# **ON Semiconductor**

# Is Now



To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

# **Quad 2-Channel Multiplexer** with 3-State Outputs

The MC74LVX257 is an advanced high speed CMOS quad 2-channel multiplexer fabricated with silicon gate CMOS technology. It consists of four 2-input digital multiplexers with common select (S) and enable  $(\overline{OE})$  inputs. When  $(\overline{OE})$  is held High, selection of data is inhibited and all the outputs go Low.

The select decoding determines whether the A or B inputs get routed to the corresponding Y outputs.

The inputs tolerate voltages up to 7.0~V, allowing the interface of 5.0~V systems to 3.0~V systems.

# **Features**

- High Speed:  $t_{PD} = 4.5 \text{ ns}$  (Typ) at  $V_{CC} = 3.3 \text{ V}$
- Low Power Dissipation:  $I_{CC} = 4 \mu A$  (Max) at  $T_A = 25^{\circ}C$
- High Noise Immunity:  $V_{NIH} = V_{NIL} = 28\% V_{CC}$
- Power Down Protection Provided on Inputs
- Balanced Propagation Delays
- Designed for 2.0 V to 5.5 V Operating Range
- Low Noise: V<sub>OLP</sub> = 0.8 V (Max)
- Pin and Function Compatible with Other Standard Logic Families
- Latchup Performance Exceeds 300 mA
- Chip Complexity: FETs = 100; Equivalent Gates = 25
- ESD Performance:

Human Body Model > 2000 V; Machine Model > 200 V

• These Devices are Pb-Free and are RoHS Compliant



# ON Semiconductor®

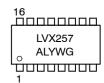
http://onsemi.com

# MARKING DIAGRAMS



SOIC-16 D SUFFIX CASE 751B






TSSOP-16 DT SUFFIX CASE 948F





SOEIAJ-16 M SUFFIX CASE 966



LVX257 = Specific Device Code A = Assembly Location

WL, L = Wafer Lot Y = Year WW, W = Work Week G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

## ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

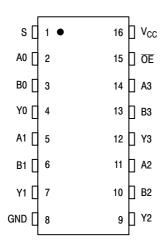



Figure 1. Pin Assignment

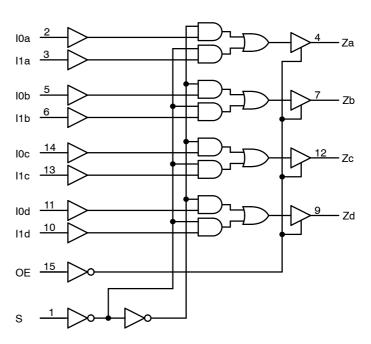



Figure 2. Expanded Logic Diagram

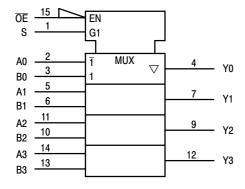



Figure 3. IEC Logic Symbol

# **FUNCTION TABLE**

| Inp | Outputs |         |
|-----|---------|---------|
| OE  | S       | Y0 - Y3 |
| Н   | Х       | Z       |
| L   | L       | A0-A3   |
| L   | Н       | B0-B3   |

A0 - A3, B0 - B3 = the levels of the respective Data-Word Inputs.

# **ORDERING INFORMATION**

| Device          | Package                | Shipping <sup>†</sup> |
|-----------------|------------------------|-----------------------|
| MC74LVX257DG    | SOIC-16<br>(Pb-Free)   | 48 Units / Rail       |
| MC74LVX257DR2G  | SOIC-16<br>(Pb-Free)   | 2500 Tape & Reel      |
| MC74LVX257DTG   | TSSOP-16*              | 96 Units / Rail       |
| MC74LVX257DTR2G | TSSOP-16*              | 2500 Tape & Reel      |
| MC74LVX257MG    | SOEIAJ-16              | 50 Units / Rail       |
| MC74LVX257MELG  | SOEIAJ-16<br>(Pb-Free) | 2000 Tape & Reel      |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

<sup>\*</sup>This package is inherently Pb-Free.

