text{ V}, I_{C} = 0$		100	nA		
	RACTERISTICS Collector-Emitter Sustaining Voltage* Collector-Base Breakdown Voltage Emitter-Base Breakdown Voltage Collector Cutoff Current	RACTERISTICS Collector-Emitter Sustaining Voltage* $I_C = 1.0 \text{ mA}, I_B = 0$ Collector-Base Breakdown Voltage $I_C = 100 \mu\text{A}, I_E = 0$ Emitter-Base Breakdown Voltage $I_E = 10 \mu\text{A}, I_C = 0$ Collector Cutoff Current $V_{CB} = 25 \text{ V}, I_E = 0$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	RACTERISTICS Collector-Emitter Sustaining Voltage* $I_C = 1.0 \text{ mA}, I_B = 0$ 25 Collector-Base Breakdown Voltage $I_C = 100 \mu\text{A}, I_E = 0$ 30 Emitter-Base Breakdown Voltage $I_E = 10 \mu\text{A}, I_C = 0$ 3.0 Collector Cutoff Current $V_{CB} = 25 \text{ V}, I_E = 0$ 100		

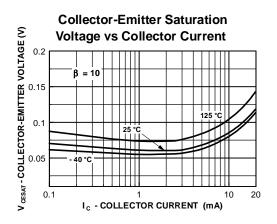
ON CHARACTERISTICS

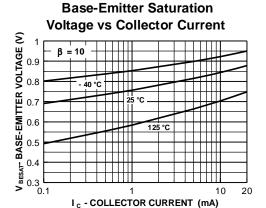
h _{FE}	DC Current Gain	$I_C = 4.0 \text{ mA}, V_{CE} = 10 \text{ V}$	60		
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_C = 4.0 \text{ mA}, I_B = 0.4 \text{ mA}$		0.5	V
V _{BE(on)}	Base-Emitter On Voltage	$I_C = 4.0 \text{ mA}, V_{CE} = 10 \text{ V}$		0.95	V

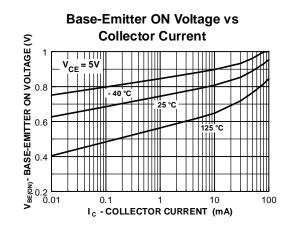
SMALL SIGNAL CHARACTERISTICS

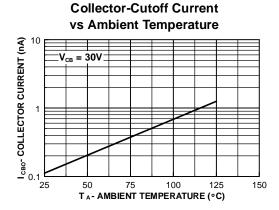
f _T	Current Gain - Bandwidth Product	$I_C = 4.0 \text{ mA}, V_{CE} = 10 \text{ V},$	650		MHz
		f = 100 MHz			
C _{cb}	Collector-Base Capacitance	$V_{CB} = 10 \text{ V}, I_{E} = 0, f = 1.0 \text{ MHz}$		0.7	pF
C _{rb}	Common-Base Feedback Capacitance	$V_{CB} = 10 \text{ V}, I_{E} = 0, f = 1.0 \text{ MHz}$	0.35	0.65	pF
rb'C _c	Collector Base Time Constant	$I_C = 4.0 \text{ mA}, V_{CB} = 10 \text{ V},$		9.0	pS
		f = 31.8 MHz			

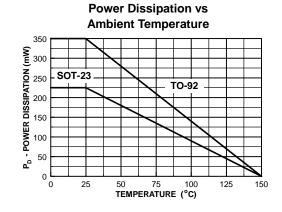

^{*}Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2.0%

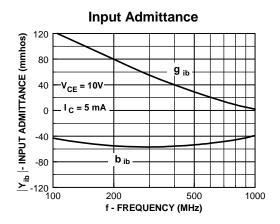

Spice Model

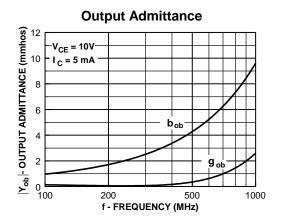

NPN (Is=69.28E-18 Xti=3 Eg=1.11 Vaf=100 Bf=308.6 Ne=1.197 Ise=69.28E-18 Ikf=22.83m Xtb=1.5 Br=1.11 Nc=2 Isc=0 Ikr=0 Rc=4 Cjc=1.042p Mjc=.2468 Vjc=.75 Fc=.5 Cje=1.52p Mje=.3223 Vje=.75 Tr=1.558n Tf=135.8p Itf=.27 Vtf=10 Xtf=30 Rb=10)

