

N-Channel RF Amplifier

This device is designed primarily for electronic switching applications such as low On Resistance analog switching. Sourced from Process 50.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{DG}	Drain-Gate Voltage	25	V
V _{GS}	Gate-Source Voltage	- 25	V
I _{GF}	Forward Gate Current	10	mA
T_{J},T_{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

<u>NOTES</u>: 1) These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics TA = 25°C unless otherwise noted

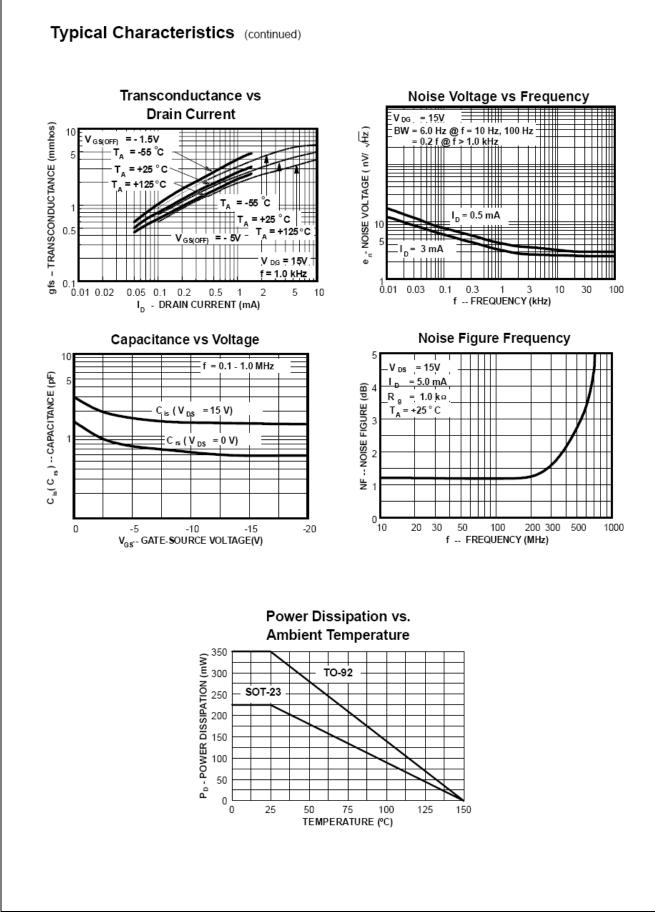
Symbol	Characteristic	Мах		Units
		2N5484-5486	*MMBF5484-5486	
PD	Total Device Dissipation	350	225	mW
	Derate above 25°C	2.8	1.8	mW/°C
R _{eJC}	Thermal Resistance, Junction to Case	125		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	357	556	°C/W

*Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

© 2007 Fairchild Semiconductor Corporation 2N5484/5485/5486 MMBF5484/5485/5486 Rev. 1.0.0

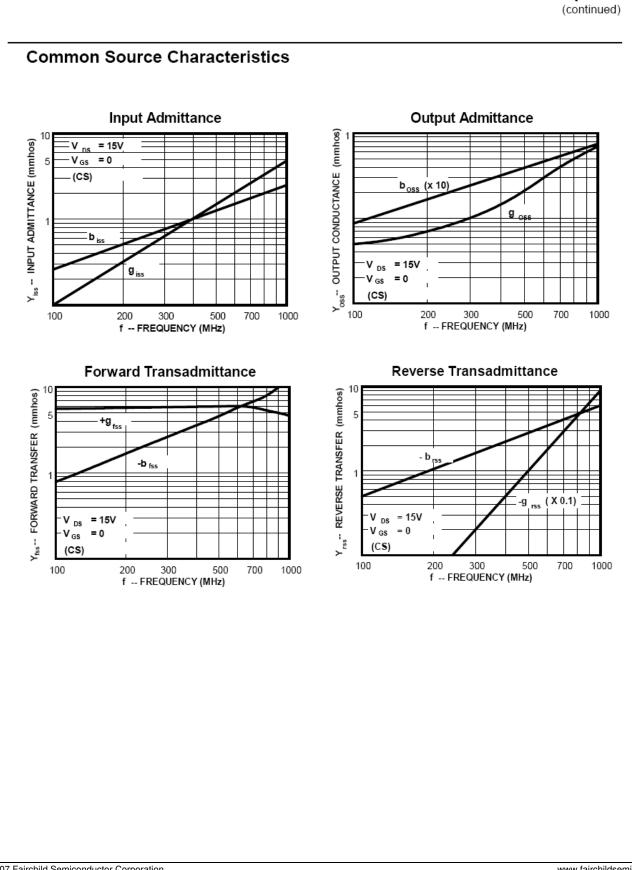
N-Channel RF Amplifier (continued)

