

N-channel 60 V, 0.019 Ω typ., 8 A STripFETTM F7 Power MOSFET in a PowerFLATTM 3.3x3.3 package

Datasheet - production data

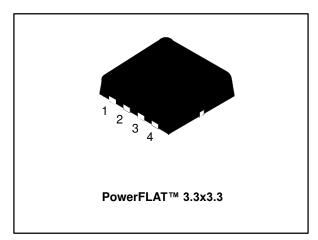
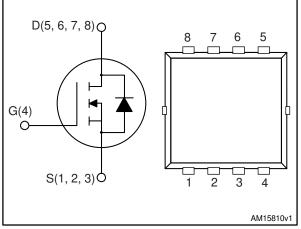



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max	ΙD
STL8N6F7	60 V	0.023 Ω	8 A

- Among the lowest R_{DS(on)} on the market
- Excellent figure of merit (FoM)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- High avalanche ruggedness

Applications

• Switching applications

Description

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packing
STL8N6F7	8N6F7	PowerFLAT™ 3.3x3.3	Tape and reel

Contents STL8N6F7

Contents

1	Electrical ratings					
2	Electric	eal characteristics	4			
	2.1	Electrical characteristics (curves)	5			
3	Test cir	cuits	7			
4	Packag	e information	8			
	4.1	PowerFLAT 3.3x3.3 package information	9			
5	Revisio	n history	12			

STL8N6F7 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	60	V
V_{GS}	Gate-source voltage	± 20	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	36	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	22	Α
I _{DM} ⁽¹⁾⁽²⁾	Drain current (pulsed)	144	Α
I _D ⁽³⁾	Drain current (continuous) at T _{pcb} = 25 °C	8	Α
I _D (3)	Drain current (continuous) at T _{pcb} = 100 °C	5	Α
I _{DM} ⁽²⁾⁽³⁾	Drain current (pulsed)	32	Α
P _{TOT} ⁽¹⁾	Total dissipation at T _C = 25 °C	60	W
P _{TOT} (3)	Total dissipation at T _{pcb} = 25 °C	3	W
T_{stg}	T _{stg} Storage temperature		°C
T_{j}	Operating junction temperature	-55 to 150	C

Notes:

Table 3: Thermal data

Symbol	Parameter		Unit
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max.	42.8	°C/W
R _{thj-case}	R _{thj-case} Thermal resistance junction-case max.		°C/W

Notes

 $^{(1)}$ When mounted on FR-4 board of 1 inch², 2oz Cu, t < 10 sec.

 $^{^{(1)}\}text{This}$ value is rated according to $R_{\text{thj-c}}.$

⁽²⁾Pulse width limited by safe operating area.

 $^{^{(3)}\}text{This}$ value is rated according to $R_{\text{thj-pcb}}.$

Electrical characteristics STL8N6F7

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4: On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$I_D = 1 \text{ mA}, V_{GS} = 0 \text{ V}$	60			V
I _{DSS}	Zero gate voltage drain current	$V_{GS} = 0 V$ $V_{DS} = 60 V$			1	μΑ
Igss	Gate-body leakage current	V _{GS} = 20 V, V _{DS} = 0 V			100	nA
$V_{\text{GS(th)}}$	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2		4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 4 A		0.019	0.023	Ω

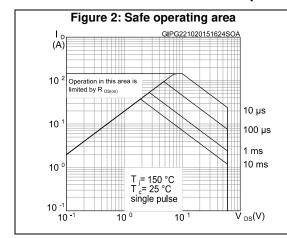
Table 5: Dynamic

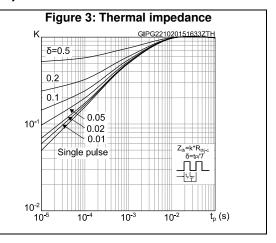
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		1	420	1	pF
Coss	Output capacitance	$V_{DS} = 30 \text{ V, } f = 1 \text{ MHz,}$	1	215	1	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	1	16	1	pF
Qg	Total gate charge	$V_{DD} = 30 \text{ V}, I_D = 8 \text{ A},$	1	8	1	nC
Qgs	Gate-source charge	V _{GS} = 10 V (see Figure 14: "Test circuit for gate charge	-	2.3	-	nC
Q _{gd}	Gate-drain charge	behavior")	1	2.1	1	nC

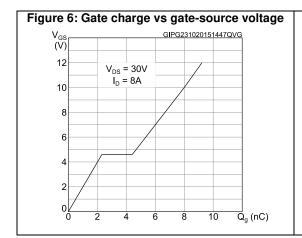
Table 6: Switching times

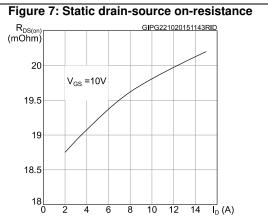
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD}=30~V,~I_D=4~A,~R_G=4.7~\Omega,~V_{GS}=10~V~(see~Figure~13:~"Test~circuit~for~resistive~load~switching~times")$	1	7.85	1	ns
tr	Rise time		-	3.25	-	ns
t _{d(off)}	Turn-off delay time		-	12.1	-	ns
tf	Fall time		1	3.95	1	ns

Table 7: Source-drain diode


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{SD} ⁽¹⁾	Forward on voltage	I _{SD} = 8 A, V _{GS} = 0 V	ı		1.2	V
trr	Reverse recovery time	$I_D = 8 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	1	17.1		ns
Q_{rr}	Reverse recovery charge	V _{DD} = 48 V (see <i>Figure 15</i> :	-	6.67		nC
IRRM	Reverse recovery current	"Test circuit for inductive load switching and diode recovery times"	1	0.8		Α


Notes:


