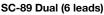
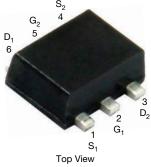
RoHS

COMPLIANT


HALOGEN



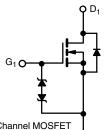
Vishay Siliconix

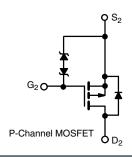
Complementary N- and P-Channel 20 V (D-S) MOSFET

PRODU	CT SUI	MMARY					
	V _{DS} (V)	R _{DS(on)} (Ω)	I _D (A)	Q _g (TYP.)			
		0.396 at V _{GS} = 4.5 V	0.50				
N-Channel	20	0.456 at V _{GS} = 2.5 V	0.20	0.75 nC			
N-Channel		0.546 at V _{GS} = 1.8 V	0.20	0.75110			
		0.760 at V _{GS} = 1.5 V	0.05				
		0.756 at V _{GS} = -4.5 V	-0.35				
P Channel	Channel -20	1.038 at V_{GS} = -2.5 V	-0.35	1 nC			
r-onannei		1.440 at V_{GS} = -1.8 V	-0.10	110			
		2.400 at V _{GS} = -1.5 V	-0.05				

Marking Code: 5

Ordering Information:


Si1016CX-T1-GE3 (Lead (Pb)-free and Halogen-free)


FEATURES

- TrenchFET[®] power MOSFETs
- High-side switching
- Ease in driving switches
- Low offset (error) voltage
- Low-voltage operation
- High-speed circuits
- Typical ESD protection: n-channel 900 V, p-channel 900 V (HBM)
- 100 % Rg tested
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- Load switch, small signal switches and level-shift switches
 - Battery operated systems
 - Portable

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS (T	$A = 25 \ ^{\circ}C$, unless	s otherwise n	oted)			
PARAMETER	SYMBOL	N-CHANNEL	P-CHANNEL	UNIT		
Drain-Source Voltage	V _{DS}	20	-20	V		
Gate-Source Voltage		V _{GS}	± 8		v	
Continuous Drain Current (T _{.1} = 150 °C)	T _A = 25 °C	- I _D	0.6 ^{a, b}	-0.6 ^{a, b}		
Continuous Drain Current $(1_j = 150^{\circ} C)$	T _A = 70 °C		0.49 ^{a, b}	-0.49 ^{a, b}	А	
Pulsed Drain Current (t = 300 µs)		I _{DM}	2	-1.5	A	
Source Drain Current Diode Current	T _A = 25 °C	I _S	0.18 ^{a, b}	-0.18 ^{a, b}		
Maximum Power Dissipation	T _A = 25 °C	Р	0.22 ^{a, b}	0.22 ^{a, b}	W	
	T _A = 70 °C	P _D	0.14 ^{a, b}	0.14 ^{a, b}	vv	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	-55 to 150		°C	

THERMAL RESISTANCE RATINGS **P-CHANNEL N-CHANNEL** PARAMETER SYMBOL UNIT MAX. TYP. MAX. TYP. 470 t ≤ 5 s 470 565 565 Maximum Junction-to-Ambient a, c °C/W **R**_{thJA} Steady State 560 675 560 675

Notes

a. Surface mounted on 1" x 1" FR4 board.

b. t = 5 s.

c. Maximum under steady state conditions is 675 °C/W.