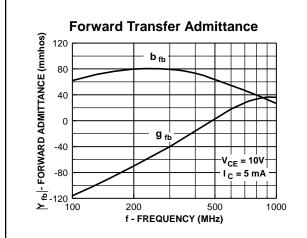

(continued)

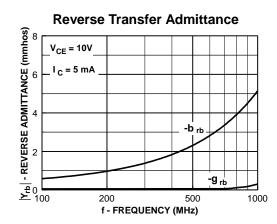

Typical Characteristics



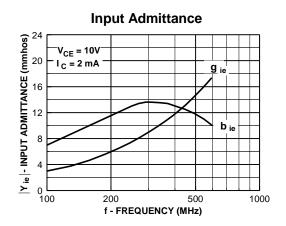


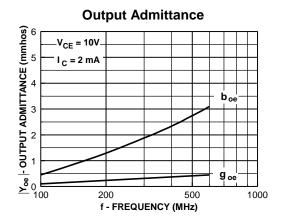


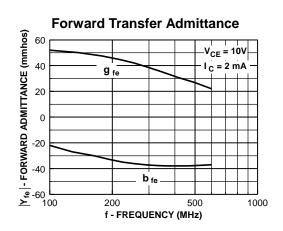


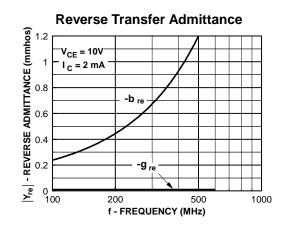


Common Base Y Parameters vs. Frequency








(continued)

Common Emitter Y Parameters vs. Frequency

(continued)

Test Circuits

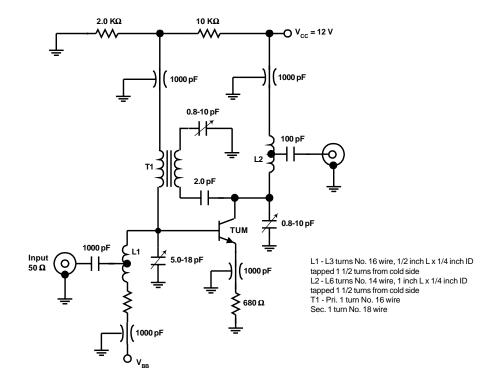
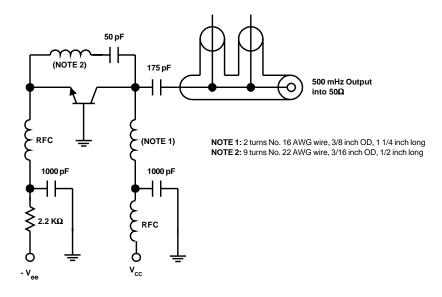
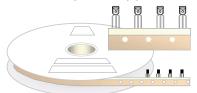