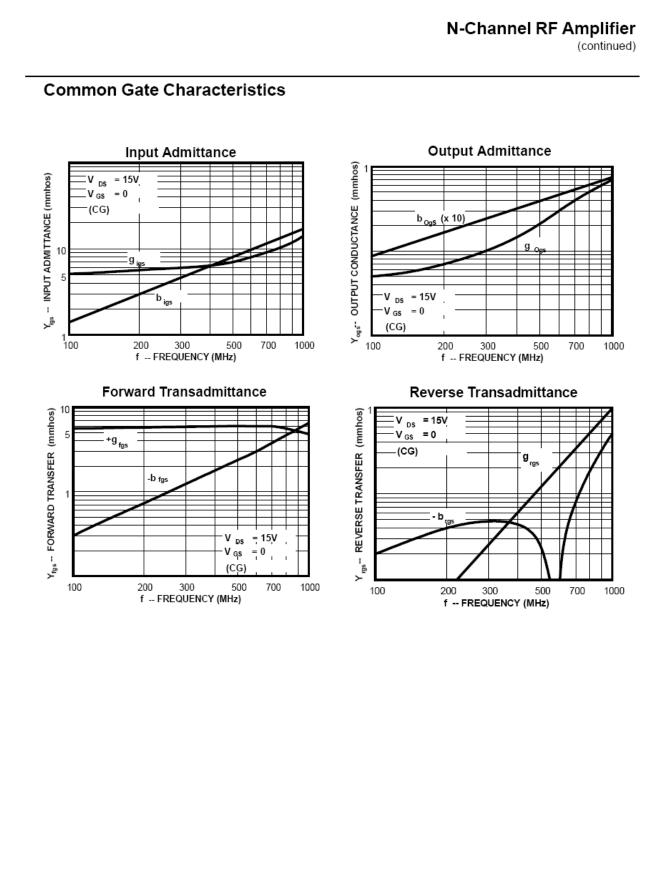
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
	RACTERISTICS					
	Gate-Source Breakdown Voltage	I _G = - 1.0 μA, V _{DS} = 0	- 25	1		V
I _{GSS}	Gate Reverse Current	$V_{GS} = -20 \text{ V}, \text{ V}_{DS} = 0$	- 20		- 1.0	nA
1655		V _{GS} = - 20 V, V _{DS} = 0, T _A = 100°C			- 0.2	μA
V _{GS(off)}	Gate-Source Cutoff Voltage	V _{DS} = 15 V, I _D = 10 nA 5484	- 0.3		- 3.0	V
		5485 5486	- 0.5		- 4.0 - 6.0	
ON CHAR	ACTERISTICS					
IDSS	Zero-Gate Voltage Drain Current*	V _{DS} = 15 V, V _{GS} = 0 5484	1.0		5.0	mA
		5485	4.0		10	mA
		5486	8.0		20	mA
	GNAL CHARACTERISTICS					
	Forward Transfer Conductance	V _{DS} = 15 V, V _{GS} = 0, f = 1.0 kHz	1	1		
gfs	Forward Transfer Conductance	V _{DS} = 15 V, V _{GS} = 0, 1 = 1.0 KHZ 5484	3000		6000	μmho
		5485	3500		7000	μmho
		5486	4000		8000	μmho
Re(Yis)	Input Conductance	V _{DS} = 15 V, V _{GS} = 0, f = 100 MHz 5484			100	umbo
		V _{DS} = 15 V, V _{GS} = 0, f = 400 MHz			100	μmho
		5485 / 5486			1000	μmho
g _{os}	Output Conductance	V _{DS} = 15 V, V _{GS} = 0, f = 1.0 kHz			50	
		5484			50 60	μmho μmho
		5486			75	μmho
Re ₍ y _{os)}	Output Conductance	V _{DS} = 15 V, V _{GS} = 0, f = 100 MHz				
		5484 V _{DS} = 15 V, V _{GS} = 0, f = 400 MHz			75	μmho
		5485 / 5486			100	μmho
Re(yfs)	Forward Transconductance	V _{DS} = 15 V, V _{GS} = 0, f = 100 MHz				
		5484	2500			μmho
		V _{DS} = 15 V, V _{GS} = 0, f = 400 MHz 5485	3000			μmho
		5486	3500			μmho
Ciss	Input Capacitance	V_{DS} = 15 V, V_{GS} = 0, f = 1.0 MHz			5.0	pF
Crss	Reverse Transfer Capacitance	V_{DS} = 15 V, V_{GS} = 0, f = 1.0 MHz			1.0	pF
Coss	Output Capacitance	V_{DS} = 15 V, V_{GS} = 0, f = 1.0 MHz			2.0	pF
NF	Noise Figure	V _{DS} = 15 V, R _G = 1.0 kΩ, f = 100 MHz 5484			3.0	dB
		V_{DS} = 15 V, R _G = 1.0 k Ω ,			3.0	
		f = 400 MHz 5484		4.0		dB
		V_{DS} = 15 V, R _G = 1.0 k Ω ,			2.0	dB
		f = 100 MHz 5485 / 5486 V _{DS} = 15 V, R _G = 1.0 kΩ,			2.0	
		f = 400 MHz 5485 / 5486	1		4.0	dB


