
1/3January 2002

DK900
USER MANUAL

DK900 Development Kit
For PSD9xxF Family of Flash PSDs

CONTENTS

■ (Please see next pages)

 DK900

 DEVELOPMENT KIT
 For PSD9xxF Family of Flash PSDs

Rev 1.10

Contents:

v PSDsoft Express - Point and Click Windows based Development Software(from web)
v PSD9xxF Sample
v DK900 Eval Board

v FlashLINK JTAG In-System Programmer (ISP)
v Ribbon and "Flying -Lead" JTAG cables for FlashLINK

v PSDload � WIN95/98/NT based UART software for IAP (from web)
v Serial UART cable for PSDload
v CDROM - Data Book, Software and Videos

v 110V or 220V Power supply

 2

DK900 DEVELOPMENT KIT...4

Introduction.. 4
A couple of definitions:...4
What's Included...4
Hardware ..4

What? No Software? ...4

Detailed Descriptions..5
Step-By-Step Instructions for ISP Demo: ..6
Step-By-Step Instructions for IAP Demo:...8

Using DK900 as a Development Platform for 8051 MCU users: .. 12
Concept...12

General Board Description ...12
Downloading to the Development Board ...12
JTAG - ISP ..12

PC Software ...13
UART Support, PSDload ...13
Definition of Terms ...13

Serial Interface ...13
PSD Architecture ...13

Functions Available ...14

Memory Map ... 15
Getting started with a PSDload..15

A few reads and writes..15
Download ..17

How does this swapping stuff work anyway?.. 18
Macro level..18

PSDload address translation...21
Micro level...22
PSDload example code bundles...23

A detailed look at the IAP example implementation.. 24
Top level functional flow..24

Detailed flow, startup.a51 ...25

How to create your own app for UART Download... 26

References.. 27

Application notes...27

APPENDIX ...28

Appendix A - Jumper configuration on DK900 eval board...29
Setting of MCUs Power pins..29
Setting of MCU RESET polarity (JP8)...29

Connection of PHILIPS 8051XA�s Low addresses (A0-A3) (JP6) * ...29
Connection of 80251�s control signals for each mode (/PSEN, /RD, /WR) (JP5) ..30
PSD SRAM Battery Backup Enable/Disable (JP9)..31

PSD�s power consumption measurement point (JP7)..31
32Kbyte SRAM Expansion (62256 / 68257)...31
System expansion connectors (J1,J2,J3)...32

Others ...32

 3

Appendix B Development Board Schematic and parts list ...33
Main Schematic ..33
Serial Port Schematic ...34
Power Supply Schematic ...35

Eval Board Parts List...36

Appendix C: FlashLINK Users Manual..37
Features ..37
Overview..37

Operating considerations...37
FLASHlink pinouts..39
Loop back connector schematic ...42

Appendix D Source code for C51_startup, UART8032...43

Appendix E Source code for C51_startup, UART1... 47

 4

DK900 Development Kit

Introduction

Congratulations on purchasing ST DK900 Development kit. The DK900 (110V or 220 Volt
version) is a low cost kit for evaluating the PSD9xx family of FLASH Programmable System Devices. The kit
is extremely versatile, and can be used in several different modes. In it's simplest mode, it can be used to

demonstrate the PSD9xx's capability of JTAG In-System Programmability (ISP). After ISP is accomplished,
the DK900 can be set-up to update the program while the MCU is running, called In-Application Programming
(IAP). And lastly, 8051 family users can utilize the DK900 as an evaluation platform for code development.

Regardless of how much development work is done on the DK900, it functions as an extremely low cost
complete JTAG ISP programmer for the PSD9xx family.

A couple of definitions:

In-System Programming (ISP)- A JTAG interface (IEEE 1149.1 compliant) is included on the PSD enabling
the entire device to be rapidly programmed while soldered to the circuit board (MAIN FLASH, BOOT
FLASH, the PLD, all configuration areas). This requires no MCU participation, so the PSD can be

programmed or reprogrammed anytime, anywhere, even while completely blank. The MCU is completely
bypassed.
In-Application Programming (IAP) � Since two independent FLASH memory arrays are included in the

PSD, the MCU can execute code from one memory while erasing and programming the other. Robust product
firmware updates in the field are possible over any communication channel (CAN, Ethernet, UART, J1850,
etc) using this unique architecture. In this case, all code is updated through the MCU.

What's Included

Hardware

• PSD9xx FLASH PSD (Programmable System Device) - see www.st.com/psm for data sheet.

PSD913F2 - 1Mb MAIN FLASH(128kx8), 256Kb BOOT FLASH(32kx8), 16Kb SRAM(2kx8)
-or-
PSD934F2 - 2Mb MAIN FLASH(256kx8), 256Kb BOOT FLASH(32kx8), 64Kb SRAM(8kx8)

• Eval/Demo Board with 8032 MCU, LCD Display, JTAG and UART ports for ISP/IAP

• FlashLINK JTAG ISP Programmer (uses PC's parallel port)

• Null Modem serial cable (Female -Female)

• Power Supply

What? No Software?

• To assure latest version, download from our website (note item 3 contains 3 components zipped together):
1. PSDsoft Express - Point and Click Windows programming development software. This will

install to it �s own directory.

• MCU Selection by manufacturer and part number

• Graphical definition of pin functions

• Easy creation of memory map

• JTAG ISP Programming

2. PSDload - Windows 95/98/NT based UART download software. This will also install to it�s own
directory.

• In-Application Programming

• Performs erase, fill, read, write, upload and download of PSD

• All functions performed through MCU's UART channel.
3. U809_10x.zip contains the following archived (zipped) components. Please place them in the

indicated directories under \PSDExpress. Create PSDExpress\DK900 directory.

• U809c10x.zip Demo ISP executable program for the eval board. \DK900\uart80_c

• U809p10x.zip psd file for above. \DK900\uart80_p

• Uart1_c.zip Demo IAP executable program for the eval board. \DK900\uart1_c

• Uart2_c.zip - Another demo program. \DK900\uart2_c

 5

At this point, you should have the following files in the PSDExpress\DK900 directory.

Iap_80Ex.mmf
Iap_80Ex.obj
Iap_80Ex.psd

Uart1.hex
Uart2.hex

These are all the files that are needed for the demo�s in this manual. The remaining archives are
source information from which these files were constructed.

Detailed Descriptions

Figure 1 DK900 Development Board

• Display - A two line by 16 character LCD display is included on the Development Board.

• Power switch (left position is on)

• UART Serial Port(male) - Connected to MCU serial port; used for In-Application Programming (IAP)

• 8032 MCU - Low cost MCU (80251 or P51XA can be substituted, see Appendix A), 44 pin PLCC

• Socket for PSD9xx - Blank PSD9xx is supplied, user installs and performs initial JTAG ISP.

• JTAG programming Port - Used in conjunction with FlashLINK programmer for ISP.

• Reset Button - For resetting the MCU and PSD

• Pads for additional SRAM - The resident PSD9xx contains either 2KB or 8KB SRAM. This site is for

additional SRAM.

 6

Step-By-Step Instructions for ISP Demo:

a) Go to ST website (www.st.com/psm) and select "Development Tools" from the top menu,
then go to the DK900 Kit

b) Download both PSDload and PSDsoft Express (note: you will be asked to fill out a form for PSDsoft

Express so that a password can be immediately emailed to you)
c) Install both programs on your PC running Windows 95/98/NT
d) Plug the blank PSD9XX device into the Eval board socket

e) Plug the FlashLINK Programmer into your PCs parallel port and plug in the ribbon cable to the JTAG
port on the eval board (for help see the Appendix C, FlashLINK manual). Note that the serial cable

should not be plugged in during this ISP exercise.

f) Plug in power supply and turn on power. Notice that the LCD display is blank because the PSD is blank
g) Run PSDsoft Express. Here is the initial screen if no project is open.

Figure 2 Ope ning screen upon PSDsoft Express invocation

Use cancel at this point since all we need to do is program the PSD and there is no need to create a project.
Later, in the �Using the DK900 as a development platform�, a further tutorial is given on using PSDsoft
Express with the Eval Board for development.

h) In the Design Flow(shown below), click on the ST JTAG/ISP. Bottom row of boxes left side.

Figure 3 PSDsoft Express flow

Clicking on this box yields the JTAG Operations- Single device dialog shown below.

 7

Figure 4 PSDsoft Express, JTAG Operations dialog

i) In Step 1, �select folder and file� browse to find under �\DK900*.obj

j) The �select device� box should be filled in for you.
k) In Step 2, click Execute
l) Observe in the lower pane the JTAG activities that occur while programming your device.

m) Watch the board mounted display. When the download is completed the Development Board will boot
automatically, showing the displays below: This display will sequence one time, ending with the last screen,
PSDload Test. This is the screen that needs to be active for the following IAP demo. Note that the serial

cable should not be plugged in during this ISP exercise.

D K 9 0 0 E v a l B d

C o n g r a t u l a t i o n s

I S P D o w n l o a d

w a s S u c e s s f u l

P l e a s e c y c l e
p o w e r t o s e e

t h a t p r o g r a m

I s I n f l a s h

T H A N K S

 P S D l o a d T e s t

Figure 5 Eval Board Displays for ISP

If you power off/on the board, you will see that the display will resequence, confirming that the program
and all configuration information are stored in the PSD's non-volatile FLASH Memory.

o) For better understanding of the program you may want to examine:
1. System memory map in the memory map section later in this document.
2. PSDsoft Express project

3. The file source code (included) to see how the executing code was configured

 8

Step-By-Step Instructions for IAP Demo:

a) Now, let's perform an In-Application Programming (IAP). Disconnect the FlashLINK programmer and
close PSDsoft Express. Connect the serial cable to the serial port on the PC, and the Dsub connector on
the eval board. Note that this cable is a null modem cable(F-F).

b) Once the eval board displays PSDload Test, proceed to the next step.
c) Invoke PSDload on the PC. At invocation of PSDload, most buttons will be greyed out indicating no

communications as shown below.

Figure 6 Initial PSDload invocations screen (no comm)

d) File, Open. Find the file as follows; \DK900*.psd. This is a configuration file for PSDload that�s been

constructed for this demo containing the particulars of the design. Observe the buttons become
active(colorful) when this file is selected indicating the communications port is properly configured. If the
button colors do not appear, change the comm port(while retaining 19.2Kbaud) using the Select,

Communications submenu or the Comm Port hot button. In this case, you will also be prompted for the
*.mmf file from the same directory. Do not leave this step until you�ve achieved active buttons as shown
below.