FIGURE 1: Neutralized 200 MHz PG and NF Circuit



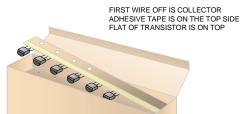

FIGURE 2: 500 MHz Oscillator Circuit

TO-92 Tape and Reel Data FAIRCHILD SEMICONDUCTOR TM **TO-92 Packaging** Configuration: Figure 1.0 **TAPE and REEL OPTION** FSCINT Label sample See Fig 2.0 for various Reeling Styles CBVK//418019 **FSCINT** Label 5 Reels per Intermediate Box Customized F63TNR Label sample Label F63TNR LOT: CBVK741B019 QTY: 2000 FSID: PN222N Customized QTY1: QTY2: 375mm x 267mm x 375mm Intermediate Box TO-92 TNR/AMMO PACKING INFROMATION **AMMO PACK OPTION** See Fig 3.0 for 2 Ammo Packing Style Quantity EOL code **Pack Options** 2,000 D26Z Е 2,000 D27Z Ammo М 2,000 D74Z 2,000 D75Z **FSCINT** Unit weight = 0.22 gm Reel weight with components = 1.04 kg Ammo weight with components = 1.02 kg Max quantity per intermediate box = 10,000 units Label 5 Ammo boxes per Intermediate Box 327mm x 158mm x 135mm Immediate Box Customized F63TNR Customized Label Label 333mm x 231mm x 183mm Intermediate Box (TO-92) BULK PACKING INFORMATION **BULK OPTION** See Bulk Packing DESCRIPTION QUANTITY Information table J18Z TO-18 OPTION STD 2.0 K / BOX Anti-static Bubble Sheets TO-5 OPTION STD NO LEAD CLIP 1.5 K / BOX J05Z **FSCINT Label** NO EOL TO-92 STANDARD STRAIGHT FOR: PKG 92, NO LEADCLIP 2.0 K / BOX 94 (NON PROELECTRON SERIES), 96 TO-92 STANDARD STRAIGHT FOR: PKG 94 (PROELECTRON SERIES BCXXX, BFXXX, BSRXXX), 97, 98 L34Z NO LEADCLIP 2.0 K / BOX 2000 units per 114mm x 102mm x 51mm EO70 box for std option Immediate Box 5 EO70 boxes per intermediate Box 530mm x 130mm x 83mm Customized Intermediate box Label FSCINT Label 10,000 units maximum per intermediate box for std option

TO-92 Tape and Reel Data, continued

TO-92 Reeling Style Configuration: Figure 2.0

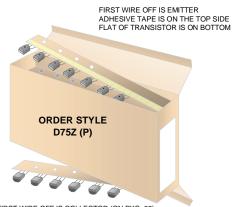
Machine Option "A" (H)

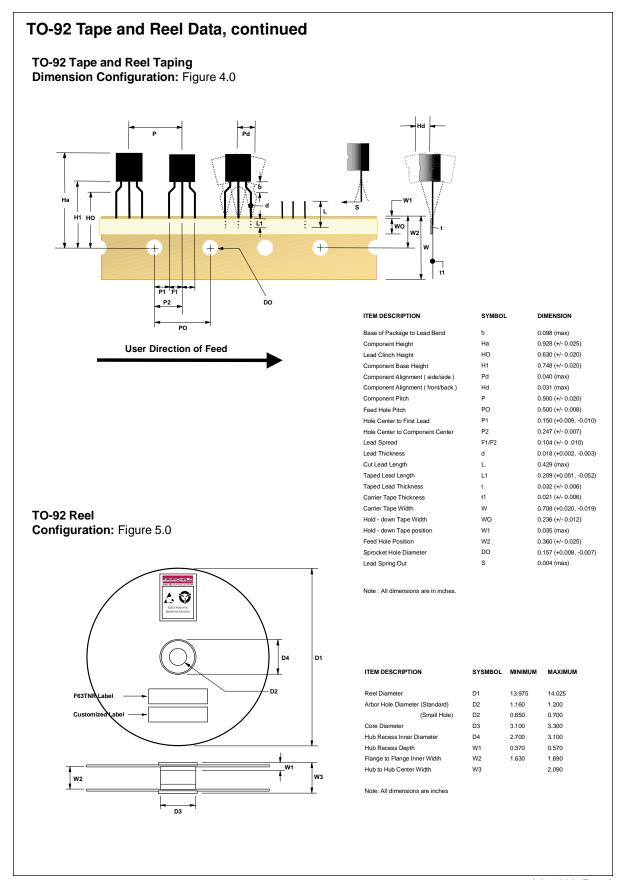


Style "A", D26Z, D70Z (s/h)

