LTC6910

DESCRIPTION

Demonstration circuits 566A-A, -B and -C, feature the easy to use, rail-to-rail input and output LTC6910 series of Low Noise Programmable Gain Amplifier (PGA) parts. The inverting gain is set by changing the positions of three onboard jumpers: G0, G1 and G2 to set the 3-bit programming code. Demo Circuit 566A-A is for the LTC6910-1 with gains of 0, 1, 2, 5, 10, 20, 50, 100 V/V. Demo Circuit 566A-B is for the LTC6910-2 with gains of 1, 2, 4, 8, 16, 32, and 64 V/V. Demo Circuits 566A-C is for the LTC6910-3 with gains of 1, 2, 3, 4, 5, 6 and 7 V/V.

All three-demo boards have input jumpers to select between AC or DC coupling of the input, and a jumper to select operation with a single or dual supply. Typical applications include data acquisition systems, dynamic gain changing, automatic ranging circuits and automatic gain control. The LTC6910 family can op-

erate from single or split supplies from 2.7V to 10.5V total between V+ and V-.

Design files for this circuit board are available. Call the LTC factory.

Table 1. Performance Summary $(T_A = 25^{\circ}C)$

PARAMETER	CONDITION	VALUE
Supply Voltage Range	V+ to V-	2.7V to 10.5V
Gain Accuracy	Gain Dependent (see Data Sheet)	Typical ±0.05dB at Gain = 1 and ±0.4 dB at Gain = 100
Slew Rate	$Vs = \pm 2.5V, V_{OUT} = \pm 1.4V$	12V/µs
	$Vs = \pm 5V, V_{OUT} = \pm 1.4V$	16V/µs

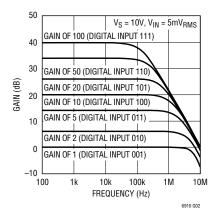


Figure 1. LTC6910-1 Frequency Response

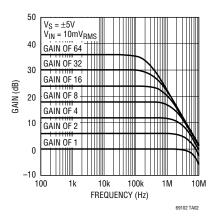


Figure 2. LTC6910-2 Frequency Response

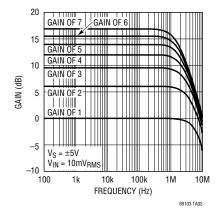


Figure 3. LTC6910-3 Frequency Response

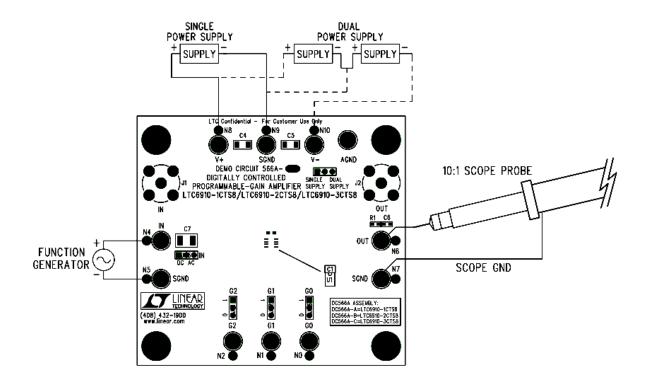


Figure 4. Proper Measurement Equipment Setup

QUICK START PROCEDURE

The 566 family of Demonstration boards allow for easy evaluation of the performance of the LTC6910 series of PGAs. Refer to Figure 4 for proper measurement equipment setup and follow the procedure given below:

1. Place jumpers in the following positions:

Supply Jumper:

SINGLE for Single Supply

DUAL for Dual Supply

Input Jumper (IN):

DC for DC Coupling

AC for AC Coupling

 $f_{-3dB} = 1/(2\pi C_7 \mathbf{R}_{\text{INPUT}})$

 $C_7 = 10\mu F$, R_{INPUT} is the nominal input impedance and depends on the gain setting, see Table 2, 3, or 4.

The jumper settings given in this procedure set the gain to a value of -1 (the LTC6910-X is an inverting amplifier), for other gain values refer to Gain Table 2, 3 or 4 which matches the Demo Circuit, 566-A, -B, or -C. To set the gain to a value of -1 set:

GO: Set to Logic 1

G1: Set to **Logic 0**

G2: Set to **Logic 0**

2. With the power off, connect the input power supply to V+, V- and AGND as required.

NOTE: Make sure that the input voltage does not exceed 11V total between V+ and V-.

- **3.** Set a function generator to output a 1kHz $1V_{P-P}$ signal.
- 4. Set the input jumper to give the desired input coupling, AC or DC.

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 566 DIGITALLY CONTROLLED PROGRAMMABLE GAIN AMPLIFIER

- 5. Turn on the power supply and connect the signal generator to the IN BNC, or turrets as shown in Figure 4.
- **6.** Monitor the output (BNC or test point) with an oscilloscope to observe a 1kHz 1V_{P-P} signal.
- 7. Using Tables 2, 3 or 4 set the gain as desired and set the input to within the nominal linear input range. Example: For a dual 5V supply operation and a gain equal to five, the input to an LTC6910-1 should be set equal to or less than $2V_{P-P}$ (see Table 2).