Figure 7 Initial PSDload invocations screen (with comm)

 9

As well as the active buttons, notice that the main window is now populated with the active design. The
entries are effectively the equations used to determine the memory map. This information is entered in

PSDsoft Express during the des ign phase of the project.
e) Do a Write To Display using the Action, Write Display submenu or the LCD Display hot key. Type

something in the dialog, press OK and see if it comes up on the eval board display. If it does, you�ve

successfully established commu nications between the PC and eval board. If this doesn�t work, check the
following;

1. cable is plugged in

2. cable is of correct type(straight through)
3. correct comm port is selected

f) Select action, download observing the Download Segments dialog. The following screen will appear.

Figure 8 Download Segments dialog, PSDload

Selecting the download destination (Step 1) to be fs0_a. Behind the scenes fs0_b will automatically be
selected as the execution location. Click OK.

 10

g) Now the Download Selection Summary screen, below, pops up. The intent is to validate the settings

chosen in the last screen. You should see fs0_a as the download destination and fs0_b as the execution

location. Click Download to start the process or back to change.

Figure 9 Download Summary screen

h) Observe the progress bar at the bottom of the PSDload window for activity. Also, observe the display on

the eval board as follows.

 P S D l o a d t e s t

 d o w n l o a d i n g *

Figure 10 Eval Board display for download in process

During the download, you�ll observe the * character changing between the following -, \, |, and /. A
change from one character to the next occurs with each new packet received by the eval board. When the
download is complete you will see the following.

 P S D l o a d t e s t

 d o w n l o a d d o n e

Figure 11 Eval Board display for download complete

Next, observe the results of the checksum calculation covering the entire downloaded contents as shown
below. Of course this was a successful download. This particular display does not persist, so watch the

display intently.

 P S D l o a d t e s t

 c h e c k s u m g o o d

Figure 12 Eval Board display for checksum validation

 11

i) Now click the reset button and observe the eval board display. The program you just downloaded

will boot showing the displays listed below.

Y o u h a v e n o w

p e r f o r m e d

I n - A p p l i c a t i o n

P r o g r a m m I n g (I A P)

T h e M C U o p e r a t e d

d u r i n g d o w n l o a d

o f a n e w p r o g r a m

i n t o t h e F l a s h

N o w p o w e r c y c l e

o f f a n d o n t o

s e e t h e n e w

p r o g r a m e x e c u t e

G O O D J O B !

Figure 13 Eval Board display sequence for In Application Programming(IAP)

You can cycle power or press the reset button again to see that this code also persists in non volatile FLASH

memory.

i) Now, let�s reinvoke the original program that was runnign prior to IAP download. Using PSDload, press

the User defined button . A dialog will pop as below.

Figure 14 Application Specific Command, PSDload (User Defined)

In the window type �RET� in upper case and press OK. Observe the display on the eval board now shows
the �PSDload Test� banner on the upper line. This display indicates that the original CSBOOT resident
code is running again. You can do some other functions from PSDload like Write to Display to further

verify the original program is again active. For an explanation of the details that allow this to occur, see
�Using DK900 as a Development Platform� later in this manual.

j) This concludes the IAP demonstration. These activities illustrate how a new code bundle can be
downloaded over the serial channel and invoked remotely from PSDload with a serial command. Also,
how another serial command can be used to return to the original code, pre IAP code. Good job!

 12

Using DK900 as a Development Platform for 8051 MCU users:

Concept

The ST DK900 Development Board provides the following capabilities

• Demonstrate design concepts early, optimizing �time to market�

• Jump start user application with proven framework (hardware and software)

• Substitute for user target system until target prototypes are available

• Gives instant platform for testing ISP and IAP demonstration.

• Allows programming the PSD using included Flashlink cable

General Board Description

The DK900 Development Board is specific to the 8051 microcontroller family. The board contains an empty
socket for the PSD9xx, which can be populated with the included PSD9xx family component.

Downloading to the Development Board

Executable code can be downloaded to the Development Board two different ways; via the JTAG (ISP)or via
the UART (IAP). Both methods are described and demonstrated in the Step by Step demos for ISP and IAP
earlier in this manual.

The ISP programming can program all elements within the PSD (PLD, MAIN FLASH, secondary FLASH
memory and all configuration elements) using the 2x7 connector. That is, all internal PSD components can be

programmed via this channel.

The IAP method uses a standard null modem PC serial cable (F-F) and PSDload PC software downloaded from

the web as well as the UART of the installed 8032. This method allows only data and executable code to be
downloaded over a PC serial link. This method is not restricted in destination to the PSD. The destination can
be any resources on the Eval Board itself; PSD components or the external SRAM (SRAM not supplied, user

must solder in standard 32Kx8 SRAM if you desire more SRAM than is contained in the PSD).

PSDload, a win95/98/NT compatible application for the PC, administers the PC side of the serial link.

JTAG - ISP

The PSD813F JTAG interface provides the capability of programming all memory within the PSD (PLD,

configuration, MAIN and secondary FLASH memory and BOOT areas). This interface can also be used to
program a completely blank component as JTAG enabled is the default PSD state. See Application Note 54
(AN054) for further description on our CD or website at www.st.com/psm .

The LCD will be non operational during JTAG - ISP, since the MCU is not operating. During this interval, the
PSD is not connected to the MCU bus.

ST provides a FlashLINK programmer to facilitate this JTAG programming operation. The
FlashLINK programmer connects the PC parallel port to the Eval Board JTAG connector and is driven by

PSDsoft Express, the PSD development tool.

 13

PC Software

UART Support, PSDload

PSDload is a PC application (WIN95/98/NT) which allows serial communications between the PC and the

ST series of Development Boards. This application utilizes the microcontroller UART on the target
system side and a standard serial PC channel. The protocol utilizes commands to perform the following
functions on the resident PSD, and potentially, other Eval Board resources.

1. Read and write registers, memory
2. Erase and fill memory areas
3. Write to the LCD display

4. Download files from the PC to the target system(any system area)
5. Program the downloaded file into the PSD memory in circuit(MAIN or BOOT areas)
6. Upload files from the PSD or development board resources

7. Reset the target system.

The primary target of this interface is FLASH based PSD�s from the standpoint of in circuit programmability.

However, the capability is also applicable to the OTP family of PSD�s(note that in circuit programming is not
available due to the OTP families EPROM base).

Definition of Terms

A few term definitions will ease the understandability of the document.
a. PSDLoad is the windows interface running on the PC.
b. PSDStep is the protocol used to communicate between the PC and the Evaluation board. (Simple

Test and Evaluation Protocol).

Serial Interface

The connection from the PC to the evaluation board is via a standard 9 pin null modem cable. The

communications parameters are 8 data bits, 1 stop bit and no parity. The interface uses simple three wire (TX,
Rx and GND) RS-232 with full-duplex operations. Flow control is accomplished via software handshaking
incorporated into the protocol (this is not XON XOFF). The baud rate of PSDload is selectable from 4.8k to

56k but the 8032 board is presently restricted to 19.2kbaud. Software flow control is used in order to minimize
the master/slave physical connections.

Each command sent from PSDload is intended to elicit a response from the Evaluation Board. This handshake
is used to verify a valid receipt of the transaction. Two methods exist to terminate this handshake if it should

become disrupted for any reason; the first is a hot key inside PSDload, and the second is a communications

timeout parameter entered on comm screen.

PSD Architecture

The PSD contains several different blocks of memory which vary within each family and between the families.
These encompass the following memory types; EPROM, FLASH, EEPROM, SRAM, and registers.

Generically these memory blocks are termed a memory �region�. The PSD913 contains 128kx8 FLASH,
32kx8 FLASH and 2kx8 sram.

PSDLoad must be aware of how these regions map into the system memory as all operations occur based on
addresses associated with the system memory. The system memory map is determined using the development
tool, PSDsoft Express. This information is provided in the form of a *.mmf file automatically generated from

PSDsoft Express and requested by PSDload at invocation. PSDload utilizes this information to portray the
system memory map to the user and construct commands to send to the Eval Board.

Since the system memory map is utilized to achieve the download, the PLD within the PSD mu st have been
programmed prior to a serial download attempt. PLD programming is accomplished via either the JTAG
interface or with a conventional parallel programmer, both of which are external to PSDstep/PSDload.

 14

Note that the addressing scheme used by PSDload is a different addressing scheme than is used by
PSDPro(parallel programmer) and/or FLASHlink. PSDload uses the system addresses; that is, the addresses
generated by the microcontroller in the system and correlated by the linker. PSDsoft Express and FLASHlink

use direct addresses (flat 24 bit memory space), that are independent of the PLD and the end system
application.

The FLASH region is erased by sector or bulk(entire FLASH) and programmed byte by byte. The EEPROM
region does not require erase and may be written by byte or by page. Which technology resides in the BOOT
area depends on the device you have chosen. For example, the F1 has EEPROM in the BOOT area.

Functions Available

Along with the standard windows controls of save , open , new , close and help and the

serial port controls , the following are available. These functions are can be accessed either from a pull
down menu (Action) or from the shown hot keys.

Function Description

Erase Erase FLASH(by segment or bulk)

Fill Fill area

Download Download new file to memory

Upload Upload file from memory

Read Read area(restricted to 160 bytes)

Write memory Write area(restricted to 160 bytes)

Write display Write to display (on dev board)

Reset board Reset development board

User data Encapsulate user specific commands

Hex file entry Enter hex file to be downloaded

Describe
memory usage

 User interface aid

Table 1 PSDload Commands

 15

Memory Map

Before we really get started using PSDload, we should be familiar with the system memory map. Recall that all

PSDload operations occur by using addresses in this map. The application is set up to take advantage of the entire
memory space of the 9xx using paging techniques even though the MAIN FLASH is initially unpopulated(fs0..7).
CSIOP is the base of the register band used to communicate with the PSD using the microcontroller.

Memory Map

0000

2000

FFFF

4000

E000

CSBOOT1,

8k

CSBOOT0,

8k

C000

8000

A000

8031 boots from here

Program

Memory

Data Memory

FS1

FS6FS4FS2FS0

FS7FS5FS3

PAGE0 321

 8031 regs
100

CSIOP

 LCD

RS0

PSD RAM

2kbytes

200-2FF

empty

300-3FF

2000-27FF

empty

Figure 15 Memory Map of Eval Board

Getting started with a PSDload

Since you�ve done this before in the previous step by step demo section, we�ll start with PSDload being active. To
establish a baseline communications, write something to the display by selecting the Action submenu and then Write
Display. A dialog will pop up allowing you to enter text. After you have completed the message, click on the Write

button. PSDload will send out the message. After the message has been received, the development board responds by
displaying the message and sending a response back to PSDload. This response prompts PSDload to display an
�operation completed� dialog to the user on the PC. All transactions between PSDload and the development board use

this handshaking scheme to maintain continuity of the communications link.

A few reads and writes

Now let�s do a few read/write operations. We want to be careful in the selection of the address that we�re writing to so

we won�t interfere with the execution of the present application. Do a read memory of RS0 at location 2700h with a
length of 40h by selecting the command from the pulldown menu.