Machine Option "E" (J)

Style "E", D27Z, D71Z (s/h)

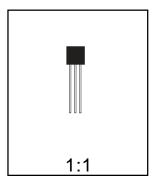

TO-92 Radial Ammo Packaging Configuration: Figure 3.0


FIRST WIRE OFF IS EMITTER (ON PKG. 92) ADHESIVE TAPE IS ON BOTTOM SIDE FLAT OF TRANSISTOR IS ON BOTTOM

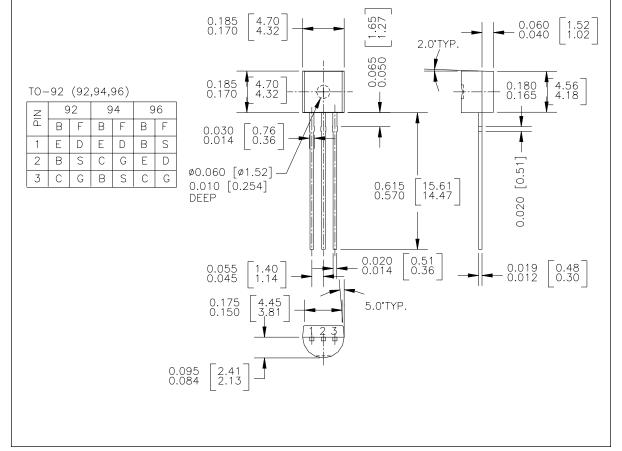
ORDER STYLE

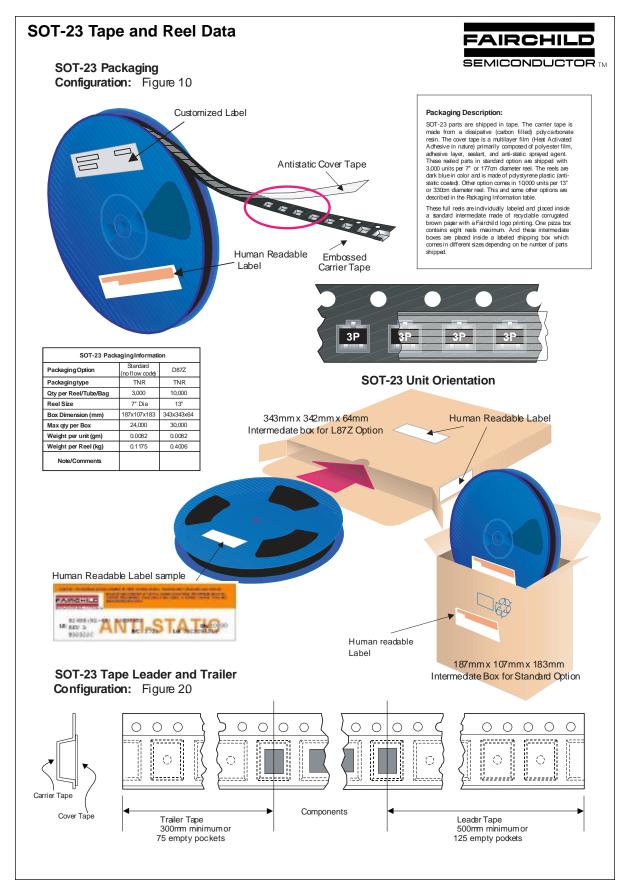
D74Z (M)


FIRST WIRE OFF IS COLLECTOR (ON PKG. 92) ADHESIVE TAPE IS ON BOTTOM SIDE FLAT OF TRANSISTOR IS ON TOP



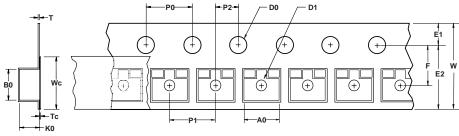
TO-92 Package Dimensions


TO-92 (FS PKG Code 92, 94, 96)



