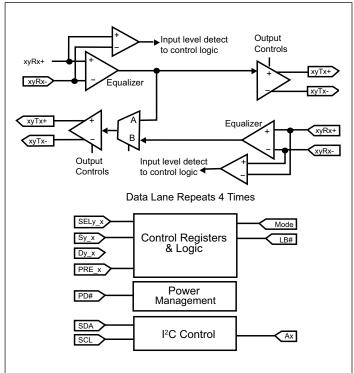


6.5Gbps 4-Lane SAS2/SATA/XAUI ReDriver™with Equalization, Emphasis and Flow-through pinout

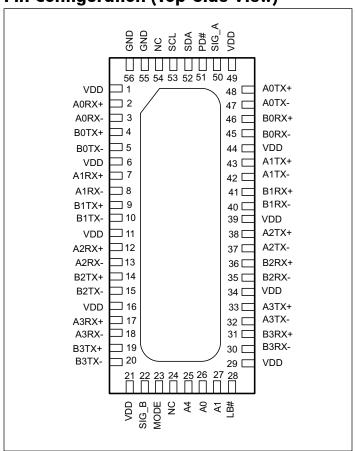
Features

- → Up to 6.5Gbps SAS2/SATA/XAUI ReDriver
- → Supporting 8 differential channels or 4 ports
- → I²C configuration controls (3.3V Tolerant)
- → Adjustable receiver equalization
- → Adjustable transmitter amplitude and emphasis
- → 50-Ohm input/output termination
- → Mux/Demux feature
- → Channel loop-back
- → OOB fully supported
- → Single supply voltage, $1.2V \pm 0.05V$
- → Power down modes
- → Packaging: 56-contact TQFN (5mm x 11mm)

Description


Pericom Semiconductor's PI2EQX6864-A is a low power, SAS, SATA, XAUI signal ReDriver. The device provides programmable equalization, amplification, and emphasis by using 8 select bits, to optimize performance over a variety of physical mediums by reducing Inter-symbol interference.

PI2EQX6864-A supports eight 100-Ohm Differential CML data I/O's between the Protocol ASIC to a switch fabric, across a backplane, or extends the signals across other distant data pathways on the user's platform.


The integrated equalization circuitry provides flexibility with signal integrity of the signal before the ReDriver, whereas the integrated emphasis circuitry provides flexibility with signal integrity of the signal after the ReDriver.

In addition to providing signal re-conditioning, Pericom's PI2EQX6864-A also provides power management Stand-by mode controlled via $\rm I^2C$ register.

Block Diagram

Pin Configuration (Top-Side View)

