

Data Sheet

Mar 2006

Features

- Performs ASK (amplitude shift keyed) modulation and demodulation
- 32 kHz carrier frequency
- Up to 2 kbit/s full duplex data transfer rate
- On-chip oscillator
- · On-chip tone caller for alerting functions
- · Adjustable tone caller frequencies
- · Selectable self-loop test mode
- 5V/2.5mA power supply
- ISO²-CMOS and switched capacitor technologies
- 18 Pin DIP

Applications

- Simultaneous data and voice communication in PABXs
- 2 kbit/s data modem
- "Smart" telephone sets

Ordering Information

MT8840AE MT8840AS MT8840ASR MT8840AE1 MT8840ASR1 * Pb	18 Pin PDIP 18 Pin SOIC 18 Pin SOIC 18 Pin PDIP* 18 Pin SOIC* Free Matte Tin	Tubes Tubes Tape & Reel Tubes Tape & Reel				
0°C to +85°C						

Description

The MT8840 is a carrier over voice modem which allows simultaneous transfer of voice and data over a single pair of wires. Data is transferred on an amplitude shift keyed (ASK) 32 kHz carrier. On-chip filters remove voice frequency signals from the received composite voice and data signal prior to demodulation. The modulating signal is a bit stream with a typical data rate of 2 kbit/s. In addition, the device contains a two tone warbler which functions as a telephone ringer. The device is fabricated in Zarlink's double-poly ISO²-CMOS technology utilizing switched-capacitor techniques.

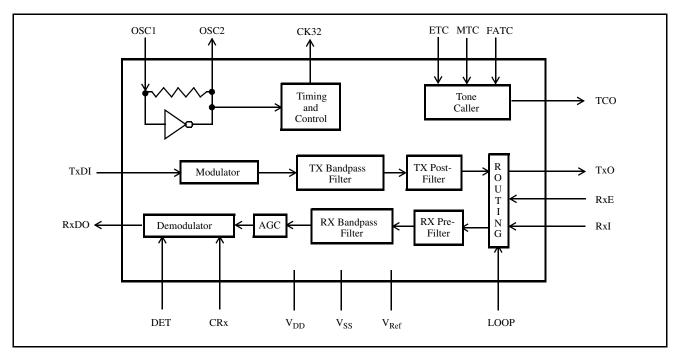


Figure 1 - Functional Block Diagram

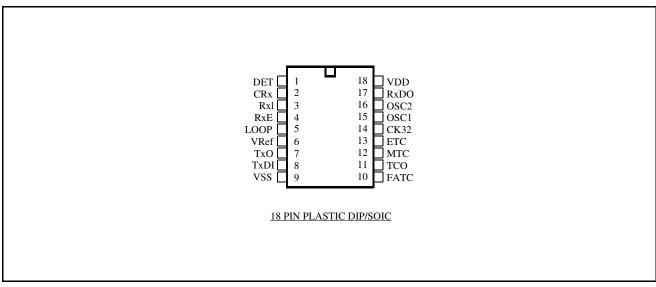


Figure 2 - Pin Connections

Pin Description

Pin #	Name	Description					
1	DET	Demodulator detection level adjust input (Analog). Internal resistor divider applies 2.36 V in open circuit condition. Connection of external resistor will vary detect level.					
2	CRx	External AGC time constant adjust input (Ana	log). Connect external capacitor to V _{SS} .				
3	RxI	Modulated receive signal input (Analog). Bias	sed at V _{Ref} .				
4	RxE	Receive enable input (Digital) with internal pu	ıll up. Active high.				
5	LOOP	Self-test mode select input (Digital) with inter-	nal pull down. Active high.				
6	V _{Ref}	Internal reference supply voltage input (Analog) .					
7	TxO	Modulated transmit carrier output (Analog).					
8	TxDI	Transmit data input (Digital).					
9	V_{SS}	Negative power supply.					
10	FATC	Tone caller center frequency adjust input (Ana	Tone caller center frequency adjust input (Analog).				
11	TCO	Tone caller output (Digital).					
12	MTC	Mute tone caller input (Digital) with internal p	oull down. Active high.				
13	ETC	Enable tone caller input (Digital) with internal	Enable tone caller input (Digital) with internal pull down. Active high.				
14	CK32	32 kHz data strobe output (Digital).	32 kHz data strobe output (Digital).				
15	OSC1	Clock Input	3.579545 MHz crystal connected between these				
16	OSC2	Clock Output to drive external devices.	pins completes internal oscillator.				
17	RxDO	Receive data output (Digital). Synchronized to CK32.					
18	V_{DD}	Positive power supply.					

