

STP150NF04

N-channel 40 V, 0.005 Ω typ., 80 A STripFET™II Power MOSFET in a TO-220 package

Datasheet — production data

Features

Туре	V _{DSS}	R _{DS(on)} max	I _D
STP150NF04	40 V	< 0.007 Ω	80 A

- 100% avalanche tested
- Standard level gate drive

Applications

Switching applications

Description

This Power MOSFET has been developed using STMicroelectronics' unique STripFET process, which is specifically designed to minimize input capacitance and gate charge. This renders the device suitable for use as primary switch in advanced high-efficiency isolated DC-DC converters for telecom and computer applications, and applications with low gate charge driving requirements.

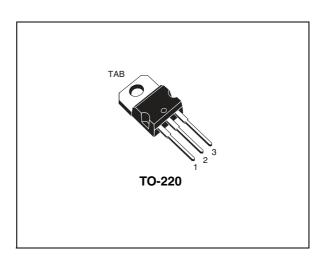


Figure 1. Internal schematic diagram

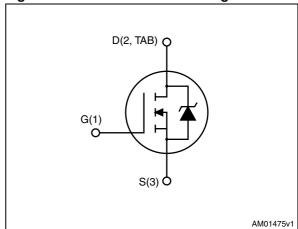


Table 1. Device summary

Order code	Marking	Package	Packaging	
STP150NF04	P150NF04	TO-220	Tube	

Contents STP150NF04

Contents

1	Electrical ratings		3
2	Electrical characteristics		4
	2.1 Electrical characteristics (curves)		6
3	Test circuits		8
4	Package mechanical data		9
5	Revision history	1	1

STP150NF04 Electrical ratings

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	40	V
V _{GS}	Gate- source voltage	± 20	V
I _D ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	80	Α
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	80	Α
I _{DM} ⁽²⁾	Drain current (pulsed)	320	Α
P _{tot}	Total dissipation at T _C = 25 °C	300	W
	Derating factor	2	W/°C
dv/dt (3)	Peak diode recovery voltage slope	2	V/ns
E _{AS} (4)	Single pulse avalanche energy	0.6	J
T _{stg}	Storage temperature		°C
Tj	Max. operating junction temperature	-55 to 175	

^{1.} Current limited by package

Table 3. Thermal resistance

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	0.5	°C/W
R _{thj-pcb} (1)	Thermal resistance junction-pcb max	35	°C/W

^{1.} When mounted on 1inch2 FR-4 board, 2 oz of Cu

^{2.} Pulse width limited by safe operating area

^{3.} $I_{SD} \leq 80A$, $di/dt \leq 300$ A/ μ s, V_{DD} = $80\%V_{(BR)DSS}$

^{4.} Starting Tj = 25 °C, I_D = 40 A, V_{DD} =30 V

Electrical characteristics STP150NF04

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Table 4. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	40			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 40 V V _{DS} = 40 V @ T _j = 125 °C			1 10	μ Α μ Α
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2		4	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 40 A		0.005	0.007	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
9 _{fs} ⁽¹⁾	Forward transconductance	V _{DS} = 15 V, I _D = 15 A	-	90	-	S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} = 25 V, f =1 MHz V _{GS} =0	-	3650 1145 400	-	pF pF pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V _{DD} =32 V, I _D =80 A, V _{GS} =10 V (see Figure 14)	-	118 20 45	150	nC nC nC

^{1.} Pulsed: Pulse duration = 300 µs, duty cycle 1.5%

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r t _{d(off)} t _f	Turn-on delay time Rise time Turn-off delay time Fall time	V_{DD} = 25 V, I_{D} = 40 A R_{G} = 4.7 Ω V_{GS} = 10 V (see Figure 13)	-	15 150 70 45	-	ns ns ns ns

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		80	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)	$I_{SD} = 80 \text{ A}, V_{GS} = 0$	1		320	Α
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 80 \text{ A}, V_{GS} = 0$	-		1.3	ns nC A
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I_{SD} = 80 A, di/dt=100 A/ μ s V_{DD} = 25 V, T_j = 150 °C (see Figure 15)	-	73 170 4.6		ns nC A

^{1.} Pulse width limited by safe operating area

^{2.} Pulsed: pulse duration=300µs, duty cycle 1.5%

Electrical characteristics STP150NF04

2.1 Electrical characteristics (curves)

Figure 2. Safe operating area

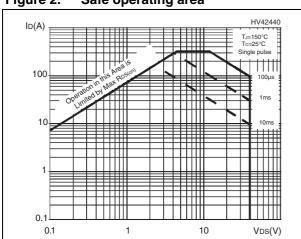


Figure 3. Thermal impedance

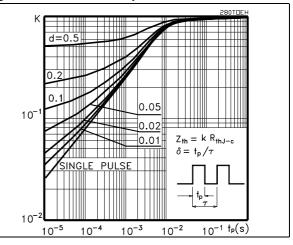


Figure 4. Output characteristics

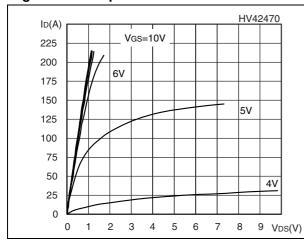


Figure 5. Transfer characteristics

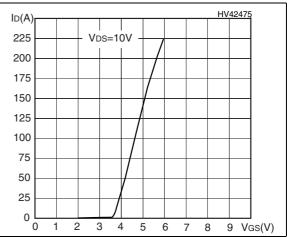


Figure 6. Normalized BV_{DSS} vs temperature

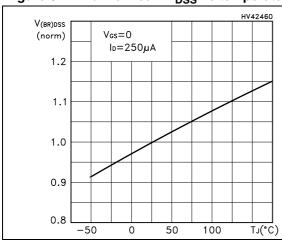
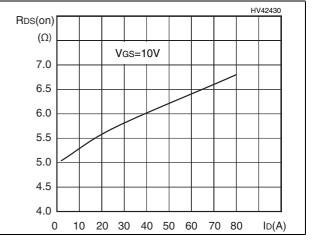



Figure 7. Static drain-source on-resistance

HV42420 C(pF) $V_{GS}(V)$ f=1MHz 9000 V_{DD}=20V Vgs=0 10 10=80A 8000 7000 6000 5000 Ciss 4000 3000 2000 Coss 1000 Crss 0 5 VDS(V) 0 15 20 40 60 80 100 120 Qg(nC)

Figure 8. Gate charge vs gate-source voltage Figure 9. Capacitance variations

Figure 10. Normalized gate threshold voltage Figure 11. Normalized on-resistance vs vs temperature temperature

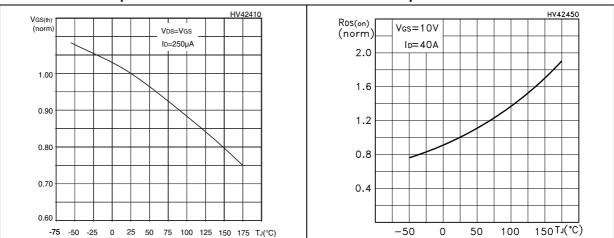
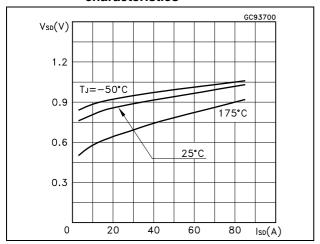



Figure 12. Source-drain diode forward characteristics

Test circuits STP150NF04

3 Test circuits

Figure 13. Switching times test circuit for resistive load

Figure 14. Gate charge test circuit

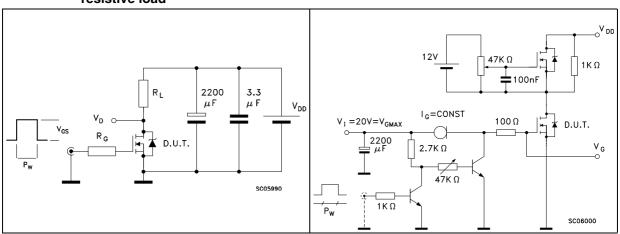


Figure 15. Test circuit for inductive load switching and diode recovery times

Figure 16. Unclamped inductive load test circuit

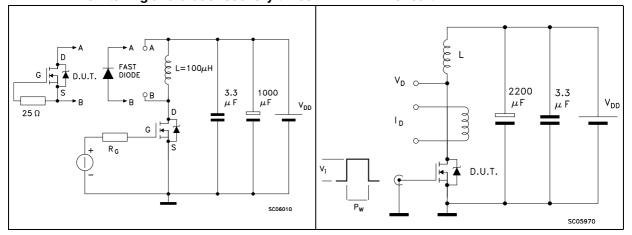
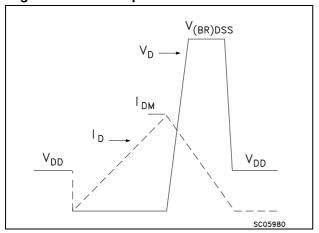



Figure 17. Unclamped inductive waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Table 8. TO-220 type A mechanical data

		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
С	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØP	3.75		3.85
Q	2.65		2.95

Figure 18. TO-220 type A drawing

STP150NF04 Revision history

5 Revision history

Table 9. Document revision history

Date	Revision	Changes
01-Jul-2008	1	First release
25-Sep-2009	2	Inserted device in TO-220.
04-Oct-2012	3	Updated title and description on the cover page. Updated mechanical data.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

12/12

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES. ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 14848 Rev 3

