FAIRCHILD

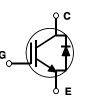
SEMICONDUCTOR®

SGW23N60UFD

Ultra-Fast IGBT

General Description

Fairchild's UFD series of Insulated Gate Bipolar Transistors (IGBTs) provides low conduction and switching losses. The UFD series is designed for applications such as motor control and general inverters where high speed switching is a required feature.


Features

- High speed switching
- Low saturation voltage : $V_{CE(sat)} = 2.1 \text{ V} @ I_C = 12 \text{ A}$
- High input impedance
- CO-PAK, IGBT with FRD : t_{rr} = 42ns (typ.)

Applications

AC & DC motor controls, general purpose inverters, robotics, and servo controls.

Absolute Maximum Ratings $T_c = 25^{\circ}C$ unless otherwise noted

Symbol	Description		SGW23N60UFD	Units	
V _{CES}	Collector-Emitter Voltage		600	V	
V _{GES}	Gate-Emitter Voltage		± 20	V	
	Collector Current	@ T _C = 25°C	23	Α	
I _C	Collector Current	@ T _C = 100°C	12	А	
I _{CM (1)}	Pulsed Collector Current		92	А	
IF	Diode Continuous Forward Current	@ T _C = 100°C	12	A	
I _{FM}	Diode Maximum Forward Current		92	А	
P _D	Maximum Power Dissipation	@ T _C = 25°C	100	W	
	Maximum Power Dissipation	@ T _C = 100°C	40	W	
TJ	Operating Junction Temperature	-	-55 to +150	°C	
T _{stg}	Storage Temperature Range		-55 to +150	°C	
TL	Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 Secon	ds	300	°C	

Notes :