 16

You will observe the following dialog box. First click on RS0 in the left hand box. The start address (in hex) will
automatically be populated for you by the application. Now, enter the length and click OK.

Figure 16 Read Memory dialog in PSDload

A dialog will pop up with the contents of the memory in both hex (left side)and asc formats(right side) as shown below.

Figure 17 Read Memory Data in PSDload

The contents appear random as this is volatile memory and has not been cleared. Now do a write of the same locations.
You�ll see the same box come up as PSDload always does a read prior to a write, but now the box is editable. You can
edit in either the hex display or the asc display and the conversion happens automatically as shown below. Try typing

your name or something into the ASC field. You will notice the hex bytes changing as you type.

 17

Figure 18 Write Memory Data dialog in PSDload

Click Write. After the response, read it again to see if it�s really there. Cycle power and reread. The fact that the

information is now gone confirms that the area was SRAM.

Now let�s repeat these operation using FLASH. The dialogs are the same except for the FLASH selection so they won�t

be repeated. Since the FLASH memory is not used in the application yet, no harm will be done. Select Write Memory
and, in the write dialog, select fs7, which stars at 0xC000. Read 40h bytes of the area. You will notice that instead of
the random characters you observed in the above example using SRAM, you now get 0xff in all locations. This is

because the FLASH is blank. Type in something and click write. Now do a read to see if it�s there. Type in something
else of lesser length than above and read it back again. You will notice that the entire first message is gone. This is
because the FLASH was erased prior to the last write. Two methods exist to erase FLASH, by sector or by bulk (the

whole thing). In this case the bulk erase is used. You can also cycle power on the target to see that the information is
held in non volatile form. Also try ERASE which only works on the non volatile areas.

When you�re ready to do a download, one of the operations that�s needed is the selection of the hex file. This screen is

available from the Action submenu or the button. After exiting this screen, the selected hex file shows up in the

main mmf display.

Figure 19 Hex File Selection screen, PSDload

Download

You�ve already done this in the earlier demo portion of this document so lets dig a bit deeper to see what makes it all
work. See the following section.

 18

How does this swapping stuff work anyway?

Macro level

First, let�s take a look at how the memory map changes during the transitional operations from one executable code
bundle to the other. Internal PSD resources (PAGE and VM registers)are used to affect this change in addition to the

PLD equations described. We will also use a non volatile resource to carry through a power off condition. This
resource will be called NVswap and can consist of any of the following (spare non volatile segment in the PSD, board
level switch, etc).

The VM(virtual memory) register is specific to 8031 family devices and allows the PSD memory resources to be
controlled between program space and data space. This register, located at csiop+0xE2, can be set to a non-volatile

initial value using PSDsoft Express and thereafter can be read or written by the microcontroller. This register is
volatile.

The PAGE register (csiop+0xE0, 8 bits) is traditionally used to control memory paging, but we also use it to control
memory addresses, as presented to the microcontroller, using 1 or more bits. This register can be read or written by the
microcontroller. The initial value of the PAGE register is 0 at power up and is the register is volatile.

Following is a step by step procedure to boot from one code and change, on the fly, to another. Certainly, there is more
setup detail involved(described later under Micro level), but this is the essential procedure for any system containing

program and data space.

1. Power up system with default memory map. swap=0(PAGE register msb), VM=0x12

2. Write VM register =0x06.
3. Write swap=1(PAGE register msb)
4. Write VM=0x0C

These steps are further depicted graphically in the following 4 figures.

 19

Here�s the memory map at power up. Note that we are executing from CSBOOT0/1 and that MAIN FLASH is in data
space. During the download, the complete new executable, including the vector table, is copied into FS0. During this
time the swap bit in the PAGE register is 0 and the VM register is 0x12.

STEP 1

 ACTIONS:

* Power up

* Boot from CSBOOT0/CSBOOT1

* Program (if needed) and verify 8 Flash segments in data space with 8031 UART

 DEFAULT SETTINGS:

* SWAP = 0 (SWAP is one page bit)

* UNLOCK = 0 (UNLOCK is one page bit)

* Main Flash is initially in data space (NVM setting)

* EEPROM is initially in program space (NVM setting)

FFFF

0000

4000

8000

C000

FFFF

0000

4000

8000

C000

1000

2000

CSBOOT0
SYSTEM RAM & I/O SYSTEM RAM & I/O SYSTEM RAM & I/O SYSTEM RAM & I/O

PROGRAM SPACE

(PSEN\)

PAGE X

DATA SPACE

(RD\)

PAGE 0 PAGE 1 PAGE 2 PAGE 3

COMMON

 MEMORY

ACROSS ALL

DATA PAGES

Execute

from

here

NOTHING MAPPED NOTHING MAPPED NOTHING MAPPED NOTHING MAPPED

NOTHING MAPPED

FS0

FS1

FS2

FS3 FS5

FS4 FS6

FS7

CSBOOT1

Figure 20 Memory map at power up, NVswap=0

Now, let�s set a flag (NVswap) to indicate we want to run the code in FS0 the next time we power up. This flag is non

volatile so that, if power is removed, the system knows how it�s desired to power up.

Cycle power to the unit. We have embedded code running in the initialization routine to detect the state of Nvswap and

to write that value into the PAGE register(msb) at power up. If it�s 0, the code bundle residing in CSBOOT0/1
continues to run. If it�s 1, we perform the memory manipulations depicted in the next three figures.

For purposes of this example, let�s assume NVswap = 1 indicating the desire to execute from the MAIN FLASH
memory. First we write to the VM (virtual memory) register in the PSD a value of 0x06. This action moves the MAIN
FLASH area (FS0..FS7) into program space as shown in the following figure. At this point, the code residing in

CSBOOT0/1 is still running.

 20

FFFF

0000

4000

8000

C000

SYSTEM RAM & I/O

PROGRAM SPACE

PAGE 0 PAGE 1 PAGE 2 PAGE 3

COMMON
 MEMORY

ACROSS ALL

PROGRAM
 PAGES

2000

DATA SPACE

PAGE X

FFFF

0000

4000

8000

C000

1000CSBOOT0

NOTHING MAPPED

Execute
from

here

FS1

FS0

NOTHING MAPPED NOTHING MAPPED NOTHING MAPPED NOTHING MAPPED

FS2

FS3

FS4

FS5 FS7

FS6

CSBOOT0 CSBOOT0CSBOOT0

CSBOOT1 CSBOOT1CSBOOT1CSBOOT1

Figure 21 Memory positions after step 2 of memory swap

Next, we write to the PAGE register, to the swap bit location a value of 1. This action changes the system location
where the code appears to the microcontroller moving FS0 to 0x0000 and CSBOOT to 0x8000 as shown below. After
this write operation is complete, the very next instruction is fetched from FS0. Execution continues from FS0 until the

next time the system is powered down.

COMMON

 MEMORY

ACROSS ALL
PROGRAM

 PAGES

Execute

from

here

FFFF

0000

4000

8000

C000

SYSTEM RAM & I/O

FS1 FS1 FS1 FS1

PROGRAM SPACE

PAGE 0 PAGE 1 PAGE 2 PAGE 3

DATA SPACE

PAGE X

FFFF

0000

4000

8000

C000

1000

FS0 FS0 FS0 FS0

NOTHING MAPPED
CSBOOT0CSBOOT0CSBOOT0CSBOOT0

CSBOOT1 CSBOOT1CSBOOT1

CSBOOT3

CSBOOT2

CSBOOT1

CSBOOT2CSBOOT2CSBOOT2

CSBOOT3 CSBOOT3 CSBOOT3

Figure 22 Memory locations after step 3 of memory swap

 21

As a final step, the CSBOOT area is moved to data space so it can be written. This is accomplished by another write to
the VM register of a value of 0x0C.

STEP 4
 ACTIONS:

* Move EEPROM to data space.

 Set VM bit EE_DATA = 1, clear VM bit EE_CODE = 0.

* This is the final form of the memory map.

* Original boot code in EES0/EES1 can be modified by the MCU only if the unlock

 bit is set to 1 to prevent inadvertant writes. (unlock bit is a page register bit).

FFFF

0000

4000

8000

C000

SYSTEM RAM & I/O

FS1 FS1 FS1 FS1

FS3 FS5FS7

PROGRAM SPACE

PAGE 0 PAGE 1 PAGE 2 PAGE 3

COMMON
 MEMORY

ACROSS ALL
PROGRAM

 PAGES

DATA SPACE

PAGE X

FFFF

0000

4000

8000

C000

1000

FS0 FS0 FS0 FS0

CSBOOT0

FS2 FS4FS6
Execute

from
here

NOTHING MAPPED

NOTHING MAPPED

IF unlock = 1

IF unlock = 1

CSBOOT1

CSBOOT2

CSBOOT3

Figure 23 Memory locations after final step of memory swap

With the NVswap bit set, this sequence will occur every time power is applied.

As a short review, let�s talk about what just transpired. We booted from one memory(CSBOOT), then, at full speed and

without the awareness of the microcontroller, we changed that memory to FS0. The new memory contents contained a
completely different set of code that picked up immediately. It sounds like a stretch, but really isn�t.

PSDload address translation

When a download occurs, the downloaded hexfile contains addresses appropriate for execution that, in this case is
0x0000-0x3fff for fs0. We download this data to 0x8000 �BFFF. If the addresses are in low memory how does the
data get in high memory? PSDload does an address translation on every data byte in the hexfile; that is, it changes the

addresses according to the download destination of 0x8000-BFFF using the following equation.

Destination address = hex file address + destination base � execution base.

For this 8031 family example, code exe(hex file) is 0x0123, dest base = 0x8000, exe base = 0x0000
Download destination = 123 + 8000 � 0 = 0x8123

While this equation may look like overkill for this example, it allows transparent PSDload operation to an MCU that
boots to high memory.

Now that we�ve described this level of operation, lets take a bit closer look at the detailed sequence that occurs between
steps 2 and 3; that is, as the memory is swapped.

 22

Micro level

You might ask how can this happen without knowledge of the microcontroller? You might be wondering how can this
all happen with the microcontroller running full speed? It all happens due to the chip select decoding.

Here are the equations that control the memory map before, after and during the transition. For clarity we�ll only
consider the segments of interest for this application which are fs0 and CSBOOT0/1. Certainly the same techniques
apply with paging when using the remaining FLASH segments.