S14-1174-Rev. C, 09-Jun-14

1

Document Number: 67535

www.vishay.com

'ISHAY

Vishay Siliconix

Si1016CX

PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT	
Static						1	1	
		V _{GS} = 0 V, I _D = 250 μA	N-Ch	20	-	-	l	
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = -250 \mu\text{A}$	P-Ch	-20	-	-	V	
	М. Т.	I _D = 250 μA	N-Ch	-	17	-		
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = -250 μA	P-Ch	-	-12	-		
	A) (/T	I _D = 250 μA	N-Ch	-	-1.8	-	mV/°C	
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = -250 μA	P-Ch	-	1.8	-		
Gate Threshold Voltage	Maarin	$V_{DS} = V_{GS}, \ I_D = 250 \ \mu A$	N-Ch	0.4	-	1	v	
Gale miesiloid voltage	V _{GS(th)}	$V_{DS} = V_{GS}$, $I_D = -250 \ \mu A$	P-Ch	-0.4	-	-1	v	
			N-Ch	-	-	± 1		
Gate-Source Leakage	lass	V_{DS} = 0 V, V_{GS} = ± 4.5 V	P-Ch	-	-	± 1	1	
Gale-Source Leakage	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 8 V$	N-Ch	-	-	± 30		
		$v_{\rm DS} = 0 v, v_{\rm GS} = \pm 0 v$	P-Ch	-	-	± 30		
		$V_{DS} = 20 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	N-Ch	-	-	1	μΑ	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = -20 V, V_{GS} = 0 V$	P-Ch	-	-	-1		
zero date voltage Drain ourrent	USS	V_{DS} = 20 V, V_{GS} = 0 V, T_{J} = 55 °C	N-Ch	-	-	10		
		V_{DS} = -20 V, V_{GS} = 0 V, T_J = 55 $^\circ C$	P-Ch	-	-	-10		
On-State Drain Current ^b		$V_{DS}\!\ge\!5$ V, $V_{GS}\!=4.5$ V	N-Ch	2	-	-	A	
	I _{D(on)}	$V_{DS} \leq$ -5 V, V_{GS} = -4.5 V	P-Ch	-1.5	-	-	~	
		$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 0.5 \text{ A}$	N-Ch	-	0.330	0.396	Ω	
		$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -0.35 \text{ A}$	P-Ch	-	0.630	0.756		
		$V_{GS} = 2.5 \text{ V}, \text{ I}_{D} = 0.2 \text{ A}$	N-Ch	-	0.380	0.456		
Drain-Source On-State Resistance ^b	R _{DS(on)}	$V_{GS} = -2.5 \text{ V}, \text{ I}_{D} = -0.35 \text{ A}$	P-Ch	-	0.865	1.038		
		$V_{GS} = 1.8 \text{ V}, \text{ I}_{D} = 0.2 \text{ A}$	N-Ch	-	0.420	0.546		
		$V_{GS} = -1.8 \text{ V}, \text{ I}_{D} = -0.1 \text{ A}$	P-Ch	-	1.200	1.440		
		$V_{GS} = 1.5 \text{ V}, \text{ I}_{D} = 0.05 \text{ A}$	N-Ch	-	0.505	0.760		
		$V_{GS} = -1.5 \text{ V}, \text{ I}_{D} = -0.05 \text{ A}$	P-Ch	-	1.600	2.400		
Forward Transconductance ^b	g _{fs}	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 0.5 \text{ A}$	N-Ch	-	2	-	s	
	918	$V_{DS} = -10 \text{ V}, \text{ I}_{D} = -3.6 \text{ A}$	P-Ch	-	1	-	3	
Input Capacitance	C _{iss}		N-Ch	-	43	-		
	0135	N-Channel	P-Ch	-	45	-		
Output Capacitance	C _{oss}	$V_{DS} = 10 V$, $V_{GS} = 0 V$, f = 1 MHz	N-Ch	-	14	-	pF	
	- 055	P-Channel	P-Ch	-	15	-		
Reverse Transfer Capacitance	C _{rss}	V_{DS} = -10 V, V_{GS} = 0 V, f = 1 MHz	N-Ch	-	8	-		
•	- 135		P-Ch	-	10	-		
Dynamic ^a			T	T	L			
		$V_{DS} = 10 \text{ V}, \text{ V}_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 0.6 \text{ A}$	N-Ch	-	1.3	2	-	
Total Gate Charge	Qg	$V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}, I_D = -0.4 \text{ A}$	P-Ch	-	1.65	2.50	-	
	9		N-Ch	-	0.75	1.2	nC	
		N-Channel $V_{re} = 10 V V_{re} = 2.5 V I_{re} = 0.6 A$	P-Ch	-	1	2		
Gate-Source Charge	Q_{gs}	$V_{DS} = 10 \text{ V}, V_{GS} = 2.5 \text{ V}, I_D = 0.6 \text{ A}$	N-Ch	-	0.15	5 -		
		P-Channel	P-Ch	-	0.2	-		
Gate-Drain Charge	Q _{gd}	$V_{DS} = -10 \text{ V}, V_{GS} = -2.5 \text{ V}, I_D = -0.4 \text{ A}$	N-Ch	-	0.13	-	4	
	∽gu		P-Ch	-	0.26	-		
Gate Resistance	Rg	f = 1 MHz	N-Ch	2.4	12.2	24.4	Ω	
	' 'g		P-Ch	2.4	12	24	52	