Pin Description

Pin#	Pin Name	Type	Description
Data Signals		-	•
2	A0RX+,	I	CML inputs for Channel A0, with internal 50-Ohm pull-down. Goes to high-
3	A0RX-	I	impedance during power-down (PD#=0).
48	A0TX+,	О	CML outputs for Channel A0, with internal 50-Ohm pull-up. Goes to high-
47	A0TX-	О	impedance during power-down (PD#=0).
7	A1RX+,	I	CML inputs for Channel A1, with internal 50-Ohm pull-down. Goes to high-
8	A1RX-	I	impedance during power-down (PD#=0).
43	A1TX+,	О	CML outputs for Channel A1, with internal 50-Ohm pull-up. Goes to high-im-
42	A1TX-	О	pedance during power-down (PD#=0).
12	A2RX+,	I	CML inputs for Channel A2, with internal 50-Ohm pull-down. Goes to high-
13	A2RX-	I	impedance during power-down (PD#=0).
38 37	A2TX+, A2TX-	0	CML outputs for Channel A2, with internal 50-Ohm pull-up. Goes to high-impedance during power-down (PD#=0).
17	A3RX+,	I	CML inputs for Channel A3 with internal 50-Ohm pull-down. Goes to high-
18	A3RX-	I	impedance during power-down (PD#=0).
33	A3TX+,	О	CML outputs for Channel A3, with internal 50-Ohm pull-up. Goes to high-
32	A3TX-	О	impedance during power-down (PD#=0).
46	B0RX+,	I	CML inputs for Channel B0, with internal 50-Ohm pull-down. Goes to high-
45	B0RX-	I	impedance during power-down (PD#=0).
4	B0TX+,	О	CML outputs for Channel B0, with internal 50-Ohm pull-up. Goes to high-im-
5	B0TX-	О	pedance during power-down (PD#=0).
41	B1RX+,	I	CML inputs for Channel B1, with internal 50-Ohm pull-down. Goes to high-
40	B1RX-	I	impedance during power-down (PD#=0).
9	B1TX+,	0	CML outputs for Channel B1, with internal 50-Ohm pull-up. Goes to high-im-
10	B1TX-	O	pedance during power-down (PD#=0).
36	B2RX+,	I	CML inputs for Channel B2, with internal 50-Ohm pull-down. Goes to high-impedance during power-down (PD#=0).
35	B2RX-	I	
14	B2TX+,	0	CML outputs for Channel B2, with internal 50-Ohm pull-up. Goes to high-impedance during power-down (PD#=0).
15	B2TX-	0	
31 30	B3RX+, B3RX-	I	CML inputs for Channel B3, with internal 50-Ohm pull-down. Goes to high-impedance during power-down (PD#=0).
		I	
19 20	B3TX+, B3TX-	0	CML outputs for Channel B3, with internal 50-Ohm pull-up. Goes to high-impedance during power-down (PD#=0).
Control Signals			
26, 27, 25	A0, A1, A4	I	I ² C programmable address bit A0, A1 and A4.
28	LB#	I	Input with internal 100K-Ohm pull-up resistor. LB# = High or open for normal operation. LB# = Low for loopback connection of A_RX to A_TX and B_TX.
22	SIG_B	0	Signal detect output for channel B. SIG_B indicates a valid input signal which is > Vth at the differential inputs. With 100K-Ohm internal pull up.
23	MODE	I	A LVCMOS high level disables I ² C operation. With 100K-Ohm internal pull up.
		1	D M (C (D 16 6)
24, 54	NC		Do Not Connect (Reserved for future use.) (Continued

Pin #	Pin Name	Type	Description
50	SIG_A	0	Signal detect output for channel A. SIG_A indicates a valid input signal which is > Vth at the differential inputs. With 100K-Ohm pull up.
51	PD#	I	Input with internal 100K-Ohm pull-up resistor, PD# = High or open is normal operation, PD# = Low disable the IC, and set IC to power down mode, both input and output go Hi-Z.
52	SDA	I/O	I ² C SDA data input. Up to 3.3V input tolerance
53	SCL	I/O	I ² C SCL clock input. Up to 3.3V input tolerance.
Power Pins			
55, 56, Center Pad	GND	PWR	Supply Ground
1, 6, 11, 16, 21, 29, 34, 39, 44, 49	VDD	PWR	1.2V Supply Voltage ± 0.05V

DESCRIPTION of OPERATION

Configuration

Device configuration can be performed via I^2C control. When MODE is set high, changes to the internal registers are disabled to insure a known operating state. When the MODE pin is low, programming of the control registers via I^2C is allowed. Note that the MODE pin is not latched, and is always active to enable or disable I^2C access.

Equalizer Configuration

The PI2EQX6864-A input equalizer compensates for signal attenuation and Inter-Symbol Interference (ISI) resulting from long signal traces or cables, vias, signal crosstalk and other factors, by boosting the gain of high-frequency signal components. Because either too little, or too much, signal compensation may be non-optimal eight levels are provided to adjust for any application.

Equalizer configuration takes a default state when the device first powers up. If the MODE pin is low, reprogramming of the equalization control registers via I^2C is allowed.

Each group of four channels, A and B, has separate equalization control, and all four channels within the group are assigned the same configuration state. The Equalizer Selection table below describes operation of the equalizer. Refer to the section on I^2C programming for information on software programming.

Equalizer Selection

SEL2_[A:B]	SEL1_[A:B]	SELO_[A:B]	@1.5GHz	@3.0GHz
0	0	0	0.8dB	1.5dB
0	0	1	1.0dB	1.9dB
0	1	0	1.5dB	3.2dB
0	1	1	2.5dB	5.2dB
1	0	0	3.5dB	6.9dB
1	0	1	4.4dB	8.3dB
1	1	0	5.9dB	10.4dB
1	1	1	8.7dB	13.8dB

Output Configuration

The PI2EQX6864-A provides flexible output strength and emphasis controls to provide the optimum signal to pre-compensate for losses across long trace or noisy environments so that the receiver gets a clean with good eye opening. Control of output configuration is grouped for the A and B channels, so that each channel within the group has the same setting.