# **MAXIMUM RATINGS**

| Symbol                   | Para                                            | ameter                                                                               | Value                        | Unit |
|--------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------|------|
| V <sub>CC</sub>          | Positive DC Supply Voltage                      |                                                                                      | -0.5 to +7.0                 | ٧    |
| V <sub>IN</sub>          | Digital Input Voltage                           |                                                                                      | -0.5 to +7.0                 | ٧    |
| V <sub>OUT</sub>         | DC Output Voltage                               |                                                                                      | -0.5 to V <sub>CC</sub> +0.5 | V    |
| I <sub>IK</sub>          | Input Diode Current                             |                                                                                      | -20                          | mA   |
| I <sub>OK</sub>          | Output Diode Current                            |                                                                                      | ±20                          | mA   |
| I <sub>OUT</sub>         | DC Output Current, per Pin                      |                                                                                      | ± 25                         | mA   |
| I <sub>CC</sub>          | DC Supply Current, V <sub>CC</sub> and GND Pins |                                                                                      | ±75                          | mA   |
| P <sub>D</sub>           | Power Dissipation in Still Air                  | SOIC Package<br>TSSOP                                                                | 200<br>180                   | mW   |
| T <sub>STG</sub>         | Storage Temperature Range                       |                                                                                      | -65 to +150                  | °C   |
| V <sub>ESD</sub>         | ESD Withstand Voltage                           | Human Body Model (Note 1)<br>Machine Model (Note 2)<br>Charged Device Model (Note 3) | >2000<br>>200<br>>2000       | V    |
| I <sub>LATCHU</sub><br>P | Latchup Performance                             | Above V <sub>CC</sub> and Below GND at 125°C (Note 4)                                | ±300                         | mA   |
| $\theta_{JA}$            | Thermal Resistance, Junction-to-Ambient         | SOIC Package<br>TSSOP                                                                | 143<br>164                   | °C/W |

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

- 1. Tested to EIA/JESD22-A114-A
- 2. Tested to EIA/JESD22-A115-A
- 3. Tested to JESD22-C101-A
- 4. Tested to EIA/JESD78

# RECOMMENDED OPERATING CONDITIONS

| Symbol                          | Characteristics                                                    | Min | Max             | Unit |
|---------------------------------|--------------------------------------------------------------------|-----|-----------------|------|
| V <sub>CC</sub>                 | DC Supply Voltage                                                  | 2.0 | 3.6             | V    |
| V <sub>IN</sub>                 | DC Input Voltage                                                   | 0   | 5.5             | V    |
| V <sub>OUT</sub>                | DC Output Voltage                                                  | 0   | V <sub>CC</sub> | V    |
| T <sub>A</sub>                  | Operating Temperature Range, all Package Types                     | -40 | 85              | °C   |
| t <sub>r</sub> , t <sub>f</sub> | Input Rise or Fall Time $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ | 0   | 100             | ns/V |

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation,  $V_{in}$  and  $V_{out}$  should be constrained to the range GND  $\leq$  ( $V_{in}$  or  $V_{out}$ )  $\leq$   $V_{CC}$ .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or  $V_{\rm CC}$ ). Unused outputs must be left open.

# DC CHARACTERISTICS (Voltages Referenced to GND)

|                 |                                                      |                                                                                                                       | V <sub>CC</sub>   | Т                                                                  | A = 25°C   | <b>C</b>                                                           | $-40^{\circ}C \le T_{A} \le 85^{\circ}C$                           |                                                                    |      |
|-----------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------|------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|------|
| Symbol          | Parameter                                            | Condition                                                                                                             | (V)               | Min                                                                | Тур        | Max                                                                | Min                                                                | Max                                                                | Unit |
| V <sub>IH</sub> | Minimum High-Level<br>Input Voltage                  |                                                                                                                       | 2.0<br>3.0<br>3.6 | 0.75 V <sub>CC</sub><br>0.7 V <sub>CC</sub><br>0.7 V <sub>CC</sub> |            |                                                                    | 0.75 V <sub>CC</sub><br>0.7 V <sub>CC</sub><br>0.7 V <sub>CC</sub> |                                                                    | V    |
| V <sub>IL</sub> | Maximum Low-Level Input Voltage                      |                                                                                                                       | 2.0<br>3.0<br>3.6 |                                                                    |            | 0.25 V <sub>CC</sub><br>0.3 V <sub>CC</sub><br>0.3 V <sub>CC</sub> |                                                                    | 0.25 V <sub>CC</sub><br>0.3 V <sub>CC</sub><br>0.3 V <sub>CC</sub> | V    |
| V <sub>OH</sub> | High-Level Output<br>Voltage                         | $\begin{split} I_{OH} &= -50 \; \mu\text{A} \\ I_{OH} &= -50 \; \mu\text{A} \\ I_{OH} &= -4 \; \text{mA} \end{split}$ | 2.0<br>3.0<br>3.0 | 1.9<br>2.9<br>2.58                                                 | 2.0<br>3.0 |                                                                    | 1.9<br>2.9<br>2.48                                                 |                                                                    | V    |
| V <sub>OL</sub> | Low-Level Output<br>Voltage                          | $\begin{split} I_{OL} &= 50 \; \mu\text{A} \\ I_{OL} &= 50 \; \mu\text{A} \\ I_{OL} &= 4 \; \text{mA} \end{split}$    | 2.0<br>3.0<br>3.0 |                                                                    | 0.0<br>0.0 | 0.1<br>0.1<br>0.36                                                 |                                                                    | 0.1<br>0.1<br>0.44                                                 | V    |
| I <sub>OZ</sub> | Maximum 3-State<br>Leakage Current                   | $V_{IN} = V_{IH}$ or $V_{IL}$<br>$V_{OUT} = V_{CC}$ or GND                                                            | 3.6               |                                                                    |            | ±0.1                                                               |                                                                    | ±1.0                                                               | μΑ   |
| I <sub>IN</sub> | Input Leakage Current                                | V <sub>IN</sub> = 5.5 V or GND                                                                                        | 0 to 3.6          |                                                                    |            | ±0.1                                                               |                                                                    | ±1.0                                                               | μΑ   |
| I <sub>CC</sub> | Maximum Quiescent<br>Supply Current<br>(per package) | V <sub>IN</sub> = V <sub>CC</sub> or GND                                                                              | 3.6               | 1.0                                                                | 1.0        | 2.0                                                                |                                                                    | 40                                                                 | μΑ   |

