

# SOT-227 Power Module Insulated Standard Recovery Rectifier, 160 A



| PRIMARY CHARACTERISTICS          |                                       |  |  |  |  |  |
|----------------------------------|---------------------------------------|--|--|--|--|--|
| I <sub>F(AV)</sub> per module    | 160 A, T <sub>C</sub> = 101 °C        |  |  |  |  |  |
| V <sub>FM</sub> typical at 100 A | 1.16 V                                |  |  |  |  |  |
| Type                             | Modules - diode, high voltage         |  |  |  |  |  |
| Package                          | SOT-227                               |  |  |  |  |  |
| Circuit configuration            | Two separate diodes, parallel pin-out |  |  |  |  |  |

#### **FEATURES**

- Two fully independent diodes
- Fully insulated package



 High voltage rectifiers optimized for very low forward voltage drop

- Industry standard outline
- UL approved file E78996
- Material categorization: for definitions of compliance please see <a href="https://www.vishav.com/doc?99912">www.vishav.com/doc?99912</a>

#### **DESCRIPTION / APPLICATIONS**

These devices are intended for use in main rectification. Single or three phase bridge.

| MAJOR RATINGS AND CHARACTERISTICS |                 |             |                   |  |  |  |
|-----------------------------------|-----------------|-------------|-------------------|--|--|--|
| SYMBOL                            | CHARACTERISTICS | VALUES      | UNITS             |  |  |  |
| I <sub>F(AV)</sub>                | 90 °C           | 91          |                   |  |  |  |
| I <sub>F(RMS)</sub>               |                 | 138         | Δ.                |  |  |  |
| I <sub>FSM</sub>                  | 50 Hz           | 940         | A                 |  |  |  |
|                                   | 60 Hz           | 985         |                   |  |  |  |
| 10.                               | 50 Hz           | 4420        | A <sup>2</sup> s  |  |  |  |
| l <sup>2</sup> t                  | 60 Hz           | 4015        | A-S               |  |  |  |
| I <sup>2</sup> √t                 |                 | 44 180      | A <sup>2</sup> √s |  |  |  |
| V <sub>RRM</sub>                  |                 | 1200        | V                 |  |  |  |
| TJ                                |                 | -55 to +150 | °C                |  |  |  |

#### **ELECTRICAL SPECIFICATIONS**

| VOLTAGE RATINGS |                 |                                                                   |                                                                        |                                             |  |  |  |  |  |
|-----------------|-----------------|-------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------|--|--|--|--|--|
| TYPE NUMBER     | VOLTAGE<br>CODE | V <sub>RRM,</sub> MAXIMUM REPETITIVE<br>PEAK REVERSE VOLTAGE<br>V | V <sub>RSM</sub> , MAXIMUM NON-REPETITIVE<br>PEAK REVERSE VOLTAGE<br>V | I <sub>RRM</sub> TYPICAL<br>AT 150 °C<br>mA |  |  |  |  |  |
| VS-RA160FA120   | 120             | 1200                                                              | 1300                                                                   | 1.0                                         |  |  |  |  |  |