Output configuration takes default state when the device first powers up. If the MODE pin is low, Reprogramming of these control registers via I^2C is allowed.

The Output Swing Control table shows available configuration settings for output level control. Output swing settings are independant of the data rate.

Output Swing Control

S1_[A:B]	S0_[A:B]	Swing (Diff. VPP)	
0	0	1V	
0	1	0.5V	
1	0	0.7V	
1	1	0.9V	

Emphasis settings are assigned a default state at power-on, and can be changed via I^2C when the MODE pin is low. Pre-emphasis is selected as the default power-on mode, but can be changed to de-emphasis via reprogramming the Loopback and Emphasis Control register using the I^2C interface. Output emphasis settings are independent of the data rate.

Output Emphasis Adjustment

D2_[A:B]	D1_[A:B]	D0_[A:B]	Emphasis
0	0	0	0dB
0	0	1	2.5dB
0	1	0	3.5dB
0	1	1	4.5dB
1	0	0	5.5dB
1	0	1	6.5dB
1	1	0	7.5dB
1	1	1	8.5dB

Input Level Detect

An input level detect and output squelch function is provided on each channel to eliminate re-transmission of input noise. A continuous signal level below the V_{th} - threshold causes the output driver to drive both the plus and minus signal pair to the common mode voltage.

Loopback Operation

Loopback Modes		CONDITIONS
		LB_A0B0# = 1
A0 A0	NORMAL MODE	INDIS_A0 = 0
B0 - 20 - 1	A0Rx to A0Tx, B0Rx to B0Tx	OUTDIS_A0 = 0
B0		INDIS_B0 = 0
		OUTDIS_B0 = 0
		LB_A0B0# = 0
A0 A0	BROADCAST MODE	INDIS_A0 =0
BOH	A0Rx to A0Tx and B0Tx	OUTDIS_A0 = 0
B0	AUKA 10 AUTA allu DUTA	INDIS_B0 = 1
		OUTDIS_B0 = 0
		LB_A0B0# = 0
A0 A0	LOOPBACK MODE	INDIS_A0 = 0
B0	A0Rx to B0Tx	OUT_DIS_A0 = 1
B0		INDIS_B0 = 1
		OUTDIS_B0 = 0
		LB_A0B0# = 1
	DEMUX MODE	INDIS_A0 = 0
	Solid Line	OUTDIS_A0 = 0
40	A0Rx to A0Tx	INDIS_B0 = 1
		OUTDIS_B0 =1
B0 B0		$LB_A0B0\# = 0$
	DEMUX MODE	$INDIS_A0 = 0$
	Dashed Line	OUTDIS_A0 = 1
	A0Rx to B0Tx	INDIS_B0 = 1
		OUTDIS_B0 = 0
		LB_A0B0# = 1
	MUX MODE	INDIS_A0 = 1
	Solid Line	OUTDIS_A0 = 1
A0 # A0	B0Rx to B0Tx	INDIS_B0 = 0
		OUTDIS_B0 = 0
B0 B0		LB_A0B0# = 0
	MUX MODE	INDIS_A0 = 0
	Dashed Line	OUTDIS_A0 = 1
	A0Rx to B0Tx	INDIS_B0 = 1
		OUTDIS_B0 = 0

Each lane provides a loopback mode for test purposes which is controlled by a strapping pin and I²C register bit. The LB# pin controls all lanes together. When this pin is high normal data mode is enabled. When LB# is low the loopback feature is enabled. The adjacent figure diagrams this operation. Loopback is not intended to be dynamically switched, and the normal system application is to initialize to one configuration or the other.

The Loopback mode can also support mux/ demux operation. Using I²C configuration, unused inputs and outputs can be disabled to minimize power and noise.

07/21/10

I²C Operation

The integrated I²C interface operates as a slave device, supporting standard rate operation of 100Kbps, with 7-bit addressing mode, with support for offset byte-write and read. The data byte format is 8 bit bytes. The bytes must be accessed in sequential order from the lowest to the highest byte with the ability to stop after any complete byte has been transferred. Address bits A4, A1 and A0 are programmable to support multiple chips environment. The data is loaded until a Stop sequence is issued.

Note that the I²C inputs, SCL and SDA operate at 1.2V logic levels and are 3.3V tolerant.