CSBOOT0 = ((address >= ^h0000) & (address <= ^h1FFF) & !swap)
 # ((address >= ^hC000) & (address >= ^hDFFF) & swap);

CSBOOT1 = ((address >= ^h2000) & (address <= ^h3FFF) & !swap)
 # ((address >= ^hE000) & (address >= ^hFFFF) & swap);

FS0 = ((address >= ^h8000) & (address <= ^hBFFF) & !swap)
 # ((address >= ^h0000) & (address <= ^h3FFF) & swap);

The above equation tells us that fs0 can show up in either of two places; 0x0-0x3FFF or 0x8000-0xBFFF. The choice
of which location is used is based on the variable swap, a single bit in the PAGE register (msb). The swap bit is the

most significant bit of the PAGE register (csiop+0xE0). The PAGE register is 0 at power up. So, if swap=0 at power
up, then fs0 must appear at 8000-BFFF and CSBOOT0 is at 0-0x1fff and CSBOOT1 is at 0x2000-3FFF. Code executes
from CSBOOT0 and CSBOOT1. This is the original memory map presented in Figure 20.

8031 boots from here
0000

2000

FFFF

4000

E000

CSBOOT1,

8k

CSBOOT0,

8k

C000

8000

A000

8031 boots from here

Program

Memory

Data

Memory

FS0

swap = 0, VM = 0x12

0000

2000

FFFF

4000

E000

CSBOOT1,

8k

CSBOOT0,

8k

C000

8000

A000

Program

Memory

Data

Memory

FS0

swap = 1, VM = 0x0C

Figure 24 Segment positions with swap and VM values

 23

After the memory contortions are completed swap=1 and VM=0C. We end up with the memory map on the right with
fs0 in low program memory and CSBOOT in high data memory. Note the values for swap and VM that cause this to
occur.

The location where the vector table is located is generally referred to as the execution location in this document. That
is, this is where code needs to reside so that the microcontroller can find it easily. This method of hardware relocation

is very convenient due to the integrated components within the PSD. Alternative methods use software relocation to
accomplish the same task.

There are a few more items involved in the seamless transition from one code bundle to the other using this method.
These elements can be totally controlled by the linker and are listed below.

a. The location of certain code in the BOOT memory must be located identically to the same code in
the MAIN FLASH memory. Due to this constraint the code that does the swap and VM writes is
located in the c51_startup routine and used in all code bundles. This is needed since the

microcontroller doesn�t know anything about the memory swap, it just keeps on generating
addresses. After the instruction that writes to the PAGE register, the microcontroller generates
the next sequential address. The code fetch from this next address in memory 2 must be the same

as if it were occurring from memory 1. This results in the microcontroller executing seamlessly
without knowledge of the swap.

b. The stack must be located in the identical locations in both code bundles.

As an overview, consider this. What the microcontroller needs from the memory is really pretty simple. The memory
needs to provide the sequential instructions for the task at hand. The microcontroller generates the address and the

memory provides the instruction. Then the microcontroller executes that instruction. This occurs over and over again.
If a jump needs to occur, the microcontroller provides a new address to the memory. Same with a subroutine return, the
microcontroller gets the return address from the stack.

PSDload example code bundles

Following are the code bundles used with the DK900 Development Kit. This code is available from the Coded
Example under the Tools submenu within PSDsoft Express. As mentioned before, to get the latest check the web at
www.st.com/psm .

archive description

U8c9_10x.zip C level source code for UART8032.

U8p9_10x.zip Psd code for UART8032.

U8c9a10x.zip Sample app for uart download, uart1

U8c9b10x.zip Sample app for uart download, uart2

Table 2 Software included with Development Board

• U8c9_10x

This is the C level source code used for ISP download earlier in the document. This
includes full uart functionality.

• U8p9_10x
This is the psd design files that match with the above ISP code.

• U8c9a10x
This is the C level source code used for IAP described earlier in this document(uart1).

• Uart2

This is the C level source code used for IAP described earlier in this document(uart2).

 24

A detailed look at the IAP example implementation

The previous example uses two code bundles; UART8032_C and UART1_C. Note that UART2_C is essentially the

same as UART1_C for the purposes of this discussion. The discussion will take the same course as the previous demos
and explain what occurs behind the scenes. Let�s take a walk through the code to see how it works.

For purposes of this discussion, the code is broken into three components as listed below.
1. Top level flow charts for UART8032_C and UART1_C
2. Top level flow for return from main memory execution

3. Detailed flows for startup.a51 for the UART8032_C and UART1_c

Top level functional flow

Let�s start with the top level flows. As an aside, the main action occurs in the startup.a51 file, but lets leave that till last.
Notice the symmetry between UART8032_C and UART1_C. They are identical except the test and check for
run_execution_source that is in UART8032_C but not in UART1_C.

Now let�s see what keeps execution in UART8032 in the BOOT area. The value of the variable �source� (base+0x70)
resides in the FS0 segment that, on a new part, is 0xff since it�s erased. This value indicates to execute from BOOT

FLASH. As you can see, the if statement in this case is false so execution continues from the BOOT area. That is,
exe_main() is not executed. So, when UART8032_C boots, the if statement is not true and execution remains in the
BOOT area. This is the state after the ISP download and before IAP download. If power is cycled, the code always

does executes from the BOOT area.

startup

evl_init()

 psd_init()

 run_execution_source \\ check execution source

 if source=0 \\

 exe_main() \\

 PSDload_init() \\ init comm parameters

main()

UART8032_c flow UART1_C flow

startup

evl_init()

 psd_init()

 \\ source check not necessary

 \\

 \\

 \\ init comm parameters and lcd

main()

Figure 25 Top Level flows, UART8032_C and UART1_C

The next thing that occurs is the IAP download. UART1_C code is downloaded via the serial channel to FS0(MAIN
FLASH area). At this point, no functional changes are observed on the display. The new code is resident in FS0 but not

active. As a component of this download, the value of �source� has changed to 00. Now, when the Reset command is
issued from PSDload, the if statement in UART8032_C flow is true and the routine exe_main() executes. This changes
the values of the VM and PAGE register to enable the main area to execute and clears out the stack so that UART1_C

can continue to run. These details are discussed later.

Note that in the UART1_C flow there is no source check. That is, run_execution_source() is not included. This is

because the manipulations required for MAIN FLASH to run have already been taken care of since the variable
�source�=00.

Now, the UART1_C code is running as evidenced by the display. Note that, in this code, only a subset of the serial
functionality is included(ASP and RST). This limitation was pursued in order to make UART1_C able to be compiled
with the evaluation version of the Keil compiler(2k exe).

 25

Now, all we need to do is regain execution from the BOOT area code. Following is the top level flow that results in the
return to BOOT memory execution; that is, the issue of the ASP instruction (User Defined) from PSDload with an
argument of RET. The routine ret_boot causes the VM and PAGE register manipulations allowing the BOOT area to

regain control.

if ASP=RET

 ret_boot()

UART1_C flow (serial)

Figure 26 Flow to return to BOOT memory execution

As you can observe from the above discussion, the manipulations at the top level to accomplish the traditional boot
loader function using hardware techniques are straightforward.

Detailed flow, startup.a51

Now that the top level flow has been discussed, lets turn out attention to the startup.a51 routine. This module contains

the code that manipulates the VM and PAGE registers that allows the boot loader to relinquish and regain control. In
addition, other necessary details are handled such as stack manipulation.

Appendix E and F include the source startup.a51 files from each of these bundles. The only differing element between
these files is the byte EXECUTION_SOURCE. UART8032 declares this as storage only while UART1_C sets this
byte to 0. At boot, the byte is read, and the following action is taken based on it�s value; if source=0xFF, then the

execution proceeds from BOOT area. If source=00, then execution proceeds from MAIN FLASH. These are depicted
below.

IE=0

VM=0x06 \\ main in code space

 \\ boot in code space

PAGE=0x0 \\ boot flash exe

VM=0x12 \\ main in data space

 \\ boot in code space

...

IE=0

VM=0x06 \\ main in code space

 \\ boot in code space

PAGE=0x80 \\ main flash exe

VM=0x0C \\ main in code space

 \\ boot in data space

...

Condensed and partial flow for startup.a51

ret_boot exe_main

startup2

Figure 27 Partial flow of startup.a51

 26

You may notice, in the top level discussion, that the two above routines, ret_boot() and exe_main() are called from
differing positions in the code. While this is common practice for a subroutine, we do not want to return from these
routines as a subroutine normally would return. The desired operation at the invocation of either of these routines is to

precipitate a system reset. This allows desired memory swap to occur bringing the new code into execution position.

How to create your own app for UART Download

Typically, getting a single application to run is relatively straightforward as the linker (and user) make sure all
references are resolved when the executable file is created. Setting up your application for UART download takes only

a little more coordination between the two executable files; specifically in the area of code placement and the linker.
Typically no code changes are required.

First,a quick review of what we�re trying to do. We are attempting to smoothly transition from one running application
to another. The microcontroller will initiate the action, but be substantially unaware of its occurrence. We are going to
accomplish this by manipulation of the code memory presented to the microcontroller.

Certainly this will take some coordination between the two applications, but probably not as much as you might initially
think. To make things easier, we�ll do this critical transition just after a system reset as described in �A detailed look at

the IAP example implementation� section earlier in this document. This reset can be initiated either through software or
hardware means based on the method(s) available in your system.

You can tailor the scheme as described earlier in this document, or utilize the key generic elements listed below;
1. Startup routine placed identically in both applications
2. Flag indicating desire to jump from BOOT memory to main memory. The demo uses the variable �source�

described in the previous section.
3. Method to tell system of desire to return from main memory to BOOT memory. The demo uses the User
Defined command (ASP) with an argument of RET described in the previous section.

When using a PSD, we recommend the use of our startup.a51 routines or an equivalent included in the code bundles.
The specifics of the VM and PAGE registers are already worked out for your convenience. The code placement issues
are serviced in the file itself with conventional �CSEG at� statements resulting in no linker directives being needed.

For STEP 2 (flag indicating desire to jump from BOOT memory to main memory; �Nvswap� or �source�), the
described flag should be set after the downloaded code is successfully transferred and validated. Then, after the system

is rebooted, the new location is automatically delivered. Depending on your application, this element can be either
volatile or non-volatile. The motivation to use a non-volatile method is that the desired boot source can be carried
through a power outage. If a volatile medium is acceptable in your application, a convenient holder for this variable is

the internal PSD ram.

For STEP 3 (method to tell the system of desire to return from main memory to BOOT memory), the method can be

conveyed to the software by virtually any means from a simple mechanical switch or, for remote operation, via some
communications medium. Once this is done, the ret_boot() is run, manipulating the VM and PAGE register to the
desired states and rebooting the system.

The code content and positioning after the initialization code (startup.a51) need have no correlation between the two
applications. That is, the linker can be allowed to handle post initialization code without ill effects to the desired

swapping operation. This element eases the creation of compatible applications as all the critical code placement is
handled within a single file; startup.a51.

