

STGP6M65DF2

Trench gate field-stop IGBT, M series 650 V, 6 A low loss

Datasheet - production data

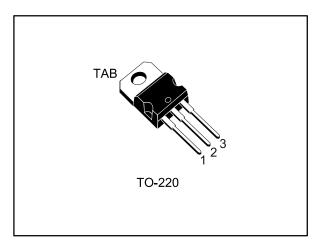
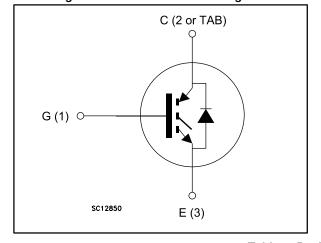



Figure 1: Internal schematic diagram

Features

- 6 μs of short-circuit withstand time
- $V_{CE(sat)} = 1.55 \text{ V (typ.)} @ I_C = 6 \text{ A}$
- Tight parameter distribution
- Safer paralleling
- Low thermal resistance
- Soft and very fast recovery antiparallel diode

Applications

- Motor control
- UPS
- PFC

Description

This device is an IGBT developed using an advanced proprietary trench gate field-stop structure. The device is part of the M series IGBTs, which represent an optimal balance between inverter system performance and efficiency where low-loss and short-circuit functionality are essential. Furthermore, the positive $V_{\text{CE(sat)}}$ temperature coefficient and tight parameter distribution result in safer paralleling operation.

Table 1: Device summary

Order code	Marking	Package	Packing
STGP6M65DF2	G6M65DF2	TO-220	Tube

Contents STGP6M65DF2

Contents

1	Electric	eal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	7
3	Test cir	cuits	12
4		e information	
	4.1	TO-220 type A package information	14
5	Revisio	n history	16

STGP6M65DF2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vces	Collector-emitter voltage (V _{GE} = 0 V)	650	V
1-	Continuous collector current at T _C = 25 °C	12	Α
lc	Continuous collector current at T _C = 100 °C	6	Α
ICP ⁽¹⁾	Pulsed collector current	24	Α
V_{GE}	Gate-emitter voltage	±20	V
	Continuous forward current at T _C = 25 °C	12	Α
l _F	Continuous forward current at T _C = 100 °C	6	Α
I _{FP} ⁽¹⁾	Pulsed forward current	24	Α
Ртот	Total dissipation at T _C = 25 °C	88	W
T _{STG}	Storage temperature range - 55 to 150		°C
TJ	Operating junction temperature range	- 55 to 175	°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
RthJC	Thermal resistance junction-case IGBT	1.7	°C/W
RthJC	Thermal resistance junction-case diode	5	°C/W
RthJA	Thermal resistance junction-ambient	62.5	°C/W

 $[\]ensuremath{^{(1)}}\mbox{Pulse}$ width limited by maximum junction temperature.

Electrical characteristics STGP6M65DF2

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 4: Static characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage	$V_{GE} = 0 \text{ V}, I_{C} = 250 \mu\text{A}$	650			٧
		$V_{GE} = 15 \text{ V}, I_{C} = 6 \text{ A}$		1.55	2.0	
V _{CE(sat)}	V _{CE(sat)} Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 6 A, T _J = 125 °C		1.9		V
Saturation voltage	odiaration voltage	V _{GE} = 15 V, I _C = 6 A, T _J = 175 °C		2.1		
	V _F Forward on-voltage	IF = 6 A		2.2		
V _F		I _F = 6 A, T _J = 125 °C		2.0		V
		I _F = 6 A, T _J = 175 °C		1.9		
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}, I_C = 250 \mu A$	5	6	7	V
Ices	Collector cut-off current	V _{GE} = 0 V, V _{CE} = 650 V			25	μΑ
Iges	Gate-emitter leakage current	V _{CE} = 0 V, V _{GE} = ± 20 V			±250	μΑ

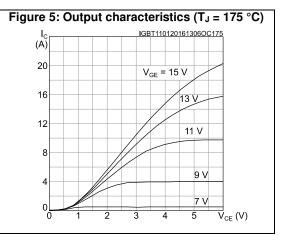
Table 5: Dynamic characteristics

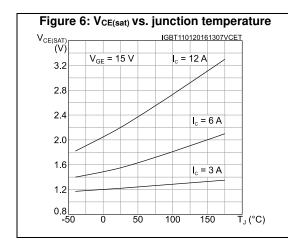
Table 3. Dynamic characteristics						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Cies	Input capacitance		-	530	-	
Coes	Output capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0 V	-	31	1	pF
Cres	Reverse transfer capacitance	VOL = 20 V, T = T IIII 12, VGL = 0 V	-	11	1	ρ.
Qg	Total gate charge	Vcc = 520 V, Ic = 6 A, VgE = 15 V	-	21.2	1	
Q _{ge}	Gate-emitter charge	(see Figure 30: " Gate charge test	-	5.2	- 1	nC
Qgc	Gate-collector charge	circuit")	-	8.8	-	