(1) Repetitive rating : Pulse width limited by max. junction temperature

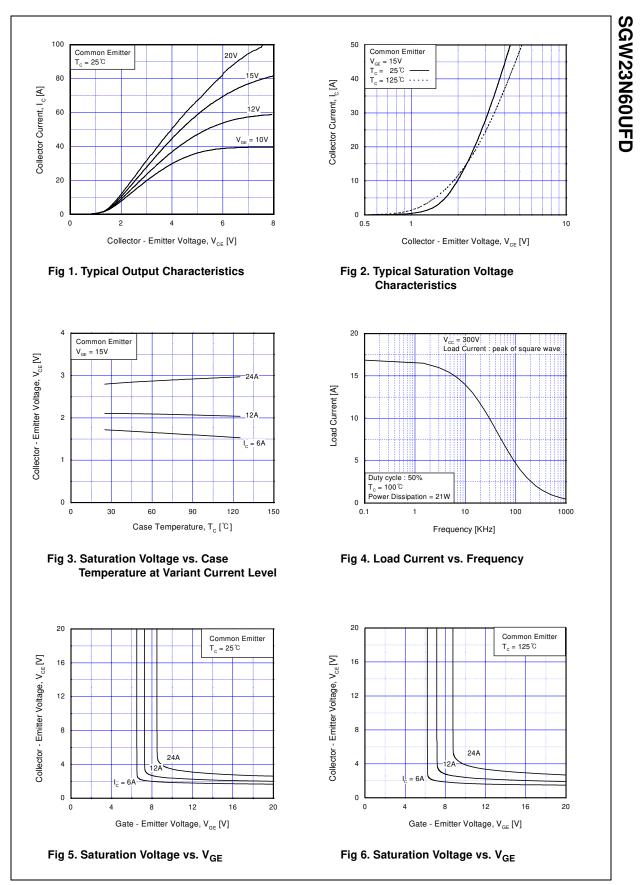
Thermal Characteristics

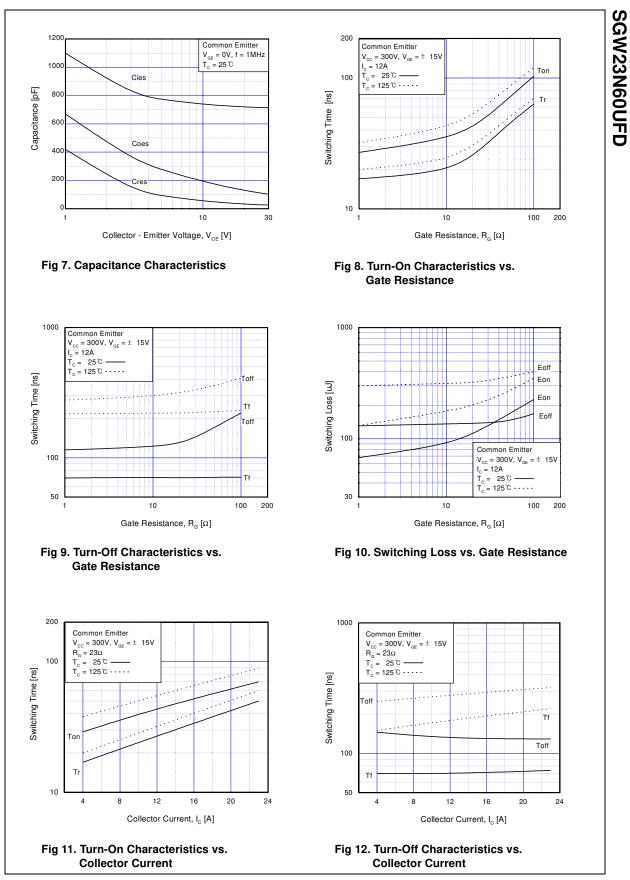
Symbol	Parameter	Тур.	Max.	Units
R _{0JC} (IGBT)	Thermal Resistance, Junction-to-Case		1.2	°C/W
R _{0JC} (DIODE)	Thermal Resistance, Junction-to-Case		2.5	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient (PCB Mount) (2)		40	°C/W

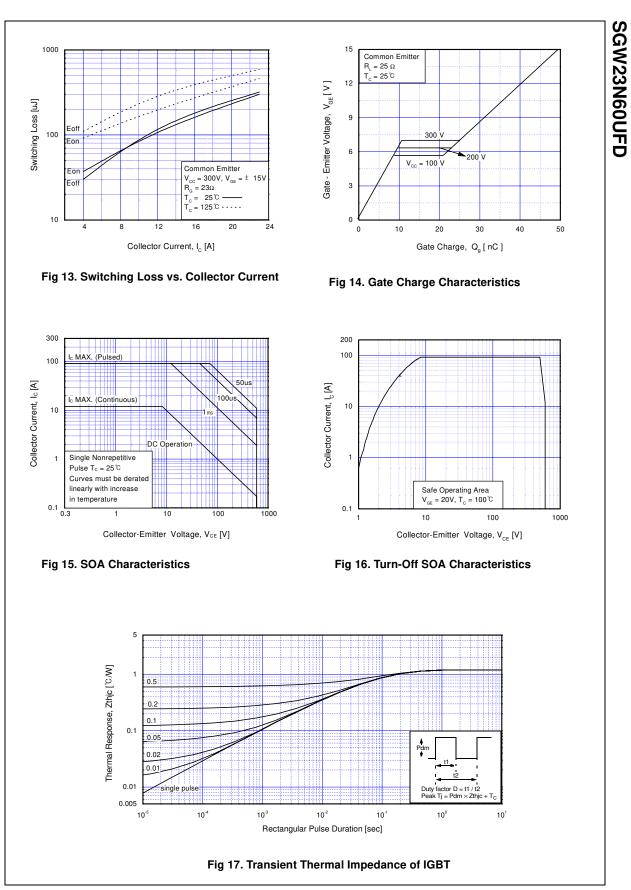
Notes :

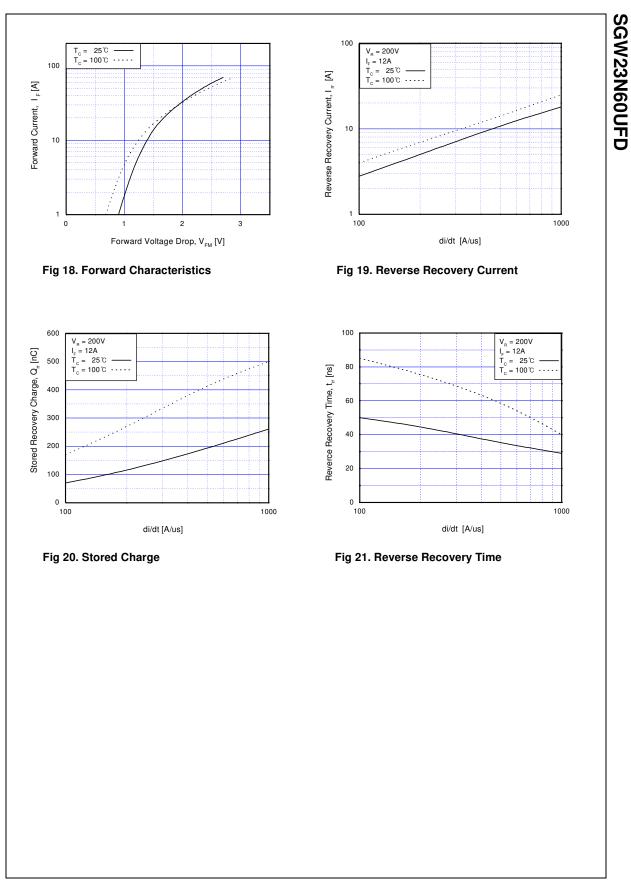
(2) Mounted on 1" squre PCB (FR4 or G-10 Material)