 27

References

IEEE Std 1149.1-1990 IEEE Test Access Port and Boundary Scan Architecture
PSDSoft Express User Manual

Flashlink User Manual

Application notes

AN054 JTAG Information

AN067 Design Turorial for 8032/PSD9XXF

 28

Appendix

 29

Appendix A - Jumper configuration on DK900 eval board

Setting of MCUs Power pins

 JP1(PIN12), JP2(PIN1), JP3(PIN34), JP4 (PIN23)

Some 8031/32 series use pins 1, 12, 23 and 34 of the PLCC package as additional power input pins. You can set
proper power to these pins with these jumpers.

Typical setting of several MCUs

 INTEL

80C31/32*
WINBOND

W78C3x
DALLAS
DS803x0

PHILIPS
8051XA

SIEMENS
80C511/3

INTEL
80C251

JP1 Close (VCC)

JP2 Close (VSS) Close (VSS)

JP3 Close (VSS)

JP4 1-2 (VSS) 2-3 (VCC) 1-2 (VSS)

 * Default = 8031/32

Setting of MCU RESET polarity (JP8)

 MCU RESET polarity can be chosen using this jumper.
1-2 Active HIGH reset
2-3 Active LOW reset

Typical setting of several MCUs.

INTEL

80C31/32 *

WINBOND

W78C3x

DALLAS

DS803x0

PHILIPS

8051XA

SIEMENS

80C511/3

INTEL

80C251 JP8

1-2 1-2 1-2 2-3 1-2 1-2

* Default = 8031/32, Active HIGH reset (1-2).

Connection of PHILIPS 8051XA�s Low addresses (A0-A3) (JP6) *

In the case of PHILIPS 8051X, low address (A0-A3) should be connected to Port A (PA0-PA3) of PSD9xxFx. (See
PSD9xxF2 data sheet)
These low address bits can be connected to Port A of PSD9xxF2 through JP6.

PSD81Fx 8051XA

Port A0 A0

Port A1 A1

Port A2 A2

Port A3 A3

 * Default = 8031/32, All of JP6 pins are not connected.

PSD9xxF2 Latched address out function for 8031 Families.

Port A Port B

Port A (3:0) Port A (7:4) Port B (3:0) Port B (7:4)

8051XA Address [7:4] Address [11:8]

251 (page mode) Address [11:8] Address [15:12]

others Address [3:0] Address [7:4] Address [3:0] Address [7: 4]

 For more details, see FLASH PSD9xxF2 data sheet
 (Reference: 9.3 Microcontrollers Bus Interface, 9.4 I/O Ports)

 30

Connection of 80251�s control signals for each mode (/PSEN, /RD, /WR) (JP5)

(Reference: 9.3 Microcontrollers Bus Interface)

(a) 16 bits address mode (8031 compatible mode)

 Default setting, no need to change jumpers.

 251 /RD 251 /PSEN 251 P1.7

 2

 1

 9xxF2 CNTL2 9xxF2 CNTL1 9xxF2 Port D2

(b) 17 bits address mode
 /PSEN and /WR will be used as control signals, /RD pin will out A16.

 251 A16(/RD) 251 /PSEN 251 P1.7

 2

 1

 9xxF2 CNTL2 9xxF2 CNTL1 9xxF2 Port D2

(c) 18bit address mode
 /PSEN and /WR will be used as control signal, /RD and P1.7 will out A16 and A17respectively.
 CNTL2 and PD2 of PSD9xxF2 will be used as general PLD input to decode internal/external resources.

 251 A16(/RD) 251 /PSEN 251 A17(P1.7)

 2

 1

 9xxF2 CNTL2 9xxF2 CNTL1 9xxF2 Port D2

 31

PSD SRAM Battery Backup Enable/Disable (JP9)

Default setting of this jumper is ON (close), but a battery should be connected to use this function and FLASH
PSD9xxF2 should be re-programmed with a new configuration that PC2 configured to Vstby input in PSDsoft

Express/Device Config/Other.
To program a new configuration, download PSDsoft Express design file and 8031 sources from ST web site
(www.st.com/) and modify them.

PSD�s power consumption measurement point (JP7)

Two pins of this jumper are already connected. To measure PSD�s power consumption, connect DMM to these two

pins after cutting pre-connected pattern jumper.

The measured PSD�s current will be,

Icc = PSD Icc + PSD Ic (I/O ports) + MCU Bus leakage Ic

 This measurement could be different from result of calculation according to formula in data sheet. To measure

correct value, make sure all of other terms should be zero.

32Kbyte SRAM Expansion (62256 / 68257)

(a) 8051XA mode (Use a upper location marked as XA)

 A14 A14 VCC
 A12 A12 /WE /WR
 PA7 (A7) A7 A13 A13

 PA6 (A6) A6 A8 PB0 (A8)
 PA5 (A5) A5 A9 PB1 (A9)
 PA4 (A4) A4 A11 PB3 (A11)

 A3 A3 OE PB6 (/RAM_OE)
 A2 A2 A10 PB2 (A10)
 A1 A1 /CS PB5 (/RAM_CS)

 A0 A0 D7 A11/D7
 A4/D0 D0 D6 A10/D6
 A5/D1 D1 D5 A9/D5

 A6/D2 D2 D4 A8/D4
 GND D3 A7/D3

 (b) 8031 / 80251 Non-page mode (Use lower location marked as 51)

 A14 A14 VCC

 A12 A12 /WE /WR
 PA7 (A7) A7 A13 A13
 PA6 (A6) A6 A8 A8

 PA5 (A5) A5 A9 A9
 PA4 (A4) A4 A11 A11
 PA3 (A3) A3 /OE PB6 (/RAM_OE)

 PA2 (A2) A2 A10 A10
 PA1 (A1) A1 /CS PB5 (/RAM_CS)
 PA0 (A0) A0 D7 AD7

 AD0 D0 D6 AD6
 AD1 D1 D5 AD5
 AD2 D2 D4 AD4

 GND D3 AD3

 32

System expansion connectors (J1,J2,J3)

 J1 (8031) J2 (PSD9xxF2)
1 2 1 2

P1.0 PA0 PA1

P1.1 AD0 PA2 PA3

P1.2 AD1 PA4 PA5

P1.3 AD2 PA6 PA7

P1.4 AD3 GND GND

P1.5 AD4 PB0 PB1

P1.6 AD5 PB2 PB3

P1.7 AD6 PB4 PB5

*RESET AD7 PB6 PB7

P3.0 /RESET GND

P3.1 ALE PC0 PC1

P3.2 /PSEN PC2 PC3

P3.3 A15 PC4 PC5

P3.4 A14 PC6 PC7

P3.5 A13 GND GND

/WR A12 PD1 PD2

/RD A11

 A10

 A9

GND A8

 JP3 (78C33)

 1 2

P4.0 P4.2

P4.1 P4.3

*Polarity of /RESET
pin of J1 could be

chosen by setting of
JP8.

Others

(a) Battery power connector and re-charging circuit
When using re-chargeable battery as power source, you can use the prepared charging circuit in this kit. To use
this charging circuit, assemble a diode with register that has proper value.

(Recommended battery is NiCD 10.8V)
*) Do not use charging circuit to Manganese, Lithium or NiMH batteries.

(b) Other power source input connector
 To use other power sources (SMPS, Transformer, �), a connector is prepared in this kit.
 (Recommended power source is AC/DC adapter, over 9V, output can be AC or DC)

(c) Re-charging circuit for Vstby Battery

When using re-chargeable battery as Vstby source, you can use prepared normal charging circuit in this kit. To

use this charging circuit, assemble a diode with register that has proper value.
(Recommended battery is NiCD 3.6V)
*) Do not use charging circuit to Manganese, Lithium or NiMH batteries.

(d) Connection between this Eval kit with PC

You need a null-modem serial cable, and use PSDload in Windows95/98/NT as host application. The kit baud

rate is fixed at 19200bps.

 33

Appendix B Development Board Schematic and parts list

Main Schematic

SerialG

SER232.SCH

RESOUT
TxD

RxD

Power

PWRBAT.SCH

VOUT

VCC

VCC

VCC

VCC

VDDVCC

VCC

VCCVCC

VCC

VCC

VCC

VCC

VCC

RESET

JTAG

Vstby

EXPANSION

(*) (*)

(*)

XA-XRAM 51/251-XRAM

251 UCFIG

51XA A0-A3

POWER PINS

(*)

(*) - not inserted

(*)

(*) (*) (*) (*)

(*)

(*)

(*)

(*)

(Note)
Rcharge = (5-3.6-0.6) /
 (Ibat *charge%)

Factory setting using copper trace on board

(*) (*)

P10 P A 0
P11 P A 1 P A 0 AD0 P A 0 AD0
P12 P A 2 P A 1 AD1 P A 1 AD1
P13 P A 3 P A 2 AD2 P A 2 AD2

P A 3 AD3 P A 3 AD3
P A 4 AD4 P A 4 AD4
P A 5 AD5 P A 5 AD5
P A 6 AD6 P A 6 AD6
P A 7 AD7 P A 7 AD7

AD0 AD0 P A 0 P B 0 A 8
AD1 AD1 P A 1 P B 1 A 9

AD2 AD2 P A 2 P B 2 A10
AD3 AD3 P A 3 P B 3 A11
AD4 AD4 P A 4 A 8 A12
AD5 AD5 P A 5 A 9 A13
AD6 AD6 P A 6 A10 A14
AD7 AD7 P A 7