Configuration Register Summary

Byte	Mnemonic	Function
0	SIG	Signal Detect, indicates valid input signal level
1	RSVD	Reserved For Future Use
2	LBEC	Loopback and Emphasis Control, provides for control of the loopback function and emphasis mode (preemphasis or de-emphasis)
3	INDIS	Channel Input Disable, controls whether a channel input buffer is enabled or disabled
4	OUTDIS	Channel Output Disable, controls whether a channel output buffer is enabled or disabled
5	RSVD	Reserved For Future Use
6	PWR	Power Down Control, enables power down for each channel individually
7	RSVD	Reserved For Future Use
8	AEOC	A-Channels Equalizer and Output Control
9	AEOC	B-Channels Equalizer and Output Control
10	RSVD	Reserved
11	RSVD	Reserved

Register Description

BYTE 0 - Signal Detect (SIG)

SIG_xy=0=low input signal, SIG_xy=1=valid input signal

Bit	7	6	5	4	3	2	1	0
Name	SIG_A0	SIG_B0	SIG_A1	SIG_B1	SIG_A2	SIG_B2	SIG_A3	SIG_B3
Type	R	R	R	R	R	R	R	R
Power-on State	X	X	X	X	X	X	X	X

Note: R=Read only, W=Write only, R/W=Read and Write, X=Undefined, rsvd=reserved for future use

The Signal Detect register provides information on the instantaneous status of the channel input from the Input Level Threshold Detect circuit. If the input level falls below the Vth- level the relevant SIG_xy bit will be 0, indicating a low-level noise or electrical idle input, resulting in the outputs going to the high-impedance off state or squelch mode. If the input level is above Vth-, then SIG_xy is 1, indicating a valid input signal, and active signal recovery operation.

BYTE 1 - Reserved

Reseved Byte 1 is visible via the I^2C interface. This is a read-only byte with an undefined initial state after power-up. This byte is reserved for future use.

BYTE 2 - Loopback and Emphasis Control Register (LBEC)

LB_xyxy#=0=loopback mode, LB_xyxy#=1=normal mode, PRE_x=0=pre-emphasis, PRE_x=1=de-emphasis

Bit	7	6	5	4	3	2	1	0
Name	LB_A0B0#	LB_A1B1#	LB_A2B2#	LB_A3B3#	PRE_A	PRE_B	rsvd	rsvd
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R	R
Power-on State	LB#	LB#	LB#	LB#	PRE_A	PRE_B	X	X

 $Note: R=Read\ only,\ W=Write\ only,\ R/W=Read\ and\ Write,\ X=Undefined,\ rsvd=reserved\ for\ future\ use$

Individual control for each lane is provided for the loopback function via this register.

BYTE 3 - Channel Input Disable (INDIS)

INDIS_xy=0=enable input, INDIS_xy=1=disable input

Bit	7	6	5	4	3	2	1	0
Name	INDIS_A0	INDIS_B0	INDIS_A1	INDIS_B1	INDIS_A2	INDIS_B2	INDIS_ A3	INDIS_ B3
Type	R/W	R/W						
Power-on State	0	0	0	0	0	0	0	0

7

Note: R=Read only, W=Write only, R/W=Read and Write, X=Undefined, rsvd=reserved for future use

The Channel Input Disable register, provides control over the input buffer of each channel independently. When and INDIS_xy bit is logic 1, then the input buffer is switched off and the input termination is high impedance. This feature can be used for PCB testing, and when only one input is used during Loopback as a demux function. When INDIS_xy is at a logic 0 state then the input buffer is enabled (normal operating mode).

BYTE 4 - Channel Output Disable (OUTDIS)

ODIS_xy=0=enable output, ODIS_xy=1=disable output

Bit	7	6	5	4	3	2	1	0
Name	ODIS_A0	ODIS_B0	ODIS_A1	ODIS_B1	ODIS_A2	ODIS_B2	ODIS_A3	ODIS_B3
Type	R/W							
Power-on State	0	0	0	0	0	0	0	0

Note: R=Read only, W=Write only, R/W=Read and Write, X=Undefined, rsvd=reserved for future use

The Channel Output Disable register, allows control over the output buffer of each channel independently. When and OUTDIS_xy bit is logic 1, then the output buffer is switched off and the termination is high impedance. This feature can be used for PCB testing, and when only one output is used during Loopback as a mux function. When INDIS_xy is at a logic 0 state then the input buffer is enabled (normal operating mode).