N-Channel RF Amplifier

(continued)

I


Typical Characteristics Transfer Characteristics **Channel Resistance vs Temperature** 20 1000 -4.5V V GS(OFF) = 15V r_{DS} - DRAIN ON RESISTANCE (Ω) 500 = -55°C T_A -1.0V V_{GS(QFF)} 1(DRAIN CURRENT (mA) 300 = +25 ° C -2.5 V 200 +125° C 12 = -55°C -5.0V TA 100 Τ<u>A</u> = +25 ° C -8.0 V TA +125° C 50 30 ė = 100mV V_{,DS} 20 = 0 V 25 V ν 0 10 0 -2 -4 -5 -50 0 50 100 150 -3 -1 V_{gs}- GATE-SOURCE VOLTAGE(V) TA - AMBIENT TEMPERATURE (C) Common Drain-Source Transconductance Characteristics Characteristics -- TRANSCONDUCTANCE (mmhos) -5 V _{DS} = -55 °C = 15V T_A = +25 ° C I D--- DRAIN CURRENT (mA) = +25 ° C 6 ТҮР v = -5.0V Δ GS(OFF) 2.0V = +125° C 5 0 = -55 °C TA 2 5V 3 = +25 ° C . Т_ 3.0V = +125° C т, 2 3.5V 2 -4.5\ GS(OFF) = 4.0V -2.5 V 0 sf 0 0 0.2 0.4 0.6 0.8 0 1 -3 -1 -2 -4 -5 V_{DS} - DRAIN-SOURCE VOLTAGE(V) V_{gs} GATE-SOURCE VOLTAGE(V) **Output Conductance vs** Transconductance Drain Current Parameter Interactions -- OUTPUT CONDUCTANCE (u mhos) -- DRAIN "ON" RESISTANCE (Ω) 02 gfs, I_{DSS} $P_{SS} @ V_{DS} = 15 V, V_{GS} = 0 PULSE$ $r_{DS} @ V_{DS} = 100mV, V_{GS} = 0$ = +25 °C DRAIN CURRENT (mA) -5.5V 1.0 kHz 5.0\ 20 10V 15V 10 10 5 20\ 20 ν = -3.5V GS(OFF) DSS-- | 0.5 -1.5V @ V_{GS}= 15V, I _D= 1nA V_{GS(OFF)} GS(OFF) ÷ ළී 10 0.1 1 gos . sfg - 2 -3 - 5 0.05 0.1 0.2 0.5 - 7 - 10 1 2 5 10 V GS - GATE-SOURCE VOLTAGE(V) I D-- DRAIN CURRENT (mA)


© 2007 Fairchild Semiconductor Corporation Rev. 1.0.0

I

N-Channel RF Amplifier

I

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [®]	Green FPS™	Power247 [®]	SuperSOT™-8
Build it Now™	Green FPS™ e-Series™	POWEREDGE®	SyncFET™
CorePLUS™	GTO™	Power-SPM [™]	The Power Franchise [®]
CROSSVOLT™	<i>i-Lo</i> ™	PowerTrench [®]	p wer
CTL™	IntelliMAX™	Programmable Active Droop™	pranchise
Current Transfer Logic™	ISOPLANAR™	QFET [®]	TinyBoost™
EcoSPARK [®]	MegaBuck™	QS™	TinyBuck™
F [*]	MICROCOUPLER™	QT Optoelectronics [™]	TinyLogic [®]
Fairchild [®]	MicroFET™	Quiet Series™	TINYOPTO™
Fairchild Semiconductor [®]	MicroPak™	RapidConfigure™	TinyPower™
FACT Quiet Series™	MillerDrive™	SMART START™	TinyPWM™
FACT®	Motion-SPM [™]	SPM®	TinyWire™
FAST [®]	OPTOLOGIC [®]	STEALTH™	µSerDes™
FastvCore™	OPTOPLANAR®	SuperFET™	UHC®
FPS™	0.0	SuperSOT™-3	UniFET™
FRFET [®]	PDP-SPM™	SuperSOT™-6	VCX™
Global Power Resource SM	Power220 [®]		

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support 2. device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed Full Production		n This datasheet contains final specifications. Fairchild Semiconductor reservent the right to make changes at any time without notice to improve design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontin- ued by Fairchild semiconductor. The datasheet is printed for reference infor- mation only.		

PRODUCT STATUS DEFINITIONS