# AC ELECTRICAL CHARACTERISTICS Input $t_r = t_f = 3.0 \text{ ns}$

|                                        |                                           |                                                                      |                              |     | T <sub>A</sub> = 25°C | ;            | -40°C ≤                 | T <sub>A</sub> ≤ 85°C |      |
|----------------------------------------|-------------------------------------------|----------------------------------------------------------------------|------------------------------|-----|-----------------------|--------------|-------------------------|-----------------------|------|
| Symbol                                 | Parameter                                 | Test Conditi                                                         | ons                          | Min | Тур                   | Max          | Min                     | Max                   | Unit |
| t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | Maximum Propagation<br>Delay, A or B to Y | V <sub>CC</sub> = 2.7 V                                              | $C_L = 15pF$<br>$C_L = 50pF$ |     | 6.5<br>9.5            | 10.0<br>14.0 | 1.0<br>1.0              | 15.0<br>18.5          | ns   |
|                                        |                                           | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$                           | $C_L = 15pF$<br>$C_L = 50pF$ |     | 4.5<br>7.5            | 8.0<br>12.0  | 1.0<br>1.0              | 10.0<br>13.5          |      |
| t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | Maximum Propagation<br>Delay, S to Y      | V <sub>CC</sub> = 2.7 V                                              | $C_L = 15pF$<br>$C_L = 50pF$ |     | 8.0<br>10.5           | 12.0<br>15.5 | 1.0<br>1.0              | 17.0<br>20.0          | ns   |
|                                        |                                           | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$                           | $C_L = 15pF$<br>$C_L = 50pF$ |     | 6.0<br>8.5            | 10.0<br>13.5 | 1.0<br>1.0              | 12.0<br>15.5          |      |
| t <sub>PZL</sub> ,<br>t <sub>PZH</sub> | Maximum Output<br>Enable, Time, OE to Y   | $V_{CC} = 2.7 \text{ V}$ $R_L = 1 \text{ k}\Omega$                   | $C_L = 15pF$<br>$C_L = 50pF$ |     | 7.5<br>10.5           | 11.5<br>15.0 | 1.0<br>1.0              | 16.5<br>18.0          | ns   |
|                                        |                                           | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ $R_L = 1 \text{ k}\Omega$ | $C_L = 15pF$<br>$C_L = 50pF$ |     | 5.5<br>8.5            | 9.5<br>13.0  | 1.0<br>1.0              | 11.5<br>15.0          |      |
| t <sub>PLZ</sub> ,<br>t <sub>PHZ</sub> | Maximum Output<br>Disable, Time, OE to Y  | $V_{CC} = 2.7$ $R_L = 1 \text{ k}\Omega$                             | C <sub>L</sub> = 50pF        |     | 13.0                  | 17.0         | 1.0                     | 18.0                  | ns   |
|                                        |                                           | $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ $R_L = 1 \text{ k}\Omega$ | C <sub>L</sub> = 50pF        |     | 12                    | 17.0         | 1.0                     | 18.0                  |      |
| C <sub>IN</sub>                        | Maximum Input<br>Capacitance              |                                                                      |                              |     | 4                     | 10           |                         | 10                    | pF   |
|                                        |                                           |                                                                      |                              |     | Typical               | @ 25°C, \    | / <sub>CC</sub> = 3.3 V | •                     |      |
| C <sub>PD</sub>                        | Power Dissipation Capac                   | citance (Note 5)                                                     |                              |     |                       | 20           |                         |                       | pF   |