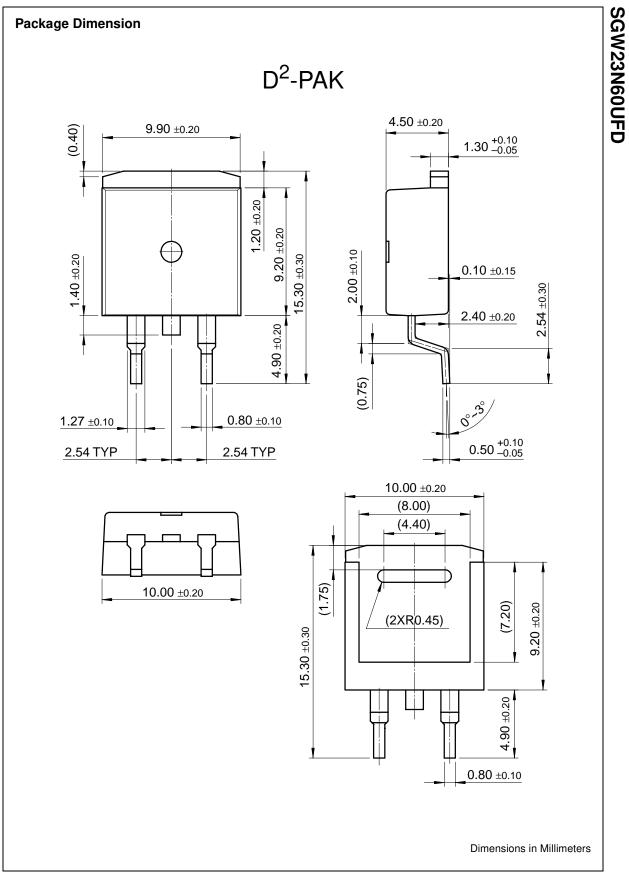
IGBT


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unite
Off Cha	racteristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	V _{GE} = 0V, I _C = 250uA	600			V
ΔB _{VCES} / ΔT _J	Temperature Coefficient of Breakdown Voltage	$V_{GE} = 0V, I_C = 1mA$		0.6		V/°C
ICES	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$			250	uA
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			± 100	nA
On Cha	racteristics					
V _{GE(th)}	G-E Threshold Voltage	I_{C} = 12mA, V_{CE} = V_{GE}	3.5	4.5	6.5	V
	Collector to Emitter	$I_{\rm C} = 12$ A, $V_{\rm GE} = 15$ V		2.1	2.6	V
V _{CE(sat)}	Saturation Voltage	$I_{\rm C} = 23$ A, $V_{\rm GE} = 15$ V		2.6		V
					1	
	c Characteristics					
C _{ies}	Input Capacitance	V 20V/V 0V		720		pF
C _{oes}	Output Capacitance	V _{CE} = 30V, V _{GE} = 0V, f = 1MHz		100		pF
C _{res}	Reverse Transfer Capacitance			25		pF
Switchii	ng Characteristics Turn-On Delay Time			17		ns
t _r	Rise Time			27		ns
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 300 \text{ V}, \text{ I}_{C} = 12\text{ A},$		60	130	ns
t _f	Fall Time	$R_G = 23\Omega$, $V_{GE} = 15V$,		70	150	ns
E _{on}	Turn-On Switching Loss	Inductive Load, $T_C = 25^{\circ}C$		115		uJ
	Turn-Off Switching Loss			135		uJ
⊏off				250	400	uJ
⊏ _{off} E _{ts}	Total Switching Loss					ns
E _{ts}	Total Switching Loss Turn-On Delay Time			23		
E _{ts} t _{d(on)}	Turn-On Delay Time Rise Time	-		23 32		ns
E _{ts} t _{d(on)} t _r	Turn-On Delay Time	V _{CC} = 300 V, I _C = 12A,	-	32 100		ns ns
E _{ts} t _{d(on)} t _r t _{d(off)} t _f	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$R_{G} = 23\Omega, V_{GE} = 15V,$		32 100 220		
E _{ts} t _{d(on)} t _r t _{d(off)} t _f	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss			32 100 220 205	 200	ns
E _{ts} t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{off}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss	$R_{G} = 23\Omega, V_{GE} = 15V,$		32 100 220	 200 250	ns ns
E _{ts} t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{off} E _{ts}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss	$R_{G} = 23\Omega, V_{GE} = 15V,$		32 100 220 205 320 525	 200 250 800	ns ns uJ
E _{ts} t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{ts} Q _g	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Total Gate Charge	$R_G = 23\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 125^{\circ}C$	 	32 100 220 205 320	 200 250 	ns ns uJ uJ
E _{ts} t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{ts} Q _g Q _{ge}	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss	$R_{G} = 23\Omega, V_{GE} = 15V,$ Inductive Load, $T_{C} = 125^{\circ}C$ $V_{CE} = 300 \text{ V}, I_{C} = 12A,$	 	32 100 220 205 320 525	 200 250 800	ns ns uJ uJ uJ
Eoff Ets td(on) tr td(off) tf Eon Eoff Ets Qg Qge Qgc	Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Total Gate Charge	$R_G = 23\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 125^{\circ}C$	 	32 100 220 205 320 525 49	 200 250 800 80	ns ns uJ uJ uJ nC