2

www.vishay.com

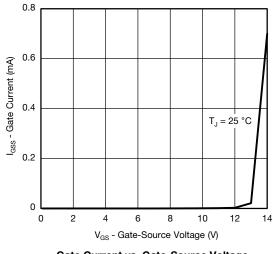
Si1016CX

Vishay Siliconix

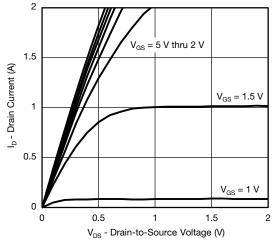
PARAMETER SY		SYMBOL TEST CONDITIONS			TYP.	MAX.	UNIT
Dynamic ^a							
Turn-On Delay Time	t _{d(on)}		N-Ch	-	11	20	
	-0(01)	N-Channel	P-Ch	-	9	18	
Rise Time	tr	$V_{DD} = 10 \text{ V}, \text{ R}_{L} = 20 \Omega$	N-Ch	-	16	24	-
	-1	$I_D \cong 0.5 \; A, V_GEN = 4.5 \; V, R_g = 1 \; \Omega$	P-Ch	-	10	20	
Turn-Off Delay Time	t _{d(off)}	P-Channel N-C		-	26	39	
,	u(on)	$\begin{array}{l} V_{\text{DD}}=\text{-10 V},R_{\text{L}}=33.3~\Omega\\ I_{\text{D}}\cong\text{-0.3 A},V_{\text{GEN}}=\text{-4.5 V},R_{\text{g}}=1~\Omega \end{array}$	P-Ch	-	10		
Fall Time	t _f		N-Ch	-	11	20	ns A A 2 V ns
			P-Ch	-	8	16	ns
Turn-On Delay Time	t _{d(on)}		N-Ch	-	2	4	
	. ,			1	2		
Rise Time	t _r	$\begin{array}{l} V_{DD} = 10 \; V, R_{L} = 20 \; \Omega \\ I_{D} \cong 0.5 \; A, V_{GEN} = 8 \; V, R_{g} = 1 \; \Omega \end{array}$	N-Ch P-Ch	-	13 8	20 16	
			N-Ch	-	0 7		16 14
urn-Off Delay Time	t _{d(off)}	$\begin{array}{l} \mbox{P-Channel} \\ \mbox{V}_{\mbox{DD}} = -10 \mbox{ V, } \mbox{R}_{\mbox{L}} = 33.3 \ \Omega \\ \mbox{I}_{\mbox{D}} \cong -0.3 \mbox{ A, } \mbox{V}_{\mbox{GEN}} = -8 \mbox{ V, } \mbox{R}_{\mbox{g}} = 1 \ \Omega \end{array}$	P-Ch	-	9	14	
			N-Ch	-	5	10	-
Fall Time	t _f		P-Ch	-	5	10	
Drain-Source Body Diode Characteris	tics	<u> </u>			0	10	
-			N-Ch - 2		2	Τ.	
Pulse Diode Forward Current ^a	I _{SM}		P-Ch	-	-	-1.5	A
De de Divide Meller e		I _S = 0.5 A, V _{GS} = 0 V	N-Ch	-	0.85	1.2	
Body Diode Voltage	V _{SD}	$I_{\rm S}$ = -0.3 A, $V_{\rm GS}$ = 0 V	P-Ch	-	-0.87	-1.2	V
Body Diode Reverse Recovery Time	+		N-Ch	-	10	20	
Body Diode neverse necovery Time	t _{rr}	N-Channel	P-Ch	-	16	24	115
Body Diode Reverse Recovery Charge	Q _{rr}	$I_{\rm F} = 0.5 {\rm A},$	N-Ch	-	2	4	nC
Body Diode neverse necovery Charge		dl/dt = 100 A/µs, T _J = 25 °C	P-Ch	-	8	20	
Reverse Recovery Fall Time	+	P-Channel	N-Ch	-	5	-	
	ta	$I_F = -0.3 \text{ A},$	P-Ch	-	11	-	ns
Reverse Recovery Rise Time	t _b	dl/dt = -100 A/ μ s, T _J = 25 °C	N-Ch	-	5	-	
			P-Ch	-	5	-	

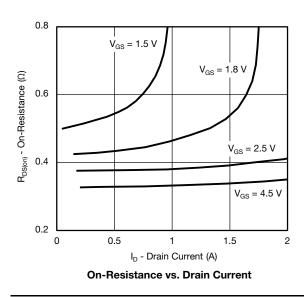
Notes

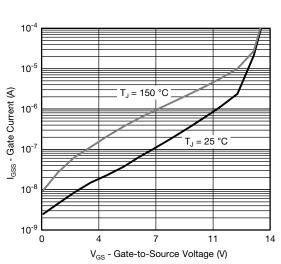
a. Guaranteed by design, not subject to production testing.


b. Pulse test; pulse width $\leq 300~\mu s,~duty~cycle \leq 2~\%.$

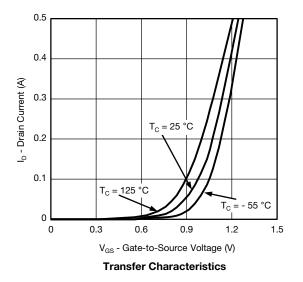
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

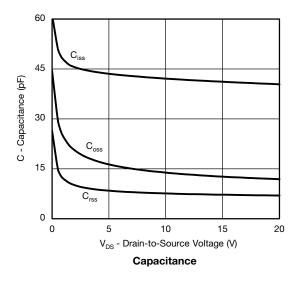

3


N-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

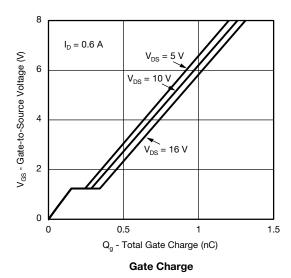


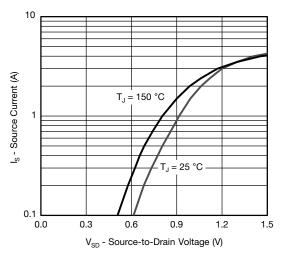
Gate Current vs. Gate-Source Voltage

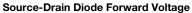


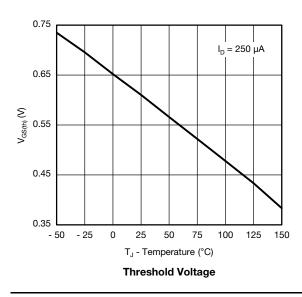


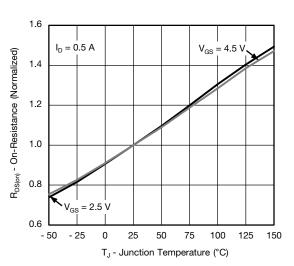
Gate Current vs. Gate-Source Voltage

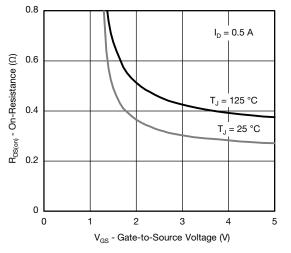


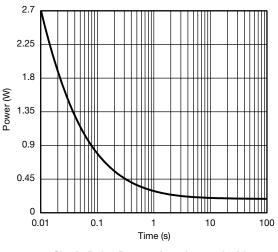

S14-1174-Rev. C, 09-Jun-14


4 Jestions, contact: pmostechsuppo Document Number: 67535




N-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

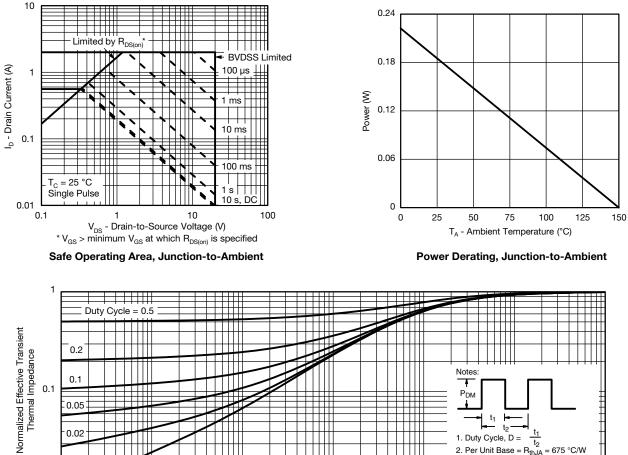


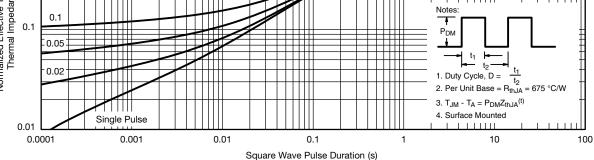


On-Resistance vs. Junction Temperature

Single Pulse Power, Junction-to-Ambient

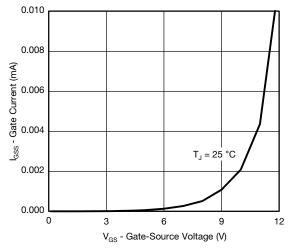
S14-1174-Rev. C, 09-Jun-14

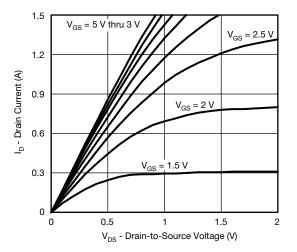

5

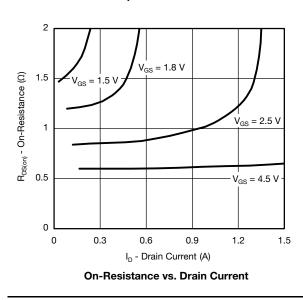

Document Number: 67535

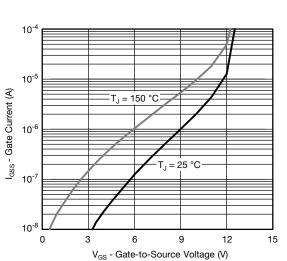
Vishay Siliconix

N-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

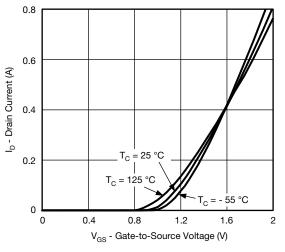



Normalized Thermal Transient Impedance, Junction-to-Ambient

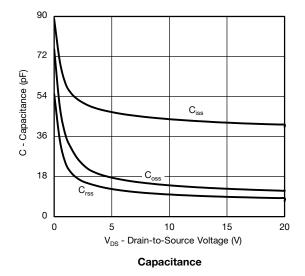

P-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)



Gate Current vs. Gate-Source Voltage

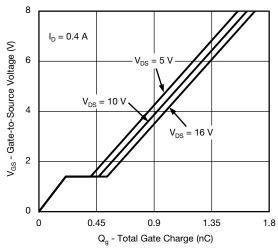


Output Characteristics

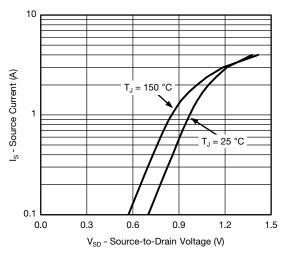


Gate Current vs. Gate-Source Voltage

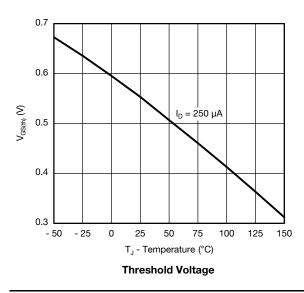
Transfer Characteristics

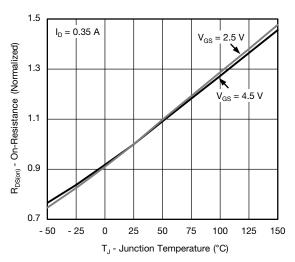

S14-1174-Rev. C, 09-Jun-14

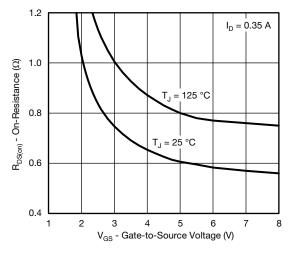
7 Julestions contact: pmostechsupport Document Number: 67535



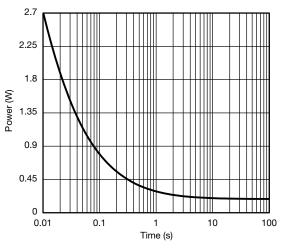
Vishay Siliconix


P-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)