MCU_RES /RAM_CS /RAM_CS

A 8 A 8 P B 0 /WR /WR
A 9 A 9 P B 1 /RAM_OE /RAM_OE

P30 A10 A10 P B 2
P31 A11 A11 P B 3
P32 A12 A12 LCD_E
P33 A13 A13 /RAM_CS
P34 A14 A14 /RAM_OE

P35 A15 A15 P B 7

P10 /RD TMS
P11 /WR TCK
P12 Vstby
P13 ALE RD_PSEN TSTAT AD7

P14 P40 /TERR AD6
P15 P41 PSEN_A16 TDI AD5
P16 P42 TDO AD4
P17 P43 PC7 AD3

PD1 AD2
PD2 AD1

AD0

LCD_E
P A 1
P A 0

/RESET

P10
P11 AD0 P A 0 P A 1
P12 AD1 P A 2 P A 3

RES /RES

P13 AD2 P A 4 P A 5
P14 AD3 P A 6 P A 7
P15 AD4
P16 AD5 P B 0 P B 1

P17 AD6 P B 2 P B 3
MCU_RES AD7 LCD_E /RAM_CS

P30 /RAM_OE P B 7
P31 ALE /RES
P32 /PSEN TMS TCK
P33 A15 Vstby TSTAT

P34 A14 /TERR TDI
P35 A13 TDO PC7
/WR A12
/RD A11 PD1 PD2

A10
A 9
A 8

P40 P42
P41 P43

/PSEN

U1

PSD813FXPLCC

AD0/A0
30

AD1/A1
31

AD2/A2
32

AD3/A3
33

AD4/A4
34

AD5/A5
35

AD6/A6
36

AD7/A7
37

A 8
39

A 9
40

A10
41

A11
42

A12
43

A13
44

A14
45

A15
46

P A 0
29

P A 1
28

P A 2
27

P A 3
25

P A 4
24

P A 5
23

P A 6
22

P A 7
21

P B 0
7

P B 1
6

P B 2
5

P B 3
4

P B 4
3

P B 5
2

P B 6
52

P B 7
51

(TMS)PC0
20

(TCK)PC1
19

(VSTBY)PC2
18

CNTL0(WR)
47

CNTL1(RD)
50

CNTL2(PSEN)
49

PD0(ALE)
10

PD1
9

PD2
8

RESET
48

(TSTAT,RDY/BSY)PC3
17

(TERR,VBATON)PC4
14

(TDI)PC5
13

(TDO)PC6
12

PC7
11

Y 1
11.0592MHz

C1

30pF

U3A

74HC14

1 2

U3B

74HC14

34

U3C

74HC14

56

D1

DIODE

R1
47K

J1

CON40A

1
3
5
7
9
11

13
15
17
19
21
23
25

27
29
31
33
35
37
39

2
4
6
8

10
12

14
16
18
20
22
24
26

28
30
32
34
36
38
40

J2

CON32A

1
3
5
7
9

11
13
15
17
19
21
23

25
27
29
31

2
4
6
8

10

12
14
16
18
20
22
24

26
28
30
32

J3

CON4A

1

3

2

4

D2

1N4148

U4

62256

A 0
10

A 1
9

A 2
8

A 3
7

A 4
6

A 5
5

A 6
4

A 7
3

A 8
25

A 9
24

A10
21

A11
23

A12
2

A14
1

CS
20

WE
27

D0
11

D1
12

D2
13

D3
15

D4
16

D5
17

D6
18

D7
19

OE
22

A13
26

U3D

74HC14

98

LCD1

LCD MODULE

V L
3

R/W
5

RS
4E
6

D0
7

D1
8

D2
9

D3
10

D4
11D5
12D6
13

D7
14

VCC
2

GND
1

J4

CON14A

1
3
5
7
9

11
13

2
4
6
8
10
12
14

C2

30pF
R3

Rcharge

D3

1N4148

U3E

74HC14

1110

U3F

74HC14

13 12

R4
10K

U5

62256

A 0
10

A 1
9

A 2
8

A 3
7

A 4
6

A 5
5

A 6
4

A 7
3

A 8
25

A 9
24

A10
21

A11
23

A12
2

A14
1

CS
20

WE
27

D0
11

D1
12

D2
13

D3
15

D4
16

D5
17

D6
18

D7
19

OE
22

A13
26

J5

CON2

1
2

JP1
PIN12

JP2
PIN1

JP3
PIN34

JP4
PIN23

JP6

XA-BURST

1
3
5
7

2
4
6
8

R P 1

100K

2
3
4
5 1
6
7
8

9

+ C3
10uF/6.3V

BT1
3.6V

C5
0.1uF

U6

KIA7045P

VCC
1

RST
3

GND
2

JP7

PSD_Icc

D4
LED

S 1
SW

S 2

INT0

JP8
RESET POL

JP9
Vstby

104M

104M

104M

104M

104M

R2
470

+ C4
100uF/6.3V

JP5

251_CFG

1
3

5
7
9

2
4

6
8

10

U2

W78C33P

EA/VP
35

X 1
21

RESET
10

P3.0/RXD
11

P3.1/TXD
13

P3.2/INT0
14

P3.3/INT1
15

P1.0/T2
2

P1.1/T2EX
3

P1.2
4

P1.3
5

P1.4
6

P1.5
7

AD0/P0.0
43

AD1/P0.1
42

AD2/P0.2
41

AD3/P0.3
40

AD4/P0.4
39

AD5/P0.5
38

AD6/P0.6
37

AD7/P0.7
36

A8/P2.0
24

A9/P2.1
25

A10/P2.2
26

A11/P2.3
27

A12/P2.4
28

A13/P2.5
29

A14/P2.6
30

A15/P2.7
31

RD
19

WR
18

PSEN
32

ALE/P
33

P1.7
9

P1.6
8

P3.5/T1
17 P3.4/T0
16

X 2
20

P4.0
23

P4.1
34

INT3/P4.2
1

INT2/P4.3
12

 34

Serial Port Schematic

VCC

U7

MAX232C

C1+
1

C1-
3

C2+
4

C2-
5

TI1
11

RO1
12

TI2
10

RO2
9

V+
2

V-
6

TO1
14

RI1
13

TO2
7

RI2
8

R5

10K P1

CONNECTOR DB9

5
9
4
8
3
7
2
6
1

+
C6
1uF/16V

+

C7

1uF/16V

+
C8
1uF/16V

+

C9

1uF/16V

+C10
1uF/16V

RxD
TxD

RESOUT

 35

Power Supply Schematic

(*) (*)
(*)

(*)

(*)

(Note)

Rcharge =(Vdc-Vbat-0.6)/

 (Ibat * charge%)

Vdc

Vbat

D5
1N4001

D6
1N4001

D7
1N4001

D8
1N4001

J6

DC JACK

R6

Rcharge

D9
1N4001

J7

CON4

1
2
3
4

U8
LM7805

VIN
1

GND

3

VOUT
2

+ C11
470uF/25V

S3
SW

D10

1N4148

CON2

1
2

VOUT

 36

Eval Board Parts List

No. description part number Q'ty
1 8032 MCU (40MHz) LGS90C32PL 1

2 PLCC socket 44P-PLCC 1
3 PLCC socket 52P-PLCC 1

4 5V regulator KIA7805P 1
5 Reset comparator KIA7045P 1

6 TTL MC74HC14AN 1
7 232 Driver ICL232CPE 1

8 Crystal 11.0592MHz 1
9 block resister array AR100K-09P 1

10 resister 47K 1/8W 1
11 resister 10K 1/8W 1
12 resister 470 1/8W 1

13 potentiometer GF06S10K 1
14 diode (switching) 1N 4148RL 2

15 diode (rectifier) 1N 4002RL 4
16 electrolytic capacitor 1uF/50V EC1U50V 5

17 electrolytic capacitor 10uF/16V EC10U16V 1
18 electrolytic capacitor 470uF/16V EC470U16V 1

19 electrolytic capacitor 100uF/6.3V EC100U6.3V 1
20 ceramic capacitor 18pF CC18 1

21 ceramic capacitor 39pF CC39 1
22 monolithic capacitor 0.1uF/50V M104 4

23 LED (green, 3mm) BL-B2141-3D 1
24 power switch (slide 3P) 1

25 reset switch 1
26 SIP 2 pin header 1
27 SIP 14 pin header (LCD side) 1

28 SIP 14 pin connector (PCB side) 1
29 DB-9 connector DB-9SR 1

30 DC-JACK 1
31 7x2 pin ribbon cable w/ male con. (150mm) 1

32 7x2 pin connector (angle) 1
33 standoffs (3 mm x 10 mm) for LCD 2

34 bolt, nut (2.6 mm x 16mm) for LCD 2
35 anti-static bag (170 mm x 300 mm) 1

36 box (110 mm x 150 mm x 24 mm) 1
37 LCD module 1

38 standoffs for PCB board 4
39 PCB board

 37

Appendix C: FlashLINK Users Manual

Features

• Allows PC parallel port to communicate with PSD9xx via PSDsoft Express

• Provides interface medium for JTAG communications

• Supports basic IEEE 1149.1 JTAG signals (TCK, TMS, TDI, TDO)

• Supports additional signals to enhance download speed (!TERR, TSTAT)

• Can be used for programming and/or testing

• Wide power supply range of 2.7 to 5.5v

• Pinout independent with target side flying leads

• Convenient desktop packaging allows varying applications(desk, lab or production)

• Synchronous JTAG interface allows speeds as fast as pc can drive

Overview

Flashlink is a hardware interface from a standard PC parallel port to one or more PSD9xx devices located
within a target PC board as shown below. This interface cable allows the PSD to be exercised for purposes
of programming and/or testing. PSDsoft Express is the source for driving FlashLINK.

Mates with

PC parallel

port

FlashLink

adapter

6 feet

12 WIRES

6 inches

Target

device

Flying lead

cable

Figure 28 Typical FLASHlink application

Operating considerations

Operating power for FlashLINK is derived from the target system in the range of 2.7 to 5.5 v.

Compatibility over this voltage range is ensured by the design of FlashLINK. No settings are involved.

On a cautionary note, it is recommended that the target system be powered with a well regulated and stable

source of power which is energized at the final value of Vcc. It is not recommended that the input voltage
be varied using the verneer on a regulated power supply, as this may cause the internal FlashLINK IC�s
(74VHC240) to misoperate toward the lower end of the supply range.

Each FLASHLink is packaged with a six-inch "flying lead" cable for maximum adaptability (a ribbon cable
requires the use a certain connector on the target assembly). This flying lead cable mates to the FlashLink

adapter on one end and has loose sockets on the other end to slide onto 0.025 square posts on the target
assembly.

 38

PIN

SIGNAL

NAME

DESCRIPTION

JTAG = IEEE 1149.1
EJTAG = ST EHANCED JTAG

Type Flashlink is

Signal

1 JEN\ Enables JTAG pins on PSD8XXF (optional) OC,100K Source

2 TRST\ * JTAG reset on target (optional per 1149.1) OC,10K Source

3 GND Signal ground

4 CNTL * Generic control signal, (optional) OC,100K Source

5 TDI JTAG serial data input Source

6 TSTAT EJTAG programming status (optional) Destination

7 Vcc VDC Source from target (2.7 - 5.5 VDC)

8 RST\ Target system reset (recommended) OC,10K Source

9 TMS JTAG mode select Source

10 GND Signal ground

11 TCK JTAG clock Source

12 GND Signal ground

13 TDO JTAG serial data output Destination

14 TERR\ EJTAG programming error (optional) Destination

Notes

 1. Bold signals are required connections

 2. all signal grounds are connected inside FlashLink adapter

 3. OC = open collector, pulled-up to Vcc inside FlashLink adapter

 4. * = Not supported initially by PSDsoft.

 5. The target device must supply Vcc to the FlashLink Adapter (2.7 to 5.5 VDC, 15mA

 max @ 5.5V).

Figure 29 Pin descriptions for FlashLink adapter assembly

All 14 signals may not be needed for a given application. Here's how they break down:

(6) Core signals that must be connected: TDI, TDO, TMS, TCK, Vcc, GND

(2) Optional signals for enhanced ISP (Option 3 flow control): TSTAT, TERR\

(1) Optional signal to control multiplexing of the JTAG signals: JEN\

(1) Recommended signal to allow FlashLink to reset target system during and

 after ISP: RST\

(1) Optional IEEE-1149.1 signal for JTAG chain reset: TRST\

(1) Optional generic control signal from FlashLink to target system: CNTL

(2) Two additional ground lines to help reduce EMI if a ribbon cable is used.
 These ground lines "sandwich" the TCK signal in the ribbon cable. These
 lines are not needed for use with the flying lead cable, that is why the

 flying lead cable has only 12 of 14 wires populated.