<sup>5.</sup> C<sub>PD</sub> is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I<sub>CC(OPR)</sub> = C<sub>PD</sub> • V<sub>CC</sub> • f<sub>in</sub> + I<sub>CC</sub>. C<sub>PD</sub> is used to determine the no–load dynamic power consumption; P<sub>D</sub> = C<sub>PD</sub> • V<sub>CC</sub><sup>2</sup> • f<sub>in</sub> + I<sub>CC</sub> • V<sub>CC</sub>.

# NOISE CHARACTERISTICS Input $t_r$ = $t_f$ = 3.0 ns, $C_L$ = 50 pF, $V_{CC}$ = 3.3 V

|                  |                                              | T <sub>A</sub> = | 25°C |      |
|------------------|----------------------------------------------|------------------|------|------|
| Symbol           | Characteristic                               | Тур              | Max  | Unit |
| V <sub>OLP</sub> | Quiet Output Maximum Dynamic V <sub>OL</sub> | 0.3              | 0.5  | V    |
| V <sub>OLV</sub> | Quiet Output Minimum Dynamic V <sub>OL</sub> | -0.3             | -0.5 | V    |
| V <sub>IHD</sub> | Minimum High Level Dynamic Input Voltage     |                  | 2.0  | V    |
| $V_{ILD}$        | Maximum Low Level Dynamic Input Voltage      |                  | 0.8  | V    |

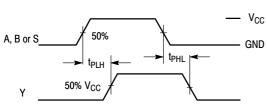



Figure 4. Switching Waveform

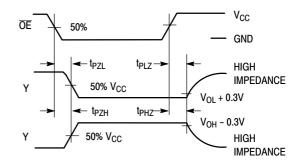
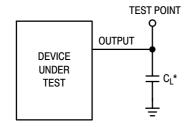




Figure 5. Switching Waveform



\*Includes all probe and jig capacitance

**TEST POINT** CONNECT TO  $V_{CC}$  WHEN TESTING  $t_{PLZ}$  AND  $t_{PZL}$  CONNECT TO GND WHEN **DEVICE** UNDER TESTING  $t_{PHZ}$  AND  $t_{PZH.}$ TEST C<sub>L</sub>\*

\*Includes all probe and jig capacitance

Figure 6. Test Circuit

Figure 7. Test Circuit

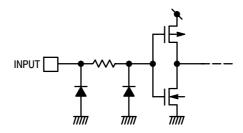
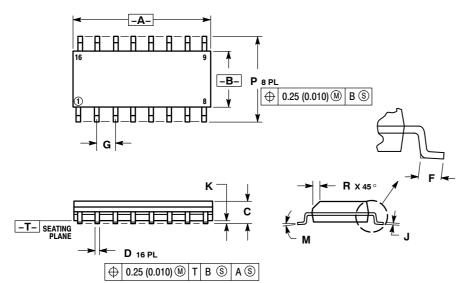
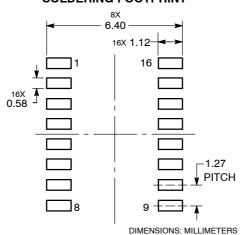



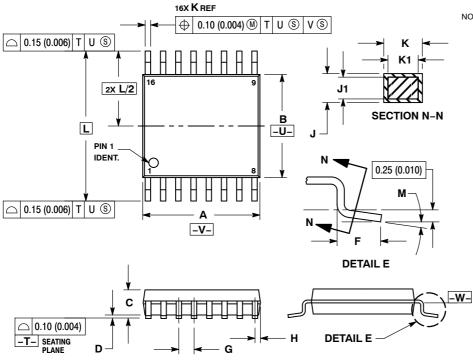

Figure 8. Input Equivalent Circuit

# **PACKAGE DIMENSIONS**


SOIC-16 CASE 751B-05 ISSUE K



- NOTES:
  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
  2. CONTROLLING DIMENSION: MILLIMETER.
  3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
  4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
  5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.