Scale 1:1 on letter size paper
Dimensions shown below are in:
inches [millimeters]

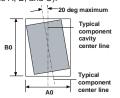
Part Weight per unit (gram): 0.1977



SOT-23 Tape and Reel Data, continued

SOT-23 Embossed Carrier Tape

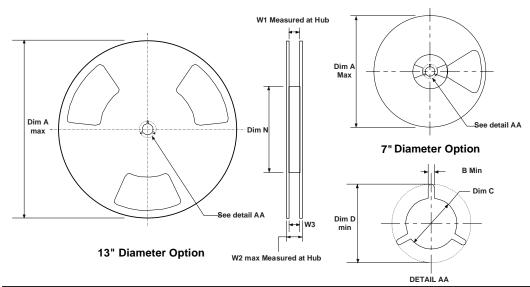
Configuration: Figure 3.0


User	Direction	of Feed	

					Di	mension	s are in n	nillimete	r					
Pkg type	Α0	В0	w	D0	D1	E1	E2	F	P1	P0	K0	Т	Wc	Тс
SOT-23 (8mm)	3.15 +/-0.10	2.77 +/-0.10	8.0 +/-0.3	1.55 +/-0.05	1.125 +/-0.125	1.75 +/-0.10	6.25 min	3.50 +/-0.05	4.0 +/-0.1	4.0 +/-0.1	1.30 +/-0.10	0.228 +/-0.013	5.2 +/-0.3	0.06 +/-0.02

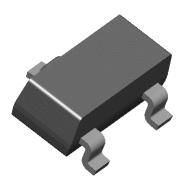
Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

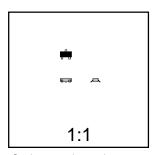
Sketch A (Side or Front Sectional View)
Component Rotation



Sketch B (Top View)
Component Rotation

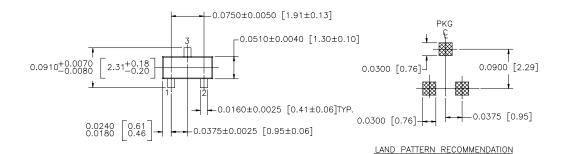
Sketch C (Top View)
Component lateral movement

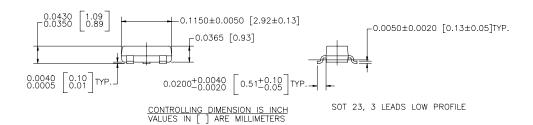

SOT-23 Reel Configuration: Figure 4.0



	Dimensions are in inches and millimeters								
Tape Size	Reel Option	Dim A	Dim B	Dim C	Dim D	Dim N	Dim W1	Dim W2	Dim W3 (LSL-USL)
8mm	7" Dia	7.00 177.8	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	2.165 55	0.331 +0.059/-0.000 8.4 +1.5/0	0.567 14.4	0.311 - 0.429 7.9 - 10.9
8mm	13" Dia	13.00 330	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	4.00 100	0.331 +0.059/-0.000 8.4 +1.5/0	0.567 14.4	0.311 - 0.429 7.9 - 10.9

SOT-23 (FS PKG Code 49)





Scale 1:1 on letter size paper

Dimensions shown below are in: inches [millimeters]

Part Weight per unit (gram): 0.0082

NOTE: UNLESS OTHERWISE SPECIFIED

- 1. STANDARD LEAD FINISH 150 MICROINCHES / 3.81 MICROMETERS MINIMUM TIN / LEAD (SOLDER) ON ALLOY 42
- 2. REFERENCE JEDEC REGISTRATION TO-236, VARIATION AB, ISSUE G, DATED JUL 1993

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ $FASTr^{TM}$ PowerTrench® SyncFETTM QFET™ TinyLogic™ Bottomless™ GlobalOptoisolator™ QSTM UHC™ CoolFET™ GTO™ QT Optoelectronics™ **VCXTM** CROSSVOLT™ HiSeC™

DOME™ ISOPLANAR™ Quiet Series™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.