 $^{(1)}$ Pulsed: pulse duration = 300 μ s, duty cycle 1.5%



2.1 Electrical characteristics (curves)

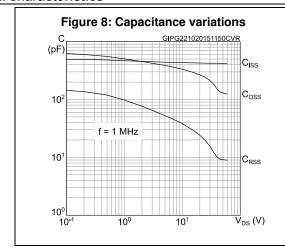
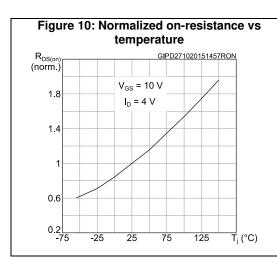
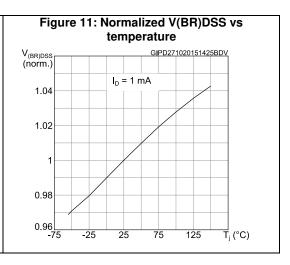
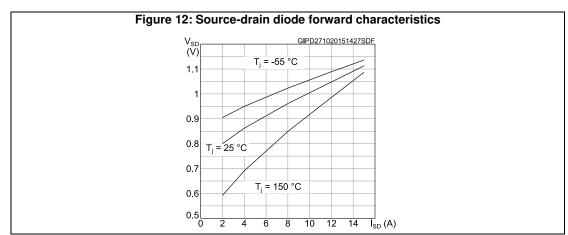





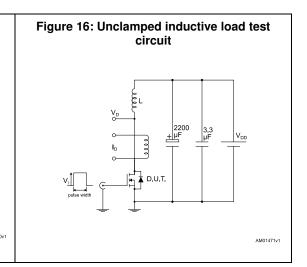
Figure 9: Normalized gate threshold voltage vs temperature V_{GS(th)} (norm.) 1.15 GIPD271020151425VTH I_D = 250 μA 1.1 1.05 0.95 0.9 0.85 0.8 0.75 0.7 -75 25 75 125 T_i (°C)

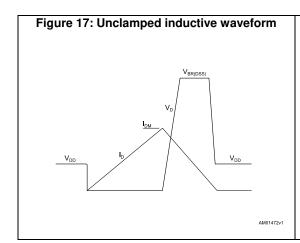
DocID028258 Rev 2

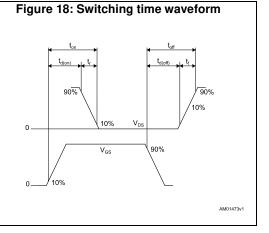
STL8N6F7 Test circuits

3 Test circuits

Figure 13: Test circuit for resistive load switching times


Figure 14: Test circuit for gate charge behavior


12 V 47 KΩ 100 NF D.U.T.


Vos 1 1 KΩ 100 NF D.U.T.

AM01488v1

Figure 15: Test circuit for inductive load switching and diode recovery times

Package information STL8N6F7

4 Package information

8/13

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

STL8N6F7 Package information

4.1 PowerFLAT 3.3x3.3 package information

Figure 19: PowerFLAT™ 3.3x3.3 package outline

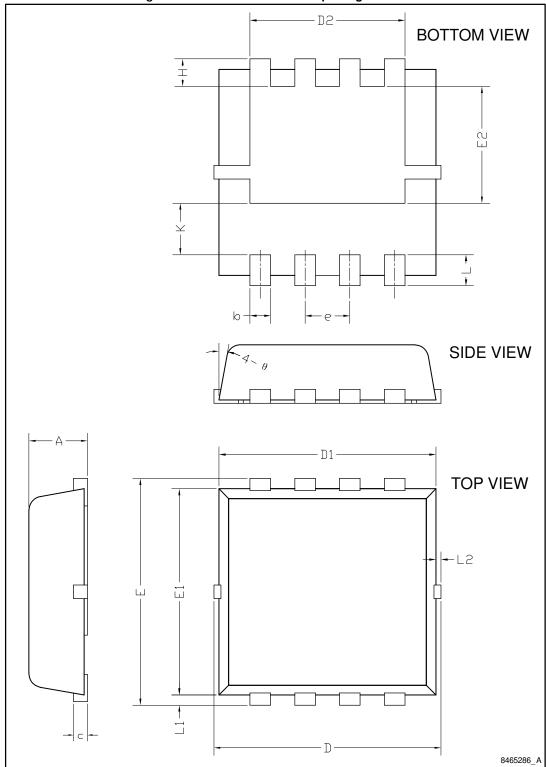


Table 8: PowerFLAT™ 3.3x3.3 package mechanical data

Dim.	mm				
Dilli.	Min.	Тур.	Max.		
Α	0.70	0.80	0.90		
b	0.25	0.30	0.39		
С	0.14	0.15	0.20		
D	3.10	3.30	3.50		
D1	3.05	3.15	3.25		
D2	2.15	2.25	2.35		
е	0.55	0.65	0.75		
E	3.10	3.30	3.50		
E1	2.90	3.00	3.10		
E2	1.60	1.70	1.80		
Н	0.25	0.40	0.55		
K	0.65	0.75	0.85		
L	030	0.45	0.60		
L1	0.05	0.15	0.25		
L2			0.15		
θ	8°	10°	12°		

0.53 2.45 (x2) = = = 0.25 MIN 0.40 MAX 8465286, footprint

Figure 20: PowerFLAT™ 3.3x3.3 recommended footprint

Revision history STL8N6F7

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
20-Aug-2015	1	First release.
22-Oct-2015	2	Updated title and features in cover page. Updated Table 4: "On /off states", Table 5: "Dynamic", Table 6: "Switching times" and Table 7: "Source-drain diode". Added Section 3.1: "Electrical characteristics (curves)". Document status promoted from preliminary di production data.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