Table 2. DC566A-A Gain Settings And Properties LTC6910-1

G2 G1		NOMINAL VOLTAGE GAIN		NOMINAL	LINEAR INPUT RA	NOMINAL INPUT IMPEDANCE		
	G1	GO	VOLTS/VOLT	(dB)	DUAL 5V Supply	SINGLE 5V Supply	SINGLE 3V Supply	(KΩ)
1	0	0	0	-120	10	5	3	OPEN
0	0	1	-1	0	10	5	3	10
0	1	0	-2	6	5	2.5	1.5	5
0	1	1	-5	14	2	1	0.6	2
1	0	0	-10	20	1	0.5	0.3	1
1	0	1	-20	26	0.5	0.25	0.15	1
1	1	0	-50	34	0.2	0.1	0.06	1
1	1	1	-100	40	0.1	0.05	0.3	1

3

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 566 DIGITALLY CONTROLLED PROGRAMMABLE GAIN AMPLIFIER

Table 3. DC566A-B Gain Settings And Properties LTC6910-2

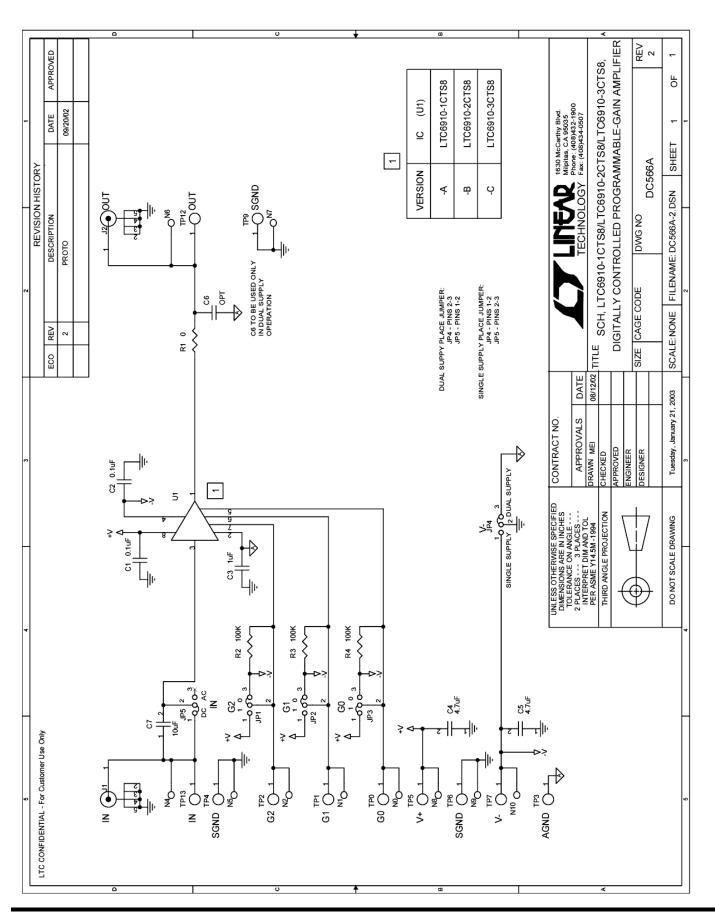

G2 G1		NOMINAL VOLTAGE GAIN		NOMINAL	LINEAR INPUT RA	NOMINAL INPUT IMPEDANCE		
	G1	GO	VOLTS/VOLT	(dB)	DUAL 5V Supply	SINGLE 5V SUPPLY	SINGLE 3V Supply	(K•)
1	0	0	0	-120	10	5	3	OPEN
0	0	1	-1	0	10	5	3	10
0	1	0	-2	6	5	2.5	1.5	5
0	1	1	-4	12	2.5	1.25	0.75	2.5
1	0	0	-8	18.06	125	0.625	0.375	1.25
1	0	1	-16	24.08	0.625	0.313	0.188	1.25
1	1	0	-32	30.1	0.313	0.156	0.094	1.25
1	1	1	-64	36.12	0.156	0.078	0.047	1.25

Table 4. DC566A-C Gain Settings And Properties LTC6910-3

		NOMINAL VOLTAGE GAIN		NOMINAL	LINEAR INPUT RA	NOMINAL INPUT IMPEDANCE		
G2	G1	GO	VOLTS/VOLT	(dB)	DUAL 5V Supply	SINGLE 5V SUPPLY	SINGLE 3V Supply	(K•)
1	0	0	0	-120	10	5	3	OPEN
0	0	1	-1	0	10	5	3	10
0	1	0	-2	6	5	2.5	1.5	5
0	1	1	-3	9.5	3.33	1.67	1	3.3
1	0	0	-4	12	2.5	1.25	0.75	2.5
1	0	1	-5	14	2	1	0.6	2
1	1	0	-6	15.6	1.67	0.83	0.5	1.7
1	1	1	-7	16.9	1.43	0.71	0.43	1.4

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 566 DIGITALLY CONTROLLED PROGRAMMABLE GAIN AMPLIFIER