|     | MILLIN | IETERS | INCHES    |       |  |
|-----|--------|--------|-----------|-------|--|
| DIM | MIN    | MAX    | MIN       | MAX   |  |
| Α   | 9.80   | 10.00  | 0.386     | 0.393 |  |
| В   | 3.80   | 4.00   | 0.150     | 0.157 |  |
| С   | 1.35   | 1.75   | 0.054     | 0.068 |  |
| D   | 0.35   | 0.49   | 0.014     | 0.019 |  |
| F   | 0.40   | 1.25   | 0.016     | 0.049 |  |
| G   | 1.27   | BSC    | 0.050 BSC |       |  |
| J   | 0.19   | 0.25   | 0.008     | 0.009 |  |
| K   | 0.10   | 0.25   | 0.004     | 0.009 |  |
| M   | 0°     | 7°     | 0°        | 7°    |  |
| P   | 5.80   | 6.20   | 0.229     | 0.244 |  |
| R   | 0.25   | 0.50   | 0.010     | 0.019 |  |

# **SOLDERING FOOTPRINT**

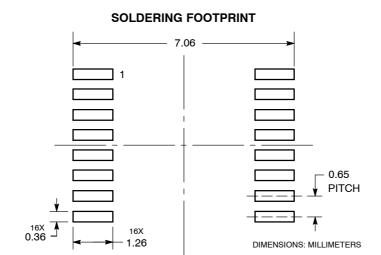


# PACKAGE DIMENSIONS

# TSSOP-16 CASE 948F-01 **ISSUE B**

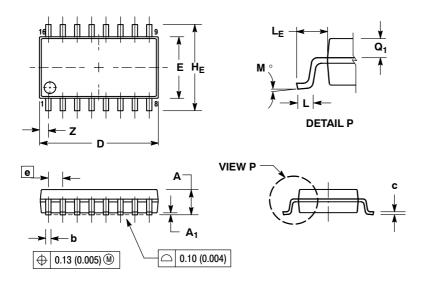


- NOTES:
  1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.
  - 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS.
  - FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.


    4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.

    5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K
  - (0.003) TOTAL IN EXCESS OF THE K
    DIMENSION AT MAXIMUM MATERIAL
    CONDITION.
    6. TERMINAL NUMBERS ARE SHOWN FOR

  - REFERENCE ONLY.


    7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

|     | MILLIMETERS |      | INC       | HES   |  |
|-----|-------------|------|-----------|-------|--|
| DIM | MIN         | MAX  | MIN       | MAX   |  |
| Α   | 4.90        | 5.10 | 0.193     | 0.200 |  |
| В   | 4.30        | 4.50 | 0.169     | 0.177 |  |
| C   | -           | 1.20 |           | 0.047 |  |
| D   | 0.05        | 0.15 | 0.002     | 0.006 |  |
| F   | 0.50        | 0.75 | 0.020     | 0.030 |  |
| G   | 0.65        | BSC  | 0.026 BSC |       |  |
| Н   | 0.18        | 0.28 | 0.007     | 0.011 |  |
| J   | 0.09        | 0.20 | 0.004     | 0.008 |  |
| J1  | 0.09        | 0.16 | 0.004     | 0.006 |  |
| K   | 0.19        | 0.30 | 0.007     | 0.012 |  |
| K1  | 0.19        | 0.25 | 0.007     | 0.010 |  |
| L   | 6.40        |      | 0.252 BSC |       |  |
| М   | 0°          | 8°   | 0 °       | 8°    |  |



# PACKAGE DIMENSIONS

SOEIAJ-16 CASE 966-01 **ISSUE A** 



#### NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI DIMENSIONING AND TOLERANCING PER Y14.5M, 1982.
   CONTROLLING DIMENSION: MILLIMETER.
- B. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
- REFERENCE ONLY.

  THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

|                | MILLIMETERS |       | INC       | HES   |
|----------------|-------------|-------|-----------|-------|
| DIM            | MIN         | MAX   | MIN       | MAX   |
| Α              | -           | 2.05  |           | 0.081 |
| A <sub>1</sub> | 0.05        | 0.20  | 0.002     | 0.008 |
| b              | 0.35        | 0.50  | 0.014     | 0.020 |
| С              | 0.10        | 0.20  | 0.007     | 0.011 |
| D              | 9.90        | 10.50 | 0.390     | 0.413 |
| Ε              | 5.10        | 5.45  | 0.201     | 0.215 |
| е              | 1.27        | BSC   | 0.050 BSC |       |
| HE             | 7.40        | 8.20  | 0.291     | 0.323 |
| L              | 0.50        | 0.85  | 0.020     | 0.033 |
| LE             | 1.10        | 1.50  | 0.043     | 0.059 |
| M              | 0 °         | 10 °  | 0 °       | 10 °  |
| $Q_1$          | 0.70        | 0.90  | 0.028     | 0.035 |
| Z              |             | 0.78  |           | 0.031 |

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) solicit esserves the right to make changes without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

# **PUBLICATION ORDERING INFORMATION**

### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative