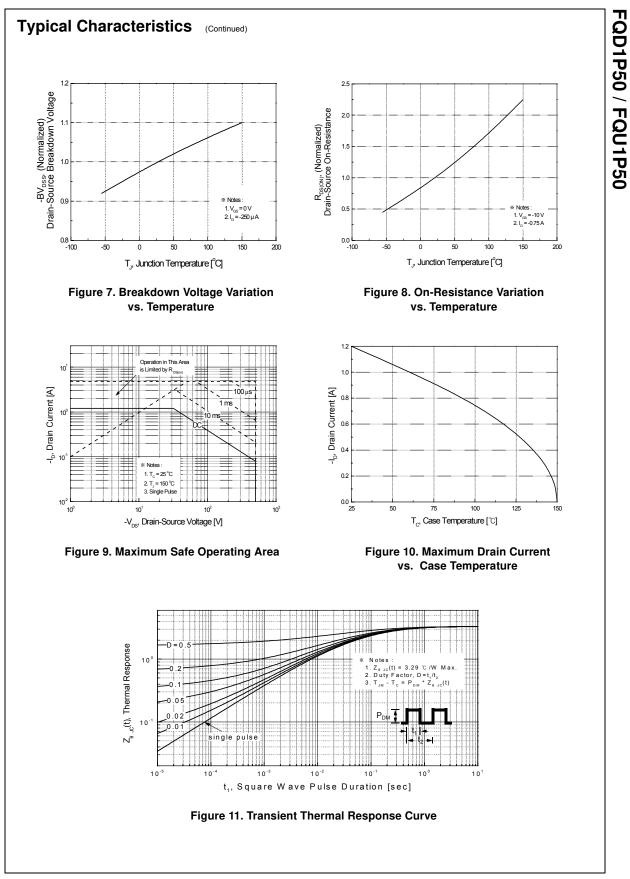
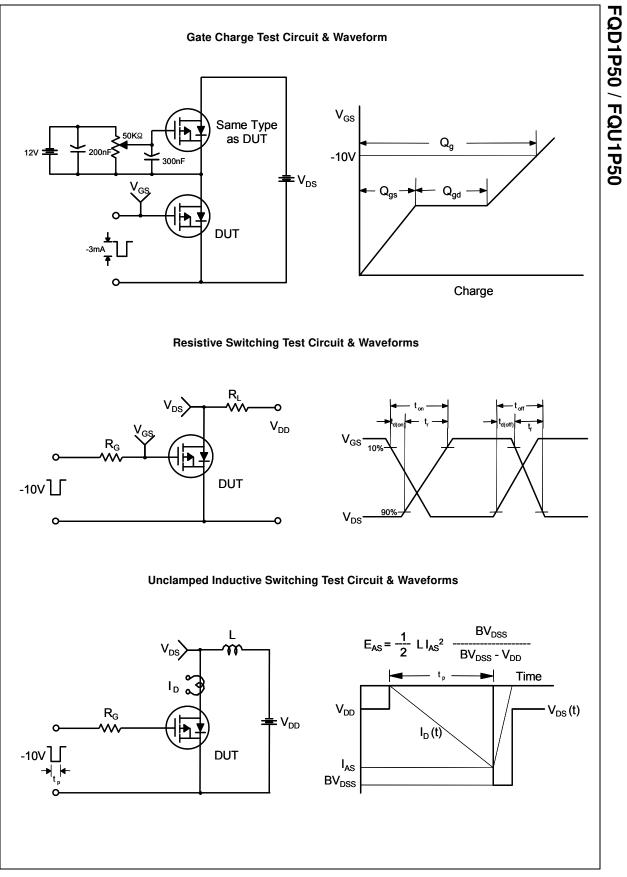
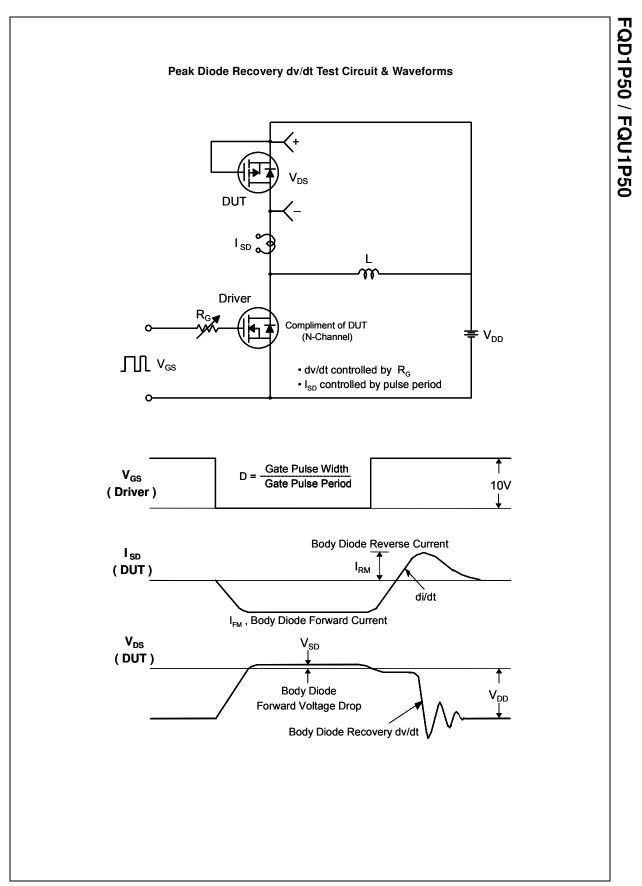
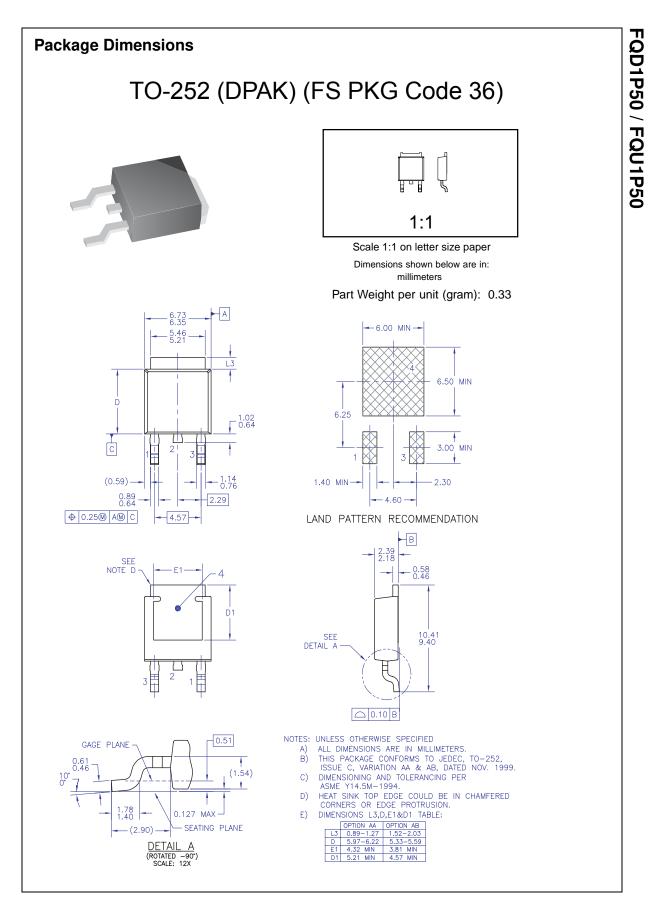
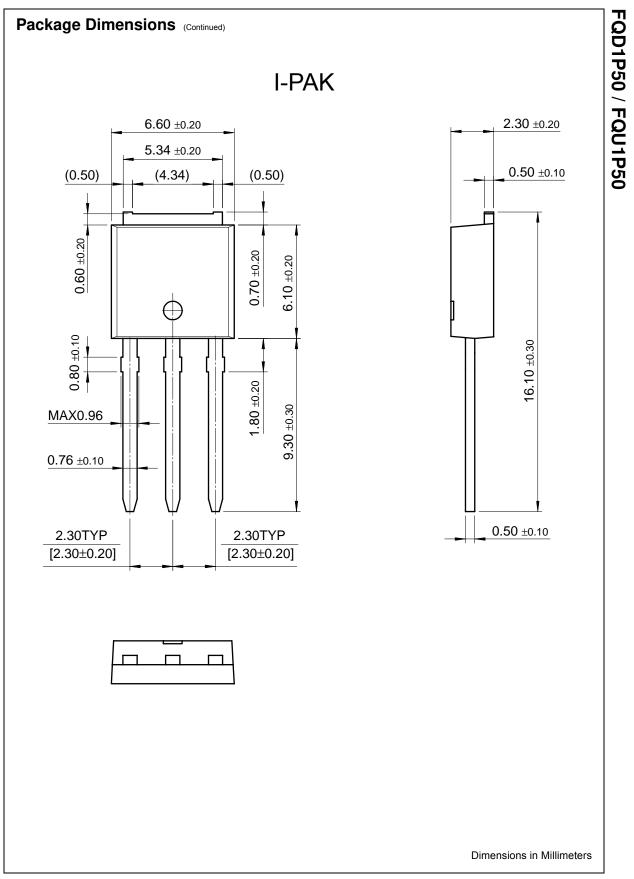

V _{DSS}	Drain-Source Voltage		-500	V
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$)		-1.2	А
	- Continuous (T _C = 100	D°C)	-0.76	А
I _{DM}	Drain Current - Pulsed	(Note 1)	-4.8	А
V _{GSS}	Gate-Source Voltage		± 30	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	110	mJ
I _{AR}	Avalanche Current	(Note 1)	-1.2	А
E _{AR}	Repetitive Avalanche Energy	(Note 1)	3.8	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	-4.5	V/ns
P _D	Power Dissipation (T _A = 25°C) *		2.5	W
	Power Dissipation (T _C = 25°C)		38	W
	- Derate above 25°C		0.3	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
Τ _L	Maximum lead temperature for soldering purposes, 1/8" from case for 5 seconds		300	°C


Thermal Characteristics


Symbol	Parameter	Тур	Max	Units
R _{θJC}	Thermal Resistance, Junction-to-Case		3.29	°C/W
R _{θJA}	Thermal Resistance, Junction-to-Ambient *		50	°C/W
R _{0JA}	Thermal Resistance, Junction-to-Ambient		110	°C/W


racteristics Drain-Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current	V _{GS} = 0 V, I _D = -250 μA				
Drain-Source Breakdown Voltage Breakdown Voltage Temperature Coefficient	V _{GS} = 0 V, I _D = -250 μA				
Breakdown Voltage Temperature Coefficient	66 / B 1	-500			V
Zero Gate Voltage Drain Current	I_D = -250 μ A, Referenced to 25°C		-		V/°C
Zero Gate Voltage Drain Current	V _{DS} = -500 V, V _{GS} = 0 V			-1	μA
	V _{DS} = -400 V, T _C = 125°C			-10	μΑ
Gate-Body Leakage Current, Forward	V_{GS} = -30 V, V_{DS} = 0 V			-100	nA
Gate-Body Leakage Current, Reverse	V _{GS} = 30 V, V _{DS} = 0 V			100	nA
racteristics					
	V _{DS} = V _{GS} , I _D = -250 μA	-3.0		-5.0	V
Static Drain-Source On-Resistance	$V_{GS} = -10 \text{ V}, \text{ I}_{D} = -0.6 \text{ A}$		8.0	10.5	Ω
Forward Transconductance	$V_{DS} = -50 \text{ V}, \text{ I}_{D} = -0.6 \text{ A}$ (Note 4)		1.12		S
c Characteristics					1
Input Capacitance	$V_{DS} = -25 V. V_{CS} = 0 V.$		270	350	pF
Output Capacitance	f = 1.0 MHz		40	50	pF
Reverse Transfer Capacitance			6.0	8.0	pF
ng Characteristics Turn-On Delay Time			9.0	30	ns
Turn-On Delay Time Turn-On Rise Time	V_{DD} = -250 V, I _D = -1.5 A, R _G = 25 Ω		25	60	ns
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time			25 27	60 65	ns ns
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	R _G = 25 Ω (Note 4, 5)		25 27 30	60 65 70	ns ns ns
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	R_{G} = 25 Ω (Note 4, 5) V_{DS} = -400 V, I _D = -1.5 A,	 	25 27 30 11	60 65 70 14	ns ns ns nC
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time	R _G = 25 Ω (Note 4, 5)		25 27 30	60 65 70	ns ns ns
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Durce Diode Characteristics ar	$R_{G} = 25 \Omega$ (Note 4, 5) V _{DS} = -400 V, I _D = -1.5 A, V _{GS} = -10 V (Note 4, 5) Maximum Ratings	 	25 27 30 11 2.0	60 65 70 14 	ns ns nC nC nC
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Durce Diode Characteristics ar Maximum Continuous Drain-Source Diode	$R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = -400 \text{ V}, I_{D} = -1.5 \text{ A},$ $V_{GS} = -10 \text{ V}$ (Note 4, 5) (Note 4, 5	 	25 27 30 11 2.0 5.6	60 65 70 14 	ns ns nC nC nC
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Durce Diode Characteristics ar Maximum Continuous Drain-Source Diode F	$R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = -400 \text{ V}, I_{D} = -1.5 \text{ A},$ $V_{GS} = -10 \text{ V}$ (Note 4, 5) (Note 4, 5	 	25 27 30 11 2.0 5.6	60 65 70 14 	ns ns nC nC nC A A
Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Durce Diode Characteristics ar Maximum Continuous Drain-Source Diode F	$R_{G} = 25 \Omega$ (Note 4, 5) $V_{DS} = -400 \text{ V}, I_{D} = -1.5 \text{ A},$ $V_{GS} = -10 \text{ V}$ (Note 4, 5) (Note 4, 5	 	25 27 30 11 2.0 5.6	60 65 70 14 	ns ns nC nC nC
	On-Resistance Forward Transconductance C Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance	Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = -250 \ \mu A$ Static Drain-Source $V_{GS} = -10 \ V$, $I_D = -0.6 \ A$ On-Resistance $V_{DS} = -50 \ V$, $I_D = -0.6 \ A$ Forward Transconductance $V_{DS} = -50 \ V$, $I_D = -0.6 \ A$ CharacteristicsInput Capacitance $V_{DS} = -25 \ V$, $V_{GS} = 0 \ V$,Output Capacitance $V_{DS} = -25 \ V$, $V_{GS} = 0 \ V$,Reverse Transfer Capacitance $f = 1.0 \ MHz$	Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = -250 \mu A$ -3.0Static Drain-Source $V_{GS} = -10 \text{V}$, $I_D = -0.6 \text{A}$ On-Resistance $V_{DS} = -50 \text{V}$, $I_D = -0.6 \text{A}$ Forward Transconductance $V_{DS} = -50 \text{V}$, $I_D = -0.6 \text{A}$ (Note 4) C Characteristics Input Capacitance $V_{DS} = -25 \text{V}$, $V_{GS} = 0 \text{V}$,Output Capacitancef = 1.0 \text{MHz}Reverse Transfer Capacitance	Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = -250 \ \mu A$ -3.0 Static Drain-Source $V_{GS} = -10 \ V$, $I_D = -0.6 \ A$ 8.0 Forward Transconductance $V_{DS} = -50 \ V$, $I_D = -0.6 \ A$ 1.12 C Characteristics Input Capacitance $V_{DS} = -25 \ V$, $V_{GS} = 0 \ V$, $f = 1.0 \ MHz$ 270	Gate Threshold Voltage $V_{DS} = V_{GS}$, $I_D = -250 \ \mu A$ -3.0 -5.0 Static Drain-Source $V_{GS} = -10 \ V$, $I_D = -0.6 \ A$ 8.0 10.5 Forward Transconductance $V_{DS} = -50 \ V$, $I_D = -0.6 \ A$ 1.12 C Characteristics Input Capacitance $V_{DS} = -25 \ V$, $V_{GS} = 0 \ V$, $f = 1.0 \ MHz$ $$ 270 350


FQD1P50 / FQU1P50



Rev. B3, January 2009

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ CorePOWER™ CROSSVOL7™ CTL™ Current Transfer Logic™ EcoSPARK [®] EfficentMax™ EZSWITCH™ *	FRFET [®] Global Power Resource SM Green FPS™ Green FPS™ e-Series™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™	Programmable Active Droop™ QFET [®] QS™ Quiet Series™ RapidConfigure™ Onfigure™ Saving our world, 1mW /W /kW at a time™ SmartMax™	the franchise TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™
Fairchild [®] Fairchild Semiconductor [®] FACT Quiet Series™ FACT [®] FAST [®]	MicroFET™ MicroFET™ MicroPak™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR®	SMART START™ SPM [®] STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™	TinyWire™ µSerDes™ UHC [®] Ultra FRFET™ UniFET™ VCX™ VisualMax™
FastvCore [™] FlashWriter [®] * FPS [™] F-PFS [™] * EZSWITCH [™] and FlashWriter [®] are	PDP SPM™ Power-SPM™ PowerTrench [®] PowerXS™ e trademarks of System General Corporati	The Power Franchise [®]	XS™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

EARCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Earichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized or other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		