April 2001

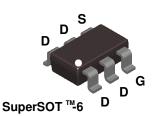
Si3445DV

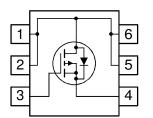
P-Channel 1.8V Specified PowerTrench[®] MOSFET

General Description

FAIRCHILD

This P-Channel 1.8V specified MOSFET uses Fairchild's low voltage PowerTrench process. It has been optimized for battery power management applications.


Applications


- Battery management
- · Load switch
- Battery protection

Features

```
• -5.5 A, -20 V. R_{DS(ON)} = 33 \text{ m}\Omega @ V_{GS} = -4.5 \text{ V}
R_{DS(ON)} = 43 \text{ m}\Omega @ V_{GS} = -2.5 \text{ V}
R_{DS(ON)} = 60 \text{ m}\Omega @ V_{GS} = -1.8 \text{ V}
```

- Fast switching speed.
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$

Absolute Maximum Ratings T_{A=25°C unless otherwise noted}

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		-20	V
V _{GSS}	Gate-Source Voltage		±8	V
ID	Drain Current – Continuous	(Note 1a)	-5.5	A
	– Pulsed		-20	
P _D	Maximum Power Dissipation	(Note 1a)	1.6	W
		(Note 1b)	0.8	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

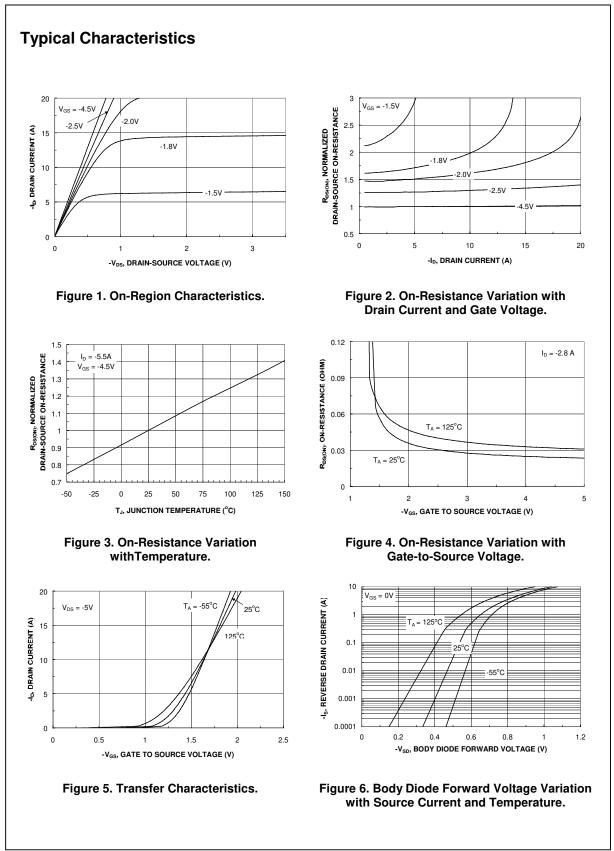
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	30	°C/W

Package Marking and Ordering Information

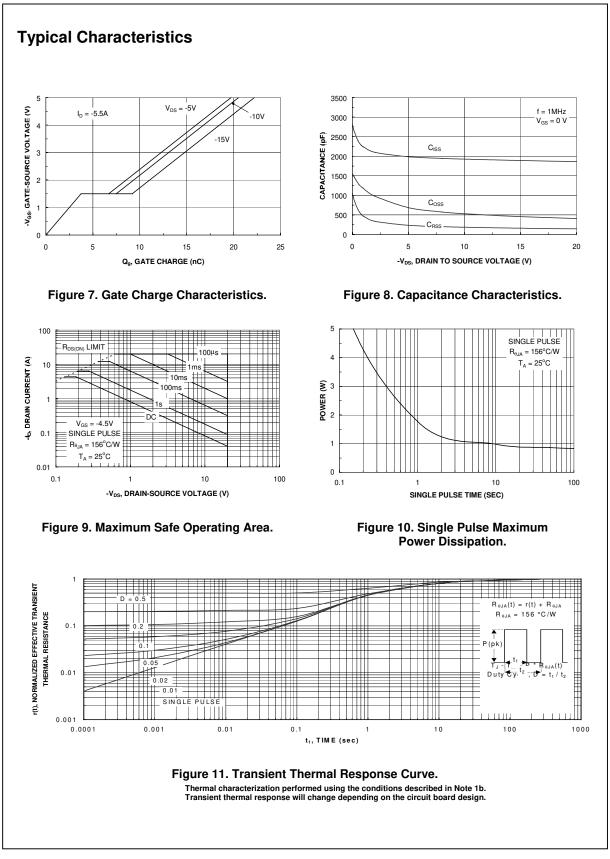
Device Marking	Device	Reel Size	Tape width	Quantity
.445	Si3445DV	7"	8mm	3000 units