BYTE 5 - Reserved

Reserved Byte 5 is visible via the I^2C interface. This is a R/W byte with an undefined initial power-on state. This byte is reserved for future use and should not be written to.

BYTE 6 - Power Down Control (PWR)

PD_xy# =0=channel off/power down, PD_xy# =1=normal operation, Latch from PD# input at startup

Bit	7	6	5	4	3	2	1	0
Name	PD_A0#	PD_B0#	PD_A1#	PD_B1#	PD_A2#	PD_B2#	PD_A3#	PD_B3#
Туре	R/W							
Power-on State	PD#							

Note: R=Read only, W=Write only, R/W=Read and Write, X=Undefined, rsvd=reserved for future use

The Power Down Control register allows for individual control over each channel for power savings. When PD_xy# is logic 0 the channel is turned off. When PD_xy# is 1 then the channel is enabled for normal operation.

BYTE 7 - Reserved

Reseved Byte 7 is visible via the I^2 C interface. This is a R/W byte with an undefined initial power-on state. This byte is reserved for future use and should not be written to.

BYTE 8 - A-Channels Equalizer and Output Control (AEOC)

SELx_A: Equalizer configuration, Dx_A: Emphasis control, Sx_A: Output level control (see Configuration Table)

Bit	7	6	5	4	3	2	1	0
Name	SELO_A	SEL1_A	SEL2_A	D0_A	D1_A	D2_A	SO_A	S1_A
Type	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Power-on State	1	1	1	1	1	1	1	1

Note: R=Read only, W=Write only, R/W=Read and Write, X=Undefined, rsvd=reserved for future use

The A-Channels Equalizer and Output Control register is used to control the configuration of the input equalizer and output emphasis and levels of the four A channels. Please refer to the tables (1) Equalizer Configuration, (2) Output Swing Configuration and (3) Output Emphasis Configuration earlier in this document for setting information. All four A channels get the same configuration settings.

BYTE 9 - B-Channels Equalizer and Output Control (BEOC)

SELx_B: Equalizer configuration,

Dx_B: Emphasis control,

Sx_B: Output level control (see Configuration Table)

Bit	7	6	5	4	3	2	1	0
Name	SELO_B	SEL1_B	SEL2_B	D0_B	D1_B	D2_B	S0_B	S1_B
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Power-on State	1	1	1	1	1	1	1	1

Note: R=Read only, W=Write only, R/W=Read and Write, X=Undefined, rsvd=reserved for future use

The B-Channels Equalizer and Output Control register is used to control the configuration of the input equalizer and output emphasis and levels of the four B channels. Please refer to the tables (1) Equalizer Configuration, (2) Output Swing Configuration and (3) Output Emphasis Configuration earlier in this document for setting information. All four B channels get the same configuration settings.

BYTE 10 - Reserved

Reserved Byte 10 is visible via the I^2C interface. This byte is R/W and is initialized to 0000 0000 at power up. It is used for IC manufacturing test purposes and should not be changed for normal operation.

BYTE 11 - Reserved

Reserved Bytes 10 is visible via the I^2 C interface. This byte is R/W and is initialized to 1110 1111 at power up. It is used for IC manufacturing test purposes and should not be changed for normal operation.

Transferring Data

Every byte put on the SDA line must be 8-bits long. Each byte has to be followed by an acknowledge bit. Data is transferred with the most significant bit (MSB) first (see the I²C Data Transfer diagram). The PI2EQX6864-A will never hold the clock line SCL LOW to force the master into a wait state.

Note: Byte-write and byte-read transfers have a fixed offset of 0x00, because of the very small number of configuration bytes. An offset byte presented by a host to the PI2EQX6864-A is not used.

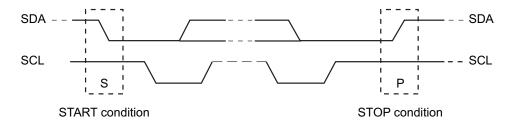
Addressing

Up to eight PI2EQX6864-A devices can be connected to a single I^2C bus. The PI2EQX6864-A supports 7-bit addressing, with the LSB indicating either a read or write operation. The address for a specific device is determined by the A0, A1 and A4 input pins.

Address Assi	Address Assignment						
A6	A5	A4	A3	A2	A1	A0	R/W
1	1	Program	0	0	Programmable		1=R, 0=W

Acknowledge

Data transfer with acknowledge is required from the master. When the master releases the SDA line (HIGH) during the acknowledge clock pulse, the PI2EQX6864-A will pull down the SDA line during the acknowledge clock pulse so that it remains stable LOW during the HIGH period of this clock pulse as indicated in the $\rm I^2C$ Data Transfer diagram. The PI2EQX6864-A will generate an acknowledge after each byte has been received.

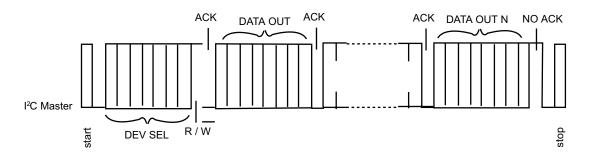

Data Transfer

A data transfer cycle begins with the master issuing a start bit. After recognizing a start bit, the PI2EQX6864-A will watch the next byte of information for a match with its address setting. When a match is found it will respond with a read or write of data on the following clocks. Each byte must be followed by an acknowledge bit, except for the last byte of a read cycle which ends with a stop bit. For a write cycle, the first data byte following the address byte is a dummy or fill byte that is not used by the PI2EQX6864-A. This byte is provided to provided compatibility with systems implementing 10-bit addressing. Data is transferred with the most significant bit (MSB) first.

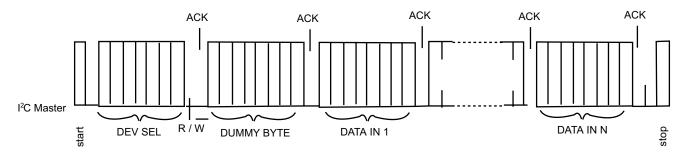
I²C Data Transfer

Start & Stop Conditions

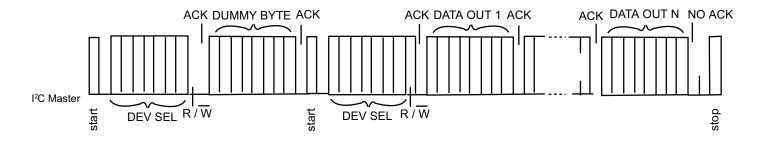
A HIGH to LOW transition on the SDA line while SCL is HIGH indicates a START condition. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition, as shown in the figure below.



I²C START and STOP conditions.



I²C Data Transfer


1. Read sequence

2. Write sequence

3. Combined sequence

Notes:

- 1. only block read and block write from the lowest byte are supported for this application.
- 2. for some I2C application, an offset address byte will be presented at the second byte in write command, which is called dummy byte here and will be simply ignored in this application for correct interoperation.

Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Note:

Stresses greater than those listed under MAXI-MUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

AC/DC Electrical Characteristics

Power Supply Characteristics ($V_{DD} = 1.2 \pm 0.05 \text{V}$, $T_A = 0 \text{ TO } 70^{\circ}\text{C}$)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
I _{DDactive}	Power supply current - active	All channels switching			800	mΛ
$I_{\mathrm{DDstandby}}$	Power supply current - standby	All PD_xy# = 0		1	5	mA

AC Performance Characteristics ($V_{DD} = 1.2 \pm 0.05V$, $T_A = 0 \text{ TO } 70^{\circ}\text{C}$)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
т	Channel latency from			750		ne
1pd	input to output			730		ps

CML Receiver Input ($V_{DD} = 1.2 \pm 0.05V$, $T_A = 0 \text{ TO } 70^{\circ}\text{C}$)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
ZRX-DC	DC Input Impedance		40	50	60	01
ZRX-DIFF-DC	DC Differential Input Impedance		80	100	120	Ohms
VRX-DIFFP-P	Differential Input Peak- to-peak Voltage		0.175		1.200	V
VRX-CM-ACP	AC Peak Common Mode Input Voltage				150	3.7
Vth-	Signal detect threshold voltage			150	240	mV

Equalizer

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
J _{RS-T}	Residual jitter	Total			0.3	Ulp-p
J _{RS-D}	Residual jitter	Deterministic			0.2	Оір-р
J _{RM}	Random jitter	Note 2		1.5		psrms

Notes

CML Transmitter Output ($V_{DD} = 1.2V \pm 0.05V$, $T_A = 0$ to $70^{\circ}C$)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Z _{OUT}	Output resistance	Single ended	40	50	60	Ohms
Z _{TX-DIFF-DC}	DC Differential TX Impedance		80	100	120	Ohms
		S[1:0] = 00, 0dB emphasis	0.8	1	1.2	
3.7	Differential Peak-to-peak Ouput Voltage	S[1:0] = 01,0dB emphasis	0.3	0.5	0.7	V
V _{TX-DIFFP-P0}	VTX-DIFFP-P = 2 * VTX-D+ - VTX-D-	S[1:0] = 10, 0dB emphasis	0.5	0.7	0.9	
		S[1:0] = 11, 0dB emphasis	0.7	0.9	1.1	
37.	Common-Mode Voltage			W O.C		V
V_{TX-C}	VTX-D+ + VTX-D- / 2			V _{DD} - 0.6		V
t _F , t _R	Transition Time	20% to 80%			150	ps
$C_{TX}^{(1)}$	AC Coupling Capacitor		0.3	4.7	12	nF

Notes:

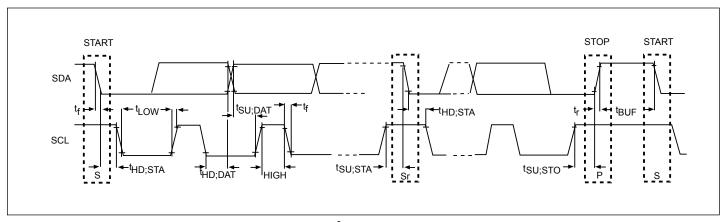
1. Recommended external blocking capacitor.

^{1.} K28.7 pattern is applied differentially at point A as shown in AC test circuit (see figure).

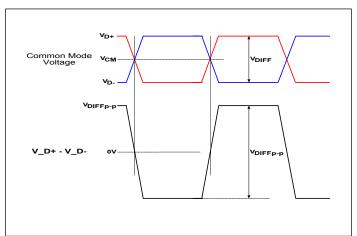
^{2.} Total jitter does not include the signal source jitter. Total jitter $(TJ) = (14.1 \times RJ + DJ)$ where RJ is random RMS jitter and DJ is maximum deterministic jitter. Signal source is a K28.5 \pm pattern (00 1111 1010 11 0000 0101) for the deterministic jitter test and K28.7 (0011111000) or equivalent for random jitter test. Residual jitter is that which remains after equalizing media-induced losses of the environment of Figure 1 or its equivalent. The deterministic jitter at point B must be from media-induced loss, and not from clock source modulation. Jitter is measured at 0V at point C of the AC test circuit (see figure).

Digital I/O DC Specifications (VDD = $1.2V \pm 0.05V$, $T_A = 0$ to $70^{\circ}C$)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{IH}	DC input logic high		V _{DD} /2 +0.2		V _{DD} +0.3	
V _{IL}	DC input logic low		-0.3		V _{DD} /2 -0.2	
V _{OH}	DC output logic high	$I_{OH} = 4mA$	V _{DD} -0.4			V
V _{OL}	DC output logic low	$I_{OL} = 4mA$			0.4	
V _{hys}	Hysteresis of Schmitt trigger input		0.2			
I _{IH} ⁽¹⁾	Input high current				250	
I _{IL1} ⁽²⁾	Input low current		-250			uA
I _{IL2} ⁽³⁾	Input low current		-250			

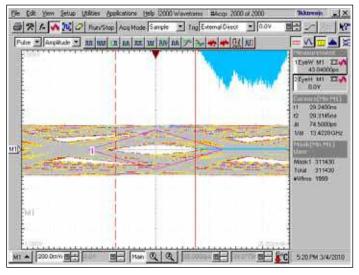

Notes:

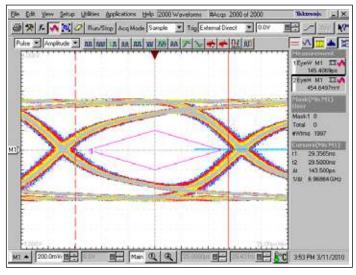
- 1. Includes input signals A1, A2, A4, LB#, PD#, SCL, SDA
- 2. For control inputs without pullups: SCL, SDA
- 3. Control inputs with pull-ups include: LB#, PD#, A1, A2, A4