 39

FLASHlink pinouts

There is no "standard" JTAG connector. Each manufacturer differs. ST has a specific connector and
pinout for the FlashLink programmer adapter. The connector scheme on the FlashLink adapter can accept a

standard 14 pin ribbon connector (2 rows of 7 pins on 0.1" centers, standard keying) or any other user
specific connector that can slide onto 0.025" square posts. The pinout for the FlashLink adapter connector
is shown in figure 4.

A standard ribbon cable is good way to quickly connect to the target circuit board. If a ribbon cable is used,
then the receiving connector on the target system should be the same connector type with the same pinout

as the FlashLink adapter shown in Figure 4. Keep in mind that the JTAG signal TDI is sourced from the
FlashLink adapter and should be routed on the target circuit card so that it connects to the TDI input pin of
the PSD device. Although the name "TDI" infers "Data In" by convention, it is an output from FlashLink

and an input to the PSD device. Also keep in mind that the JTAG signal TDO is an input received by the
FlashLink adapter and is sourced by the PSD device on the TDO output pin. Use Figures 1, 2, 3, and 6 as a
guide.

TDO

TCK

TMS

VCC

TDI

GND

JEN

TERR

GND

GND

RST

TSTAT

CNTL

TRST

14

12

10

13

11

9

78

6 5

4 3

2 1

KEY

WAY

VIEW: LOOKING INTO FACE OF

SHROUDED MALE CONNECTOR.

0.025" POSTS ON 0.1" CENTERS.

Connector reference: Molex 70247-1401

ST ENHANCED JTAG ISP CONNECTOR DEFINITION

Recommended ribbon cable for quick

connection of FlashLink adapter to end

product:

Samtec: HCSD-07-D-06.00-01-S-N

 or

Digikey: M3CCK-14065-ND

Note:

TDI is a signal source on the Flashlink

and a signal destination on the target

board.

TDO is a signal destination on the

FlashLink and a signal source on the

target board.

Figure 30 Pinout for FlashLink Adapter and Target System

 40

Vcc

TMS

TCK

TDI

TSTAT

!TERR

TDO

!JEN

!TRST

GND*

CNTL
!RST

GND*

GND*

1

PSD8XXF

TMS
TCK

TDI
TDO

TSTAT

TERR\

13

6

9

11

5

14

Target System, 3v or 5v

straight through

ribbon cable

2 row, 7 position

Vcc

7

optional
optional

optional

optional

optional
recommended

1

2
3

4
8

10
12

* all ground pins are

connected together inside

flashlink assembly

PSD8XXF

TMS
TCK

TDI
TDO

Any JTAG
Device in

ByPass Mode

2

n

FlashLink

Adapter

Conncetor

System

Reset
Circuitry

9

11

13

5

6

14

7

12

1

2
3
4
8

10

JTAG Chaining Example,

PSD8XXF and other JTAG
compatible devices.

recommended

buffering
TMS

TCK

TDI
TDO

TSTAT
TERR\

Figure 31 JTAG Chaining Example

 41

FlashLink PCB G1

FlashLink Schematic

Waferscale Integration

47280 Kato Road
Fremont, CA 94538

B

1 1Monday, July 26, 1999

Title

Size Document Number Rev

Date: Sheet of

VCC

VCC

VCC VCC

VCC

VCC

VCC

VCC

SOLDERING PAD PATTERN

(DRAIN WIRE)

(FRAME GND)

(FOR U2) (FOR U3)

(FOR U1)

white

red
org
pink
yellow
green
lt green

grey

black
orgt
brnt

TDI

VCCIN

TMS

TCK

TSTATN

TRSTN
/JEN

CONTROL

RSTN

TDO
TERRN

SHIELD

D6 DB8

SEL DB13

GND

D4(TRST)DB6

ERRN DB15

D0(TCK)DB2

ACKN DB10

D5(RST) DB7

D2(TDI) DB4
D1(TMS) DB3

BUSY DB11

D3(JEN\) DB5

DB14AUTO LINE FEED

DB12PAP

GND

GND DB18

D1

6.2V

P1

70247-1401
MOLEX

1
2
3
4
5
6
7

8
9
10
11
12
13
14

R1247
R1347

R1447

R50 10

C50

1UF

C240.01UF

R51

100K

R810

U1B

74VHC240

A4
17

A3
15

A2
13

A1
11

G
19

Y4
3

Y3
5

Y2
7

Y1
9 R1547

R1847

R1747

R1647

R2047

R1947

U2B

74AC05

3 4

U2C

74AC05

5 6

R2210K

U3C

74AC05

56

U3B

74AC05

3 4

U3E

74AC05

1110

R2147

U3D

74AC05

98

U3A

74AC05

1 2

R2310K

R39

10K

R41 4.7K

R26

10K

C250.01UF C260.01UF

U2D

74AC05

9 8

R3010K

R31100K

R32100K

R33100K

U2E

74AC05

11 10

U2F

74AC05

13 12

U3F

74AC05

13 12

S1

PAD1

1

S2

PAD1

1
R800

R3510K

R34

100K

R3610K

R3710K

R3810K

C51

0.01UF

D3

4148

Q1
2N3904

3
2

1

D2

4148

R40

10K

R25470K

R42
4.7K

R43
4.7K

R28
4.7K

C52
100pf

R29
4.7K

C55
100pf

C53
100pf

C54
100pf

R647

U1A

74VHC240

A1
2

A2
4

A3
6

A4
8

G
1

Y1
18

Y2
16

Y3
14

Y4
12R447

R847

U2A

74AC05

1 2

R247

CBL1

PAD14

1
2

3
4
5
6
7
8
9

10

11
12
13
14

R947

R547

R347

R1047

R747

R147

R1147

D4

1N5817

C56
100pf

C57
100pf

C58
100pf

 42

Loop back connector schematic

14 pin dual row 0.025 sq

receptacle(polarized, same as cable 5)

to flash

link

assy

VCC

GND

PC output
signal

PC intput
signal

TDI !TSTAT

!TERRTMS

TCK !TDO

PC connector
line

ACKN (8)

ERRN (10)

PAP (9)

!TSTAT

TMS

TDO

VCC

TCK

TDI

!TERR

GND

J1

CON1

1

J2

CON2

1

J1

CON14

1
2

3
4
5
6

7
8
9

10
11
12

13
14

Figure 32 Loop Back Tester, Passive, FLASHlink

 43

Appendix D Source code for C51_startup, UART8032

Modified from original Keil source code for memory swapping.
;--
; This file is part of the C51 Compiler package
; Copyright (c) 1988-1997 Keil Elektronik GmbH and Keil Software, Inc.
;--
; STARTUP.A51: This code is executed after processor reset.
;
; To translate this file use A51 with the following invocation:
;
; A51 STARTUP.A51
;

; To link the modified STARTUP.OBJ file to your application use the
following
; BL51 invocation:
;
; BL51 <your object file list>, STARTUP.OBJ <controls>
;
;--
;
; User-defined Power-On Initialization of Memory

;
; With the following EQU statements the initialization of memory
; at processor reset can be defined:
;
; ; the absolute start-address of IDATA memory is always 0
IDATALEN EQU 0H ; the length of IDATA memory in bytes.
;
XDATASTART EQU 0H ; the absolute start-address of XDATA memory
XDATALEN EQU 0H ; the length of XDATA memory in bytes.
;

PDATASTART EQU 0H ; the absolute start-address of PDATA memory
PDATALEN EQU 0H ; the length of PDATA memory in bytes.
;
; Notes: The IDATA space overlaps physically the DATA and BIT areas of
the
; 8051 CPU. At minimum the memory space occupied from the C51
; run-time routines must be set to zero.
;--
;
; Reentrant Stack Initilization

;
; The following EQU statements define the stack pointer for reentrant
; functions and initialized it:
;
; Stack Space for reentrant functions in the SMALL model.
IBPSTACK EQU 0 ; set to 1 if small reentrant is used.
IBPSTACKTOP EQU 0FFH+1 ; set top of stack to highest location+1.
;
; Stack Space for reentrant functions in the LARGE model.

XBPSTACK EQU 0 ; set to 1 if large reentrant is used.
XBPSTACKTOP EQU 0FFFFH+1; set top of stack to highest location+1.
;
; Stack Space for reentrant functions in the COMPACT model.
PBPSTACK EQU 0 ; set to 1 if compact reentrant is used.
PBPSTACKTOP EQU 0FFFFH+1; set top of stack to highest location+1.
;
;--

 44

;
; Page Definition for Using the Compact Model with 64 KByte xdata RAM
;
; The following EQU statements define the xdata page used for pdata
; variables. The EQU PPAGE must conform with the PPAGE control used
; in the linker invocation.
;

PPAGEENABLE EQU 0 ; set to 1 if pdata object are used.
PPAGE EQU 0 ; define PPAGE number.
;
;--

 NAME ?C_STARTUP

?C_C51STARTUP SEGMENT CODE
?STACK SEGMENT IDATA

 RSEG ?STACK
 DS 1

 EXTRN CODE (?C_START)
 PUBLIC ?C_STARTUP

 CSEG AT 0
?C_STARTUP:

 LJMP STARTUP1
;
; INT VECTORS AT HERE
;
;***
; Followings are some routines for SWAP and EXECUTE
;
 EXTRN XDATA(PSD8XX_reg)
 EXTRN CODE(PSDload_init, PSDload)

 CSEG AT 33h
 PUBLIC RET_BOOT, EXE_MAIN

; Return from main flash to boot flash
;
RET_BOOT:
 MOV IE,#0 ; diable all interrupts

 MOV DPTR,#PSD8XX_reg+0E2h ; VM register
 MOV A,#06h ; both MAIN and BOOT=CODE SPACE

 MOVX @DPTR,A

 MOV DPTR,#PSD8XX_reg+0E0h ; PAGE register
 MOV A,#00h ; SWAP=0, UNLOCK=0, PAGE=0
 MOVX @DPTR,A

 ;****** now works in boot flash ********

 MOV DPTR,#PSD8xx_reg+0E2h ; VM register

 MOV A,#12h ; BOOT = CODE, MAIN = DATA space
 MOVX @DPTR,A

 MOV SP,#?STACK-1

 45

 LCALL PSDload_init
 LCALL PSDload

 LJMP STARTUP2 ; execute Cstartup of BOOT

; Set SWAP and EXECUTE main flash
;