©2001 Fairchild Semiconductor Corporation

Si3445DV


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
<u> </u>				71		
BV _{DSS}	acteristics Drain-Source Breakdown Voltage	V _{GS} = 0 V, I _D = -250 μA	-20			V
	Breakdown Voltage Temperature	$I_D = -250 \ \mu$ A, Referenced to 25°C		-12		mV/°C
ΔT_J	Coefficient					
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 V$, $V_{GS} = 0 V$			-1	μA
I _{GSSF}	Gate-Body Leakage, Forward	$V_{GS} = 8 V$, $V_{DS} = 0 V$			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -8 V$ $V_{DS} = 0 V$			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{\text{DS}} = V_{\text{GS}}, I_{\text{D}} = -250 \ \mu\text{A}$	-0.4	-0.7	-1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}, \text{Referenced to } 25^\circ\text{C}$		3		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{ll} V_{GS} = -4.5 \ V, & I_D = -5.5 \ A \\ V_{GS} = -2.5 \ V, & I_D = -4.8 \ A \\ V_{GS} = -1.8 \ V, & I_D = -4.0 \ A \end{array} $		24 30 42	33 43 60	mΩ
I _{D(on)}	On-State Drain Current	$V_{GS} = -4.5 V$, $V_{DS} = -5 V$	-20			Α
g fs	Forward Transconductance	$V_{\text{DS}} = -5 \ \text{V}, \qquad I_{\text{D}} = -3.5 \ \text{A}$		23		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = -10 V$, $V_{GS} = 0 V$,		1926		pF
Coss	Output Capacitance	f = 1.0 MHz		530		pF
C _{rss}	Reverse Transfer Capacitance			185		pF
Switchin	g Characteristics (Note 2)			L		
t _{d(on)}	Turn–On Delay Time	$V_{DD} = -10 V$, $I_D = -1 A$,		13	23	ns
t _r	Turn–On Rise Time	$V_{GS} = -4.5 \text{ V}, \qquad R_{GEN} = 6 \Omega$		11	20	ns
t _{d(off)}	Turn–Off Delay Time			90	144	ns
t _f	Turn–Off Fall Time			45	72	ns
Qg	Total Gate Charge	$V_{DS} = -10 \text{ V}, \qquad I_{D} = -3.5 \text{ A},$		19	30	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = -4.5 V$		4		nC
Q _{gd}	Gate-Drain Charge	1		7.5		nC
Drain_S	ource Diode Characteristics	and Maximum Batings				
	Maximum Continuous Drain–Source				-1.3	Α
V _{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = -1.3 A$ (Note 2)		-0.7	-1.2	V

1. $R_{\theta,JA}$ is the sum of the junction-to-case and case-to-ambient resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta,CA}$ is determined by the user's board design.


a. 78°C/W when mounted on a 1in² pad of 2oz copper on FR-4 board.

b. 156°C/W when mounted on a minimum pad.

2. Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2.0%

Si3445DV

Si3445DV

Si3445DV Rev A(W)

TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. FAST[®] ACEx™ PACMAN™ SuperSOT™-3 Bottomless™ FASTr™ POP™ SuperSOT[™]-6 CoolFET™ GlobalOptoisolator™ PowerTrench ® SuperSOT[™]-8 QFET™ *CROSSVOLT*™ GTO™ SvncFET™ DenseTrench™ HiSeC™ QS™ TinyLogic™ UHC™ DOME™ ISOPLANAR™ QT Optoelectronics[™] **EcoSPARK™** LittleFET™ Quiet Series™ UltraFET[®] SILENT SWITCHER® VCX™ E²CMOS[™] MicroFET™ EnSigna™ SMART START™ MICROWIRE™ FACT™ OPTOLOGIC™ Star* Power™ OPTOPLANAR™ Stealth™ FACT Quiet Series[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN: NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	Formative or In Design First Production Full Production