Functional Description

The MT8840 contains the modulator and demodulator circuitry for 32 kHz ASK signalling as well as a two-tone warbler (tone caller) to replace the function of the mechanical telephone ringer.

A 32 kHz carrier is 100% amplitude modulated by the digital bit stream applied to input TxDI. This results in an amplitude shift keyed (ASK) 32 kHz carrier. A logical high at TxDI disables the carrier and a logical low enables it. The digitally modulated waveform is shaped by the Tx BANDPASS FILTER and smoothed by the Tx POST FILTER. The signal then enters the routing block where it is transferred to the TxO output.

The modulated 32 kHz receive signal is applied to RxI. With a logical low applied to LOOP and a logical high applied to RxE, receive signals are routed to the Rx PREFILTER. High frequencies are removed by the Rx PREFILTER to prevent aliasing in the switched capacitor Rx BANDPASS FILTER. Voice signals are removed by the bandpass filter which is followed by an AGC circuit. This provides a dynamic range of 20 dB for the receiver. An external 1 μ F capacitor connected from CRx to V_{SS} is required to control the AGC attack and decay time constants. Data is recovered from the received signal in the demodulator. The minimum voltage level to which the demodulator responds may be adjusted by connecting a resistor from DET to V_{DD} or V_{Ref} . Since DET is the input to a comparator, noise should be kept to a minimum at this pin. The recovered receive data is synchronized to the leading edge of the 32 kHz clock (available at CK32) before appearing at RxDO.

When in loop around mode, the Rx PREFILTER input is internally disconnected from the RxI input pin and connected to TxO. The transmitter output is still available at TxO.

A two tone warbling audio signal is available at TCO when the tone caller enable input (ETC) is high. TCO is internally clamped to V_{Ref} when the tone caller is disabled. The tone output can be attenuated by 20 dB if a logical high is applied to the tone caller mute input (MTC).

Applications

Figures 3 through 5 show how the MT8840 may be utilized to transfer data and voice simultaneously over a single pair of wires in digital or analog PABXs and "smart" telephone sets. In all three figures a microprocessor sends/receives data to/from the MT8840 via a UART which converts the data format from parallel-to-serial or serial-to-parallel for the transmit and receive directions, respectively. In the receive direction the MT8840 has on-board filters to reject voice-band signals leaving only the 32 kHz carrier. This carrier is then demodulated to recover the received data. In the transmit direction the data to be sent is modulated and passed on to a summing circuit which sums the modulated 32 kHz carrier and voiceband signals for transmission over the telephone line. In the PABX the Filter/Codec has filters which reject the 32 kHz carrier from the received composite voice and data signal allowing only voiceband signals to pass through which are then PCM encoded for digital switching. However, in both the analog PABX and smart telephone set, lowpass filters could be included to bandlimit the received signal leaving only voice signals to be passed on to the switch array or handset earpiece.

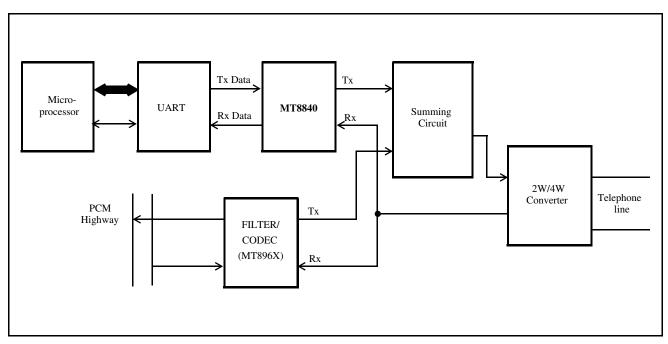


Figure 3 - Digital PABX Block Diagram

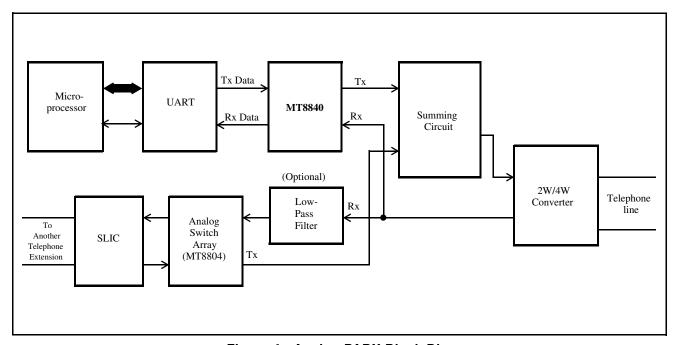


Figure 4 - Analog PABX Block Diagram

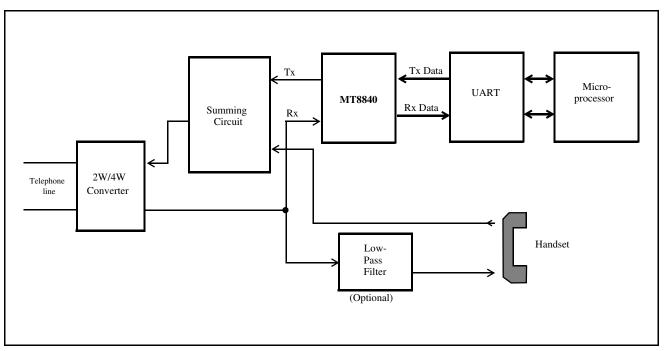


Figure 5 - Smart Telephone Set Block Diagram

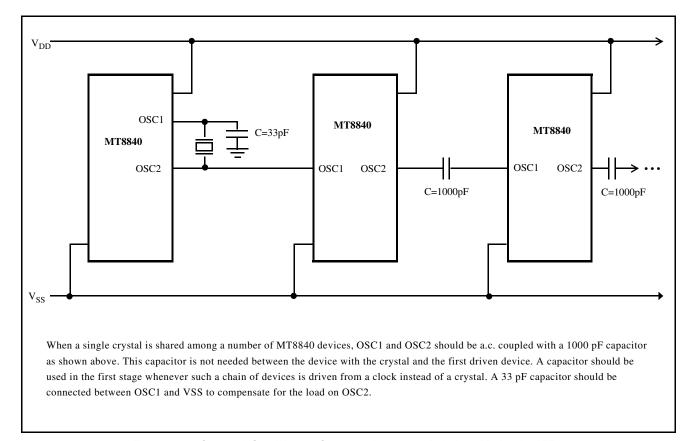


Figure 6 - Crystal Oscillator Connections for Driving Multiple MT8840s

Absolute Maximum Ratings*

	Parameter	Symbol	Min.	Max.	Unit
1	Supply Voltage	V_{DD} - V_{SS}	-0.3	+7.0	V
2	Voltage On Any Pin	V _{Max}	V _{SS} -0.3	V _{DD} +0.3	V
3	Current On Any Pin	I _{Max}		20	mA
4	Storage Temperature	T_{S}	-65	+150	°C
5	Package Power Dissipation	P _{Diss}		850	mW

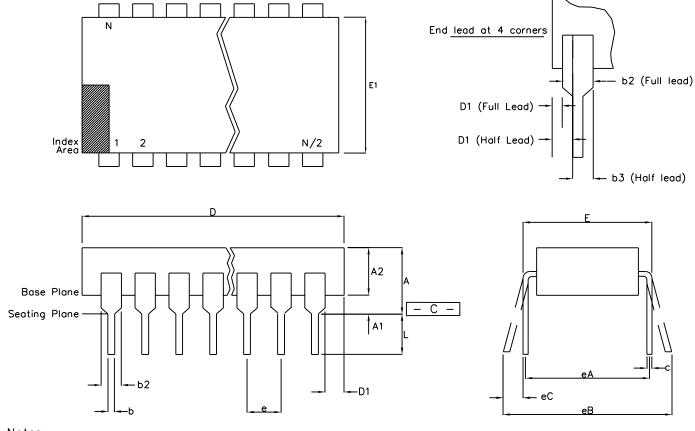
^{*} Exceeding these ratings may cause permanent damage. Functional operation under these conditions is not implied.