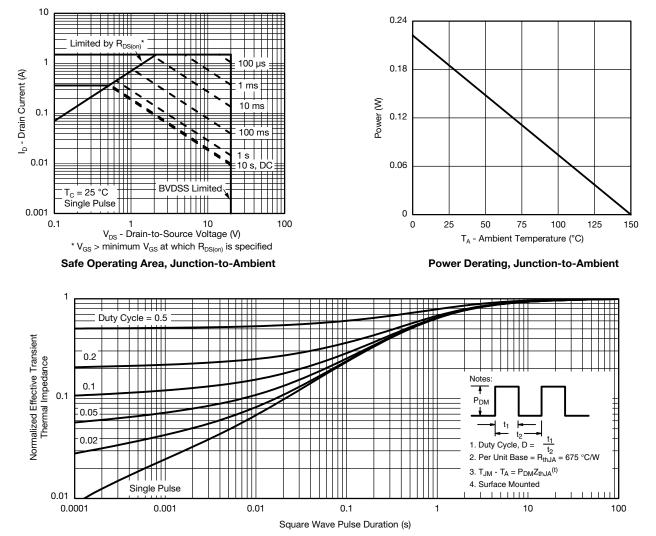
Source-Drain Diode Forward Voltage



On-Resistance vs. Junction Temperature

Single Pulse Power, Junction-to-Ambient

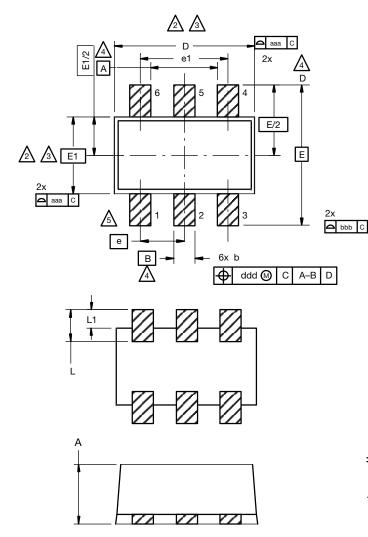
S14-1174-Rev. C, 09-Jun-14


8

Document Number: 67535

Vishay Siliconix

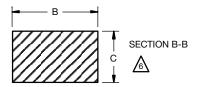
P-CHANNEL TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Normalized Thermal Transient Impedance, Junction-to-Ambient

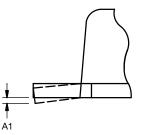
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?67535.

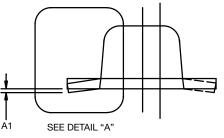
9

SC-89 6-Leads (SOT-563F)


Notes

- 1. Dimensions in millimeters.
- Dimension D does not include mold flash, protrusions or gate burrs. Mold flush, protrusions or gate burrs shall not exceed 0.15 mm per dimension E1 does not include interlead flash or protrusion, interlead flash or protrusion shall not exceed 0.15 mm per side.
- Dimensions D and E1 are determined at the outmost extremes of the plastic body exclusive of mold flash, the bar burrs, gate burrs and interlead flash, but including any mismatch between the top and the bottom of the plastic body.

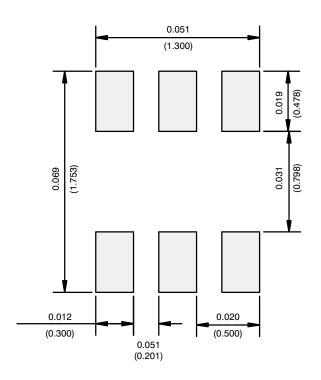

A Datums A, B and D to be determined 0.10 mm from the lead tip.


A Terminal numbers are shown for reference only.

These dimensions apply to the flat section of the lead between 0.08 mm and 0.15 mm from the lead tip.

DIM.	MILLIMETERS					
	MIN.	NOM.	MAX.			
А	0.56	0.58	0.60			
A1	0	0.02	0.10			
b	0.15	0.22	0.30			
С	0.10	0.14	0.18			
D	1.50	1.60	1.70			
E	1.50	1.60	1.70			
E1	1.15	1.20	1.25			
е	0.45	0.50	0.55			
e1	0.95	1.00	1.05			
L	0.25	0.35	0.50			
L1	0.10	0.20	0.30			
C14-0439-Rev DWG: 5880	/. C, 11-Aug-14					

1 For technical questions, contact: <u>analogswitchtechsupport@vishay.com</u> Document Number: 71612


ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishav.com/doc?91000</u>

Application Note 826

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR SC-89: 6-Lead

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.