Electrical Characteristics of DIODE $T_{C} = 25^{\circ}C$ unless otherwise noted


Symbol	Parameter	Test Condi	Min.	Тур.	Max.	Units	
V	Diode Forward Voltage	I _E = 12A	$T_{C} = 25^{\circ}C$		1.4	1.7	v
V _{FM} Diode Forward Voltag	Didde i diward voltage	$i_F = 12A$	$T_{C} = 100^{\circ}C$		1.3		v
t _{rr} Diode Reverse Recovery Time		$T_{C} = 25^{\circ}C$		42	60	ns	
	Didde neverse necovery nine		T _C = 100°C		80		115
1	Diode Peak Reverse Recovery	I _F = 12A,	$T_{C} = 25^{\circ}C$		3.5	6.0	А
Irr Current	di/dt = 200A/us	$T_{C} = 100^{\circ}C$		5.6		~	
Q _{rr} Diode Reverse Recovery Charge	Diada Davaraa Daaayary Charge		$T_{C} = 25^{\circ}C$		80	180	nC
		T _C = 100°C		220		no	


SGW23N60UFD


©2002 Fairchild Semiconductor Corporation

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ **EcoSPARK™** І²С™ E²CMOS™ EnSigna™ FACT™ FACT Quiet Series™

FAST[®] FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ ISOPLANAR™ QS™ LittleFET™ MicroFET™ MicroPak™

MICROWIRE™ **OPTOLOGIC™ OPTOPLANAR™** PACMAN™ POP™ Power247[™] PowerTrench[®] QFET™ QT Optoelectronics[™] Quiet Series™

SLIENT SWITCHER[®] SMART START™ SPM™ VCX™ STAR*POWER™ Stealth™ SuperSOT™-3 SuperSOT[™]-6 SuperSOT[™]-8 SvncFET™ TinyLogic™ TruTranslation™

UHC™ UltraFET[®]

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

	50 w 251 0001 D - Discidle, flight enothance fob f with E	1000	
Fairchild Semiconductor			t Folders and Applica
find products	Home >> Find products >>		
Products groupsAnalog and MixedSignalDiscreteInterfaceLogicMicrocontrollersNon-VolatileMemoryOptoelectronicsMarkets andapplicationsNew productsProduct selection andparametric searchCross-referencesearch	SGW23N60UFD Discrete, High Performance IGBT with Diode Contents General description Features Applications Product status/pricing/packaging General description Fairchild's UFD series of Insulated Gate Bipolar Transistors (IGBTs) provides low conduction and switching losses. The UFD series is designed for applications such as motor control and general inverters where high speed switching is a required feature.	Datasheet Download this datasheet PDF e-mail this datasheet [E- This pagePrint version	Related Links Request samples Dotted line How to order products Dotted line Product Change Notices (PCNs) Dotted line Support Dotted line Distributor and field sales representatives Dotted line Quality and reliability Dotted line Design tools
technical information	back to top		
buy products	Features		
technical support	- -		
my Fairchild company	 High Speed Switching Low Saturation Voltage : V_{CE(sat)} = 2.1 V @ I_C = 12A High Input Impedance CO-PAK, IGBT with FRD : t_{rr} = 42ns (typ.) 		

back to top

Applications

AC &DC Motor controls, General Purpose Inverters, Robotics, Servo Controls

back to top

Product status/pricing/packaging

Product	Product status	Pricing*	Package type	Leads	Packing method
SGW23N60UFDTM	Full Production	\$1.88	TO-263(D2PAK)	2	TAPE REEL

* 1,000 piece Budgetary Pricing

back to top

<u>Home</u> | <u>Find products</u> | <u>Technical information</u> | <u>Buy products</u> | <u>Support</u> | <u>Company</u> | <u>Contact us</u> | <u>Site index</u> | <u>Privacy policy</u>

© Copyright 2002 Fairchild Semiconductor