| FORWARD CONDUCTION                                          |                     |                                                                                 |                                           |                                                                 |       |                  |
|-------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------|-------|------------------|
| PARAMETER                                                   | SYMBOL              |                                                                                 | TEST CON                                  | VALUES                                                          | UNITS |                  |
| Maximum average forward current at case temperature per leg | I <sub>F(AV)</sub>  | 180° condu                                                                      | 180° conduction, half sine wave, 90 °C    |                                                                 |       | Α                |
| Maximum RMS forward current per leg                         | I <sub>F(RMS)</sub> | DC at 101 °                                                                     | °C case temper                            | ature                                                           | 138   |                  |
|                                                             |                     | t = 10 ms                                                                       | No voltage                                |                                                                 | 940   |                  |
| Maximum peak, one-cycle forward,                            |                     | t = 8.3 ms                                                                      | reapplied                                 |                                                                 | 985   | А                |
| non-repetitive surge current per leg                        | I <sub>FSM</sub>    | t = 10 ms                                                                       | 100 % V <sub>RRM</sub>                    | 0                                                               | 790   |                  |
|                                                             |                     | t = 8.3 ms                                                                      | reapplied                                 | Sinusoidal half wave,<br>initial<br>$T_J = T_J \text{ maximum}$ | 825   |                  |
| Marian of Plantain and In                                   | l <sup>2</sup> t    | t = 10 ms                                                                       | No voltage                                |                                                                 | 4420  | A <sup>2</sup> s |
|                                                             |                     | t = 8.3 ms                                                                      | reapplied                                 |                                                                 | 4015  |                  |
| Maximum I <sup>2</sup> t for fusing per leg                 |                     | t = 10 ms                                                                       | 100 % V <sub>RRM</sub>                    |                                                                 | 3125  |                  |
|                                                             |                     | t = 8.3 ms                                                                      | reapplied                                 |                                                                 | 2840  |                  |
| Maximum I <sup>2</sup> √t for fusing per leg                | I <sup>2</sup> √t   | t = 0.1 ms t                                                                    | t = 0.1 ms to 10 ms, no voltage reapplied |                                                                 |       | A²√s             |
| Low level of threshold voltage per leg                      | V <sub>F(TO)1</sub> | (40.70)                                                                         |                                           | 0.80                                                            | V     |                  |
| Low level value of forward slope resistance                 | r <sub>f1</sub>     | (16.7 % x $\pi$ x $I_{F(AV)}$ ) < I < $\pi$ x $I_{F(AV)}$ , $T_J = T_J$ maximum |                                           | 4.32                                                            | mΩ    |                  |
| High level of threshold voltage per leg                     | V <sub>F(TO)2</sub> | $(I > \pi \times I_{F(AV)}), T_J = T_J \text{ maximum}$                         |                                           |                                                                 | 0.93  | V                |
| High level value of forward slope resistance                | r <sub>f2</sub>     |                                                                                 |                                           |                                                                 | 4.14  | mΩ               |
| Maximum famuard valtage drap par lag                        | V                   | I <sub>FM</sub> = 100 A, T <sub>J</sub> = 25 °C                                 |                                           |                                                                 | 1.27  | \/               |
| Maximum forward voltage drop per leg                        | $V_{FM}$            | I <sub>FM</sub> = 100 A, T <sub>J</sub> = 150 °C                                |                                           |                                                                 | 1.22  | V                |

| BLOCKING                             |           |                                                            |        |       |
|--------------------------------------|-----------|------------------------------------------------------------|--------|-------|
| PARAMETER                            | SYMBOL    | TEST CONDITIONS                                            | VALUES | UNITS |
| Maximum peak reverse leakage current | 1         | T <sub>J</sub> = 25 °C                                     | 150    | μA    |
| per leg                              | IRRM      | T <sub>J</sub> = 150 °C                                    | 1.5    | mA    |
| RMS insulation voltage               | $V_{INS}$ | T <sub>J</sub> = 25 °C, any terminal to case, t = 1 minute | 2500   | V     |

| THERMAL AND MECHANICAL SPECIFICATIONS |            |                   |         |      |            |              |  |
|---------------------------------------|------------|-------------------|---------|------|------------|--------------|--|
| PARAMETER                             |            | SYMBOL            | MIN.    | TYP. | MAX.       | UNITS        |  |
| Thermal resistance,                   | per leg    | В                 | =       | -    | 0.26       |              |  |
| junction to case                      | per module | R <sub>thJC</sub> | -       | -    | 0.13       | °C/W         |  |
| Thermal resistance, case to heatsink  | per module | R <sub>thCS</sub> | -       | 0.1  | -          |              |  |
| Weight                                |            |                   | =       | 30   | -          | g            |  |
| Mounting torque to terminal           |            |                   | -       | -    | 1.1 (9.7)  | Nm (lbf. in) |  |
| Mounting torque to heatsink           |            |                   | =       | -    | 1.8 (15.9) | Nm (lbf. in) |  |
| Case style                            |            |                   | SOT-227 |      |            |              |  |

| AR CONDUCTION PER JUNCTION |       |          |         |         |       |       |          |         |         |       |       |
|----------------------------|-------|----------|---------|---------|-------|-------|----------|---------|---------|-------|-------|
| DEVICE                     | S     | INE HALF | WAVE CO | NDUCTIO | N     | REC   | CTANGULA | AR WAVE | CONDUCT | NOI   | UNITS |
| DEVICE                     | 180°  | 120°     | 90°     | 60°     | 30°   | 180°  | 120°     | 90°     | 60°     | 30°   | °C/W  |
| VS-RA160FA120              | 0.109 | 0.122    | 0.149   | 0.213   | 0.355 | 0.069 | 0.119    | 0.159   | 0.223   | 0.358 | C/VV  |

#### www.vishay.com

# Vishay Semiconductors

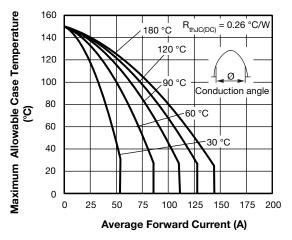



Fig. 1 - Current Ratings Characteristics (A)

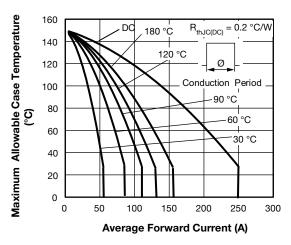



Fig. 2 - Current Ratings Characteristics (A)

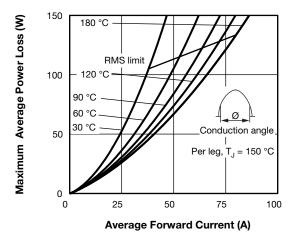



Fig. 3 - Current Ratings Characteristics (A)

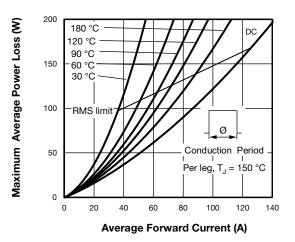



Fig. 4 - Forward Power Loss Characteristics

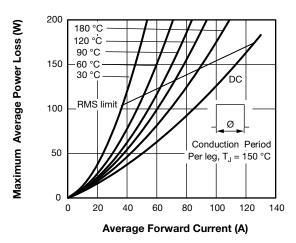



Fig. 5 - Forward Power Loss Characteristics

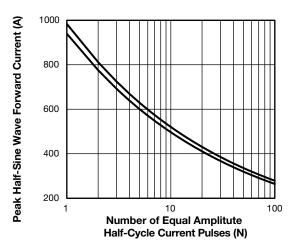



Fig. 6 - Maximum Non-Repetitive Surge Current

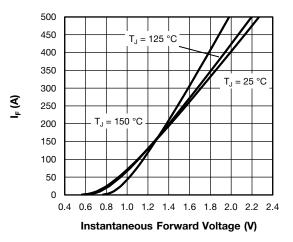



Fig. 7 - Typical Forward Voltage Characteristics

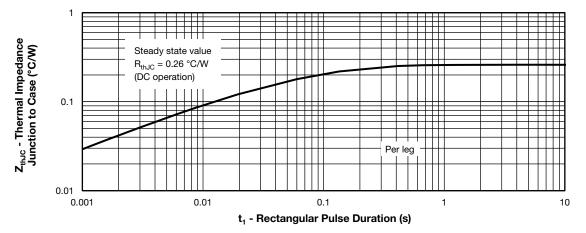
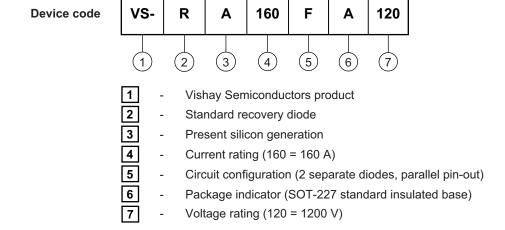
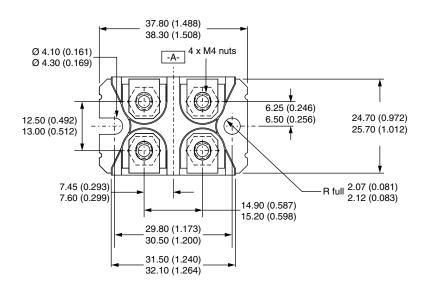



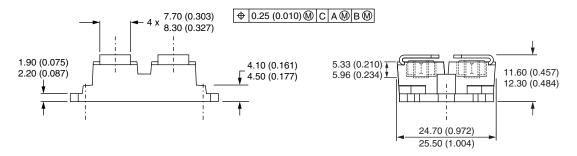

Fig. 8 - Thermal Impedance Z<sub>thJC</sub> Characteristics

### **ORDERING INFORMATION TABLE**






# www.vishay.com Vishay Semiconductors


| CIRCUIT CONFI                         | GURATION                      |                    |
|---------------------------------------|-------------------------------|--------------------|
| CIRCUIT<br>DESCRIPTION                | CIRCUIT<br>CONFIGURATION CODE | CIRCUIT DRAWING    |
| Two separate diodes, parallel pin-out | F                             | Lead Assignment  4 |

| LINKS TO RELATED DOCUMENTS |                          |  |  |  |  |
|----------------------------|--------------------------|--|--|--|--|
| Dimensions                 | www.vishay.com/doc?95423 |  |  |  |  |
| Packaging information      | www.vishay.com/doc?95425 |  |  |  |  |

## SOT-227 Generation 2

#### **DIMENSIONS** in millimeters (inches)





#### Note

· Controlling dimension: millimeter



# **Legal Disclaimer Notice**

Vishay

## **Disclaimer**

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.