Recommended Operating Conditions

	Parameter	Symbol	Min.	Тур.	Max.	Unit
1	Operating Supply Voltages	V_{DD}	4.75	5	5.25	V
2		V _{Ref}		$0.4V_{\mathrm{DD}}$		V
3	Operating Supply Currents	I_{DD}		2.5	5.0	mA
4		I_{Ref}			200	μΑ
5	Operating Temperature	T _O	0		+85	°C
6	Load Capacitance (TxO)	C_{L}			50	pF
7	Load Resistance (TxO)	R_{L}	10			ΚΩ

		Characteristics	Sym.	Min.	Тур.	Max.	Unit	Test Conditions
1		Input Current	I_{IN}			±10	μΑ	$V_{IN} = 0$ to V_{DD}
2	D I	Input Low Voltage	V_{IL}	0		1.5	V	
3	G	Input High Voltage	V_{IH}	3.5		5.0	V	
4	I	Output Low Voltage	V _{OL}			0.4	V	$I_{OL} = 0.4 \text{mA}$
5	T A	Output High Voltage	V _{OH}	4.6			V	$I_{OH} = 0.4 \text{mA}$
6	L	Output Drive Current						
7		N Channel Sink (Except OSC2)	I _{OL}	0.4			mA	$V_{OL} = 0.4V$
8	I /	OSC2		0.1			mA	
9	Ó	P Channel Source (Except OSC2)	I _{OH}	0.4			mA	$V_{OH} = 4.6V$
10		OSC2		0.1			mA	
11		Input Current (RxI, FATC)	I _{IN}			±10	μΑ	$V_{IN} = 0$ to 5.0V
12		Input Resistance (FATC)	R _{IN}	500			ΚΩ	
13	A	(DET to V _{DD})			170		ΚΩ	
14	N	(DET to V _{Ref})			23		ΚΩ	
15	A L	Input Capacitance (RxI)	C _{IN}		50		pF	
16	Ö	(FATC)			10		pF	
17	G	Any Digital Input			5.0	7.5	pF	
18	I	Output Resistance (TxO)	R _O		100		Ω	
19	/	(TCO)			3		ΚΩ	MTC = 0
20	О	(TCO)			30		ΚΩ	MTC = 1
21		Output Offset Voltage (TxO)	V_{O}		±25	±200	mV	
22		Output Voltage (DET)	V _O	2.20	2.36	2.55	V	See Note 1

Notes: 1. Voltage specified is generated internally and measured with no external components connected to DET


		Characteristics	Sym.	Min.	Тур.	Max.	Unit	Test Conditions
1		Crystal/Clock Frequency	f_{C}	3.5759	3.5795	3.5831	MHz	OSC1, OSC2
2		Clock Input (OSC 1)						
3		Rise Time	t _{LHCI}			100	ns	10% - 90% of (V _{DD} - V _{SS})
4	D	Fall Time	t _{HLCI}			100	ns	
5	I	Duty Cycle	DC_{CI}	40	50	60	%	
6	G I	Clock Output (OSC 2)						
7	T	Rise Time	t _{LHCO}		100		ns	$C_L = 30 \text{pF}, 3.58 \text{MHz ext.}$
8	A	Fall Time	t _{HLCO}		100		ns	clock to OSC1
9	L	Duty Cycle	DC_{CO}		50		%	
10	I	Capacitive Load	C_{LCO}			30	pF	
11	/	Clock Output (CK32)	F _{C32}	32508	32541	32574	Hz	fc = 3.5795MHz
12	O	Rise Time	t _{LH32}		100		ns	10% - 90% of (V _{DD} - V _{SS})
13		Fall Time	t _{HL32}		100		ns	$C_L = 100pF$
14		Duty Cycle	DC ₃₂		50		%	
15		Capacitive Load	C _{L32}			100	pF	
16		Warbler Frequency (TCO)	$f_{\mathbf{W}}$	7.935	7.945	7.955	Hz	$fc = 3.5795MHz \pm 0.1\%$
17	T	Low Tone Frequency	f_{LT}	352	390	428	Hz	FATC = 0 , $f_c = 3.5795MHz$
18	T O			1036	1148	1260	Hz	$FATC = V_{DD}, f_c = 3.5795MHz$
19	N	High Tone Frequency	f_{HT}	440	487	535	Hz	FATC = 0 , $f_c = 3.5795MHz$
20	E			1295	1434	1574	Hz	$FATC = V_{DD}, f_c = 3.5795MHz$
21	С	Harmonic Relationship	f_{HT}/f_{LT}		1.25			
22	A	Warbler Output (TCO)						
23	L	Rise Time	t _{LHWO}		500		ns	100 K Ω load to V_{Ref}
24	L	Fall Time	t _{HLWO}		500		ns	$C_L = 30pF, MTC = 0$
25	E R	Duty Cycle	DC_{WO}		50		%	
26	IX	Output Level (TCO)	V _{TCC}		V_{DD}		V_{pp}	MTC = 0
27					0.625		V_{pp}	$MTC = 1$ (100KΩ load to V_{Ref})
28	M	Modulated Frequency	f_{MOD}		32541		Hz	
29	O	Output Level (TxO)	V_{TxO}	225	250	270	mV_{pp}	$V_{DD} = 5V$
30	D	Output Level (TxO)					**	
31	U	variation vs. V _{DD}	V _{TxO}		100		%	
32	L A	Transmit Data Input (TxDI)						
33	T	Rise Time	t _{LHTxDI}			100	ns	
34	O	Fall Time	t _{HLTxDI}			100	ns	
35	R	Data Rate (TxDI)	f _{Data}		2		k/bits	See Note 1

A.C. Characteristics - V_{DD} =5.0 $V\pm5\%$ V_{SS} =0V T=0 - 85 $^{\circ}$ C (All voltages are referenced to V_{SS} /GND)

		Characteristics	Sym.	Min.	Тур.	Max.	Unit	Test Conditions
36	D	Input Impedance (RxI)	Z_{IN}		50		ΚΩ	32 kHz Input Frequency
37	E M	Valid Input Level - Data (RxI)	V _{RxI}	40		400	mV_{pp}	See Note 2
38	O	Valid Input Level - Data + Voice	V _{RxI}			3.0	V _{pp}	
39	D	Receive Data Output (RxDO)	f _{Data}		2		kbit/s	
40	L	Rise Time			100		ns	10% - 90% of (V _{DD} - V _{SS})
41	A T	Fall Time			100		ns	$C_L = 100pF$
42	O	Capacitive Load				100	pF	
43	R	Duty Cycle		40	50	60	%	
44	D	Inband Noise Rejection (S/N)		12			dB	Input Sig. $(RxI) = 400 \text{mV}_{pp}$
45	E M	Attenuation to Voice Signals		40			dB	$f_{in} = 0 - 5KHz$
46	O	Detect Filter Q	Q		3.8			
47	D	Detector Center Frequency			32		kHz	

Notes: 1. All A.C. parameters are based on a typical data rate of 2 kbit/s.

2. Measured with no external resistor to DET input. Detection level internally set to 2.36 V typical.

	Min	Max	Min	Max		
	mm	mm	Inches			
Α		5.33		0.210		
A1	0.38		0.015			
A2	2.92	4.95	0.115	0.195		
b	0.36	0.56	0.014	0.022		
b2	1.14	1.78	0.045	0.070		
b3	n/a	n/a	n/a	n/a		
С	0.20	0.36	0.008	0.014		
D	22.35	23.37	0.880	0.920		
D1	0.13		0.005			
E	7.62	8.26	0.300	0.325		
E1	6.10	7.11	0.240	0.280		
е	2.54	BSC	0.100	BSC		
eА	7.62	BSC	0.300) BSC		
eВ		10.92		0.430		
еC	0.00	1.52	0.000	0.060		
L	2.92	3.81	0.115	0.150		
Ν	1	8	1	8		
Conforms to Jedec MS-001AC Issue D						

Notes:

- 1. Leadframe Material: Copper
 2. Leadframe finish: Solder Plate
 3. Dimensions D, D1 & E1 do not include mould flash or protrusions.
 4. Dimensions E & eA are measured with leads constrained to be perpendicular to datum C —
 5. Dimensions eB & eC are measured with the leads unconstrained
 6. Controlling dimensions are Inches. Millimeter conversions are not necessarily exact.
 7. N is the maximum of terminal positions.

This drawing supersedes: -

Plymouth/Swindon drawing # 418/ED/39502/004

© Zarlink	Semiconducto	r 2002 All right	s reserved.			Package Code
ISSUE	1	2			Previous package codes	Package Outline for
ACN	202563	212483		ZARLINK SEMICONDUCTOR	DP / E	18 Lead PDIP
DATE	9Jun97	5Apr02		JEWI CONDUCTOR	·	0000007.10
APPRD.						GPD00348

For more information about all Zarlink products visit our Web Site at www.zarlink.com

Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.

Purchase of Zarlink's I²C components conveys a licence under the Philips I²C Patent rights to use these components in and I²C System, provided that the system conforms to the I²C Standard Specification as defined by Philips.

Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.

Copyright Zarlink Semiconductor Inc. All Rights Reserved.

TECHNICAL DOCUMENTATION - NOT FOR RESALE