EXE_MAIN:
 MOV IE,#0 ; diable all interrupts

 MOV DPTR,#PSD8XX_reg+0E2h ; VM register
 MOV A,#06h ; both MAIN and BOOT=CODE SPACE
 MOVX @DPTR,A

 MOV DPTR,#PSD8XX_reg+0E0h ; PAGE register
 MOV A,#80h ; SWAP=1, UNLOCK=0, PAGE=0
 MOVX @DPTR,A

 ;****** now works in main flash ********

 MOV DPTR,#PSD8xx_reg+0E2h ; VM register
 MOV A,#0Ch ; BOOT = DATA, MAIN = CODE space
 MOVX @DPTR,A

 LJMP STARTUP2 ; execute Cstartup of MAIN
;

; This location will hold execution source
; EXECUTE_SOURCE: 0xFF, execute boot flash
; : 0x00, execute main flash
;
 CSEG AT 70h
 PUBLIC EXECUTE_SOURCE

EXECUTE_SOURCE:
 DS 1
;

;**
;
 EXTRN CODE(psd_init)
 RSEG ?C_C51STARTUP

STARTUP1:
;
;**
; When port A is used to generate latched address out for external data
memories,

; port A must be initialize before entering variable initialztion as
followings.
;
; LCALL psd_init
;
;***
;
STARTUP2:

IF IDATALEN <> 0
 MOV R0,#IDATALEN - 1
 CLR A
IDATALOOP: MOV @R0,A

 46

 DJNZ R0,IDATALOOP
ENDIF

IF XDATALEN <> 0
 MOV DPTR,#XDATASTART
 MOV R7,#LOW (XDATALEN)
 IF (LOW (XDATALEN)) <> 0

 MOV R6,#(HIGH XDATALEN) +1
 ELSE
 MOV R6,#HIGH (XDATALEN)
 ENDIF
 CLR A
XDATALOOP: MOVX @DPTR,A
 INC DPTR
 DJNZ R7,XDATALOOP
 DJNZ R6,XDATALOOP
ENDIF

IF PPAGEENABLE <> 0
 MOV P2,#PPAGE
ENDIF

IF PDATALEN <> 0
 MOV R0,#PDATASTART
 MOV R7,#LOW (PDATALEN)
 CLR A

PDATALOOP: MOVX @R0,A
 INC R0
 DJNZ R7,PDATALOOP
ENDIF

IF IBPSTACK <> 0
EXTRN DATA (?C_IBP)

 MOV ?C_IBP,#LOW IBPSTACKTOP
ENDIF

IF XBPSTACK <> 0
EXTRN DATA (?C_XBP)

 MOV ?C_XBP,#HIGH XBPSTACKTOP
 MOV ?C_XBP+1,#LOW XBPSTACKTOP
ENDIF

IF PBPSTACK <> 0
EXTRN DATA (?C_PBP)

 MOV ?C_PBP,#LOW PBPSTACKTOP
ENDIF

 MOV SP,#?STACK-1
 LJMP ?C_START

 END

 47

Appendix E Source code for C51_startup, UART1

Modified from original Keil source code for memory swapping
;---
; This file is part of the C51 Compiler package
; Copyright (c) 1988-1997 Keil Elektronik GmbH and Keil Software, Inc.
;--
; STARTUP.A51: This code is executed after processor reset.
;
; To translate this file use A51 with the following invocation:
;
; A51 STARTUP.A51
;

; To link the modified STARTUP.OBJ file to your application use the
following
; BL51 invocation:
;
; BL51 <your object file list>, STARTUP.OBJ <controls>
;
;--
;
; User-defined Power-On Initialization of Memory

;
; With the following EQU statements the initialization of memory
; at processor reset can be defined:
;
; ; the absolute start-address of IDATA memory is always 0
IDATALEN EQU 0H ; the length of IDATA memory in bytes.
;
XDATASTART EQU 0H ; the absolute start-address of XDATA memory
XDATALEN EQU 0H ; the length of XDATA memory in bytes.
;

PDATASTART EQU 0H ; the absolute start-address of PDATA memory
PDATALEN EQU 0H ; the length of PDATA memory in bytes.
;
; Notes: The IDATA space overlaps physically the DATA and BIT areas of
the
; 8051 CPU. At minimum the memory space occupied from the C51
; run-time routines must be set to zero.
;--
;
; Reentrant Stack Initilization

;
; The following EQU statements define the stack pointer for reentrant
; functions and initialized it:
;
; Stack Space for reentrant functions in the SMALL model.
IBPSTACK EQU 0 ; set to 1 if small reentrant is used.
IBPSTACKTOP EQU 0FFH+1 ; set top of stack to highest location+1.
;
; Stack Space for reentrant functions in the LARGE model.

XBPSTACK EQU 0 ; set to 1 if large reentrant is used.
XBPSTACKTOP EQU 0FFFFH+1; set top of stack to highest location+1.
;
; Stack Space for reentrant functions in the COMPACT model.
PBPSTACK EQU 0 ; set to 1 if compact reentrant is used.
PBPSTACKTOP EQU 0FFFFH+1; set top of stack to highest location+1.
;
;--

 48

;
; Page Definition for Using the Compact Model with 64 KByte xdata RAM
;
; The following EQU statements define the xdata page used for pdata
; variables. The EQU PPAGE must conform with the PPAGE control used
; in the linker invocation.
;

PPAGEENABLE EQU 0 ; set to 1 if pdata object are used.
PPAGE EQU 0 ; define PPAGE number.
;
;---
 NAME ?C_STARTUP

?C_C51STARTUP SEGMENT CODE
?STACK SEGMENT IDATA

 RSEG ?STACK
 DS 1

 EXTRN CODE (?C_START)
 PUBLIC ?C_STARTUP

 CSEG AT 0
?C_STARTUP:
 LJMP STARTUP1

;
; INT VECTORS AT HERE
;

;
;***
; Followings are some routines for SWAP and EXECUTE
;
 EXTRN XDATA(PSD8XX_reg)
 EXTRN CODE(PSDload_init, PSDload)

 CSEG AT 33h
 PUBLIC RET_BOOT, EXE_MAIN

;
; Return from main flash to boot flash
;
RET_BOOT:
 MOV IE,#0 ; diable all interrupts

 MOV DPTR,#PSD8XX_reg+0E2h ; VM register
 MOV A,#06h ; both MAIN and BOOT=CODE SPACE
 MOVX @DPTR,A

 MOV DPTR,#PSD8XX_reg+0E0h ; PAGE register
 MOV A,#00h ; SWAP=0, UNLOCK=0, PAGE=0
 MOVX @DPTR,A

 ;****** now works in boot flash ********

 MOV DPTR,#PSD8xx_reg+0E2h ; VM register
 MOV A,#12h ; BOOT = CODE, MAIN = DATA space
 MOVX @DPTR,A

 49

 MOV SP,#?STACK-1
 LCALL PSDload_init
 LCALL PSDload

 LJMP STARTUP2 ; execute Cstartup of BOOT

;
; Set SWAP and EXECUTE main flash
;
EXE_MAIN:
 MOV IE,#0 ; diable all interrupts

 MOV DPTR,#PSD8XX_reg+0E2h ; VM register
 MOV A,#06h ; both MAIN and BOOT=CODE SPACE
 MOVX @DPTR,A

 MOV DPTR,#PSD8XX_reg+0E0h ; PAGE register
 MOV A,#80h ; SWAP=1, UNLOCK=0, PAGE=0
 MOVX @DPTR,A

 ;****** now works in main flash ********

 MOV DPTR,#PSD8xx_reg+0E2h ; VM register
 MOV A,#0Ch ; BOOT = DATA, MAIN = CODE space
 MOVX @DPTR,A

 LJMP STARTUP2 ; execute Cstartup of MAIN
;
; This location will hold execution source
; EXECUTE_SOURCE: 0xFF, execute boot flash
; : 0x00, execute main flash
;
 CSEG AT 70h
 PUBLIC EXECUTE_SOURCE

EXECUTE_SOURCE:
 DB 0 ; SOURCE=0, autorun in next startup
;
;**
;
 EXTRN CODE(psd_init)
 RSEG ?C_C51STARTUP

STARTUP1:
;

;**
; When port A is used to generate latched address out for external data
memories,
; port A must be initialize before entering variable initialztion as
followings.
;
; LCALL psd_init
;
;**

;
STARTUP2:

IF IDATALEN <> 0

 50

 MOV R0,#IDATALEN - 1
 CLR A
IDATALOOP: MOV @R0,A
 DJNZ R0,IDATALOOP
ENDIF

IF XDATALEN <> 0

 MOV DPTR,#XDATASTART
 MOV R7,#LOW (XDATALEN)
 IF (LOW (XDATALEN)) <> 0
 MOV R6,#(HIGH XDATALEN) +1
 ELSE
 MOV R6,#HIGH (XDATALEN)
 ENDIF
 CLR A
XDATALOOP: MOVX @DPTR,A
 INC DPTR

 DJNZ R7,XDATALOOP
 DJNZ R6,XDATALOOP
ENDIF

IF PPAGEENABLE <> 0
 MOV P2,#PPAGE
ENDIF

IF PDATALEN <> 0

 MOV R0,#PDATASTART
 MOV R7,#LOW (PDATALEN)
 CLR A
PDATALOOP: MOVX @R0,A
 INC R0
 DJNZ R7,PDATALOOP
ENDIF

IF IBPSTACK <> 0
EXTRN DATA (?C_IBP)

 MOV ?C_IBP,#LOW IBPSTACKTOP
ENDIF

IF XBPSTACK <> 0
EXTRN DATA (?C_XBP)

 MOV ?C_XBP,#HIGH XBPSTACKTOP
 MOV ?C_XBP+1,#LOW XBPSTACKTOP
ENDIF

IF PBPSTACK <> 0
EXTRN DATA (?C_PBP)
 MOV ?C_PBP,#LOW PBPSTACKTOP
ENDIF

 MOV SP,#?STACK-1
 LJMP ?C_START

 END

DK900 - USER MANUAL

2/3

Table 1. Document Revision History

Date Rev. Description of Revision

1.0 Document written in the WSI format

30-Jan-2002 1.1

DK900: DK900 Development Kit For PSD9xxF Family of Flash PSDs
Front page, and back two pages, in ST format, added to the PDF file
Any references to Waferscale, WSI, EasyFLASH and PSDsoft 2000
updated to ST, ST, Flash+PSD and PSDsoft Express

3/3

DK900 - USER MANUAL

For current information on PSD products, please consult our pages on the world wide web:
www.st.com/psm

If you have any questions or suggestions concerning the matters raised in this document, please send
them to the following electronic mail addresses:

apps.psd@st.com (for application support)

ask.memory@st.com (for general enquiries)

Please remember to include your name, company, location, telephone number and fax number.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics

All other names are the property of their respective owners

© 2002 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong -

India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

www.st.com