SDA and SCL I/O for I^2 C-bus ($V_{DD} = 1.2 \pm 0.05v$, $T_A = 0$ to 70° C)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{IH}	DC input logic high		1.1		3.6	
V_{IL}	DC input logic low		-0.3		0.7	17
V _{OL}	DC output logic low	$I_{OL} = 3mA$			0.4	V
V _{hys}	Hysteresis of Schmitt trigger input		0.2			

I²C Timing

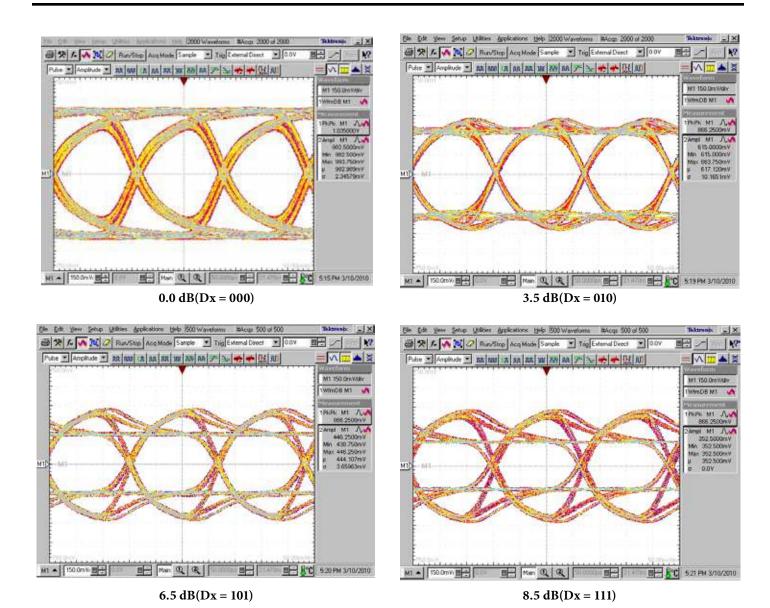



V_{DIFF} v_{см} VD-1stT_{BIT} 2nd +T_{BIT(s)}

Pre-emphasis = 20·Log(V_{DIFF-PRE}/V_{DIFF})

Definition of Differential Voltage and Differential Voltage Peak-to-Peak

Definition of Pre-emphasis

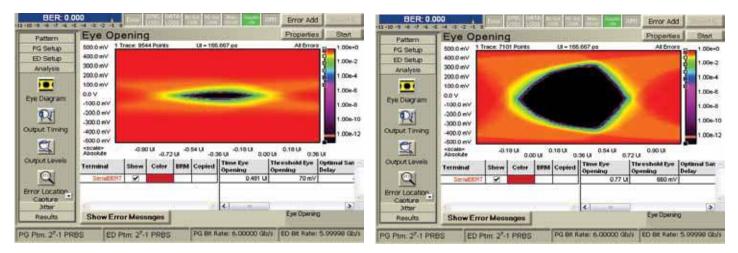


www.pericom.com

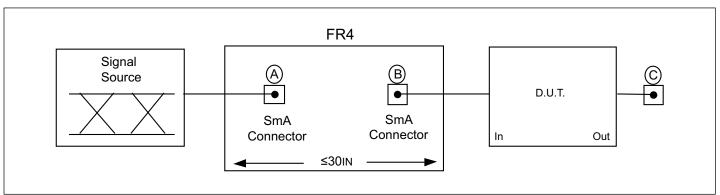
Output Eye Input Eye

Signal Eyes @10dB input equalization, 24 inch FR4 input trace, 36 inch output cable

Output De-emphasis Characteristics


16

2010-0197


07/21/10

www.pericom.com

Eye Diagrams 6.0Gbps (input left, output right)



AC Test Circuit Referenced in the Electrical Characteristic Table

07/21/10

Packaging Information

08-0208

Note: For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

Ordering Information

Ordering Number	Package Code	Package Description
PI2EQX6864-AZFE	ZF	Pb-free & Green 56-Contact TQFN

18

Notes:

- $\bullet \ Thermal\ characteristics\ can\ be\ found\ on\ the\ company\ web\ site\ at\ www.pericom.com/packaging/$
- E = Pb-free and Green
- X suffix = Tape/Reel