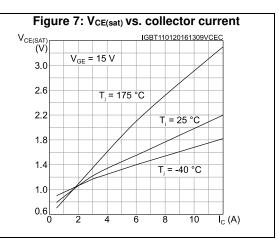
Table 6: IGBT switching characteristics (inductive load)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Table 6: IGBT switching characteristics (inductive load)						
t time t Current rise time (di/dt)on Turn-off-delay time t Current fall time Eon(1) Turn-off-switching energy Et Current rise time Current rise time Vc∈ = 400 V, lc = 6 A, Vc∈ = 15 V, Rc = 22 Ω (see Figure 29: "Test circuit for inductive load switching") Turn-off switching energy Et Current rise time t Current rise time (di/dt)on Turn-on delay time t Current rise time (di/dt)on Turn-on current slope to Current fall time Turn-off-delay time Vc∈ = 400 V, lc = 6 A, Vc∈ = 15 V, Rc = 22 Ω (see Figure 29: "Test circuit for inductive load switching") D.200 □ □ 170 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
time (di/dt)on current slope to (di/dt)on current slope time	t _{d(on)}				15	-	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _r				5.8	-	ns
time t₁ Current fall time Turn-on switching energy E _{off} (2) Total switching energy t_{t} Turn-on delay time tr Current rise time (di/dt) _{on} Turn-on current slope t₁ Turn-on switching energy t_{t} Turn-on delay time t_{t} t_{t} t_{t} Turn-on delay time t_{t} t_{t} t_{t} Turn-on delay time t_{t}	(di/dt) _{on}				828	-	A/μs
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{d(off)}		V 400 V I CA V 45 V		90	-	ns
	tf		R _G = 22 Ω (see Figure 29: "Test circuit		130	-	ns
	E _{on} (1)	switching			0.036	-	mJ
to the content of the time to the time	E _{off} (2)	switching			0.200	-	mJ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E _{ts}				0.236	-	mJ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{d(on)}	-			17	-	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	tr				7	-	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(di/dt) _{on}				685	ı	A/μs
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{d(off)}	•	V 400 V I 6 A V 15 V		86	-	ns
	tf		$R_G = 22 \Omega T_J = 175 ^{\circ}\text{C}$ (see <i>Figure 29:</i> "		205	-	ns
	E _{on} (1)	switching	,		0.064	-	mJ
Ets energy 0.354 - Short-circuit Vcc ≤ 400 V, V _{GE} = 15 V, T _{Jstart} = 150 °C 6 -	E _{off} (2)	switching			0.290	-	mJ
	E _{ts}	_			0.354	-	mJ
	+		$V_{CC} \le 400 \text{ V}, V_{GE} = 15 \text{ V}, T_{Jstart} = 150 \text{ °C}$	6		-	μs
withstand time $V_{CC} \le 400 \text{ V}, V_{GE} = 13 \text{ V}, T_{Jstart} = 150 \text{ °C}$ 10 -	t _{sc}		$V_{CC} \le 400 \text{ V}, V_{GE} = 13 \text{ V}, T_{Jstart} = 150 \text{ °C}$	10		-	μs

Notes:


 $^{^{(1)}}$ Turn-on switching energy includes reverse recovery of the diode.


 $[\]ensuremath{^{(2)}}\mbox{Turn-off}$ switching energy also includes the tail of the collector current.


Table 7: Diode switching characteristics (inductive load)

Symbol	Parameter Test conditions			Тур.	Max.	Unit
Symbol	i arameter	rest conditions	Min.	i yp.	IVIAA.	Oilit
trr	Reverse recovery time		-	140		ns
Q _{rr}	Reverse recovery charge		-	210		nC
I _{rrm}	Reverse recovery current	I _F = 6 A, V _R = 400 V, V _{GE} = 15 V (see <i>Figure 29: " Test circuit for inductive load switching"</i>) di/dt = 1000 A/μs		6.6		Α
dl _{rr} /dt	Peak rate of fall of reverse recovery current during tb			430		A/μs
Err	Reverse recovery energy			16		μJ
t _{rr}	Reverse recovery time			200		ns
Qrr	Reverse recovery charge		-	473		nC
I _{rrm}	Reverse recovery current	I _F = 6 A, V _R = 400 V, V _{GE} = 15 V T _J = 175 °C (see <i>Figure 29: " Test circuit for inductive load switching"</i>)	-	9.6		Α
dl _{rr} /dt	Peak rate of fall of reverse recovery current during to	di/dt = 1000 A/μs	-	428		A/μs
Err	Reverse recovery energy		-	32		μЈ

2.1 Electrical characteristics (curves)

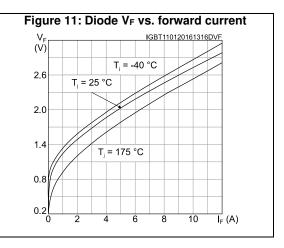
8

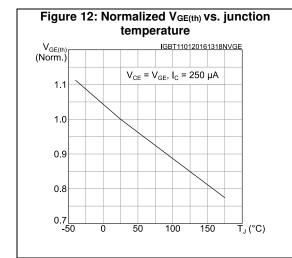
10⁰

Figure 8: Collector current vs. switching frequency

| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency
| Collector current vs. switching frequency vs. switching frequency
| Collector current vs. switching frequency v

f (kHz)


Rectangular current shape (duty cycle = 0.5, V_{cc} = 400 V R_{s} = 22 Ω , V_{GE} = 0/15 V,


10¹

10²

T = 175 °C

Figure 9: Forward bias safe operating area $\begin{array}{c|c} I_{C} & \text{IGBT110120161310FSOA} \\ \hline (A) & \text{single pulse, } T_{c} = 25^{\circ}C, \\ \hline T_{J} \leq 175^{\circ}C, \ V_{GE} = 15 \ V \\ \hline \end{array}$ $\begin{array}{c|c} I_{C} & \text{single pulse, } T_{c} = 25^{\circ}C, \\ \hline T_{J} \leq 175^{\circ}C, \ V_{GE} = 15 \ V \\ \hline \end{array}$ $\begin{array}{c|c} I_{C} & \text{the pulse, } T_{C} = 25^{\circ}C, \\ \hline T_{J} \leq 175^{\circ}C, \ V_{GE} = 15 \ V \\ \hline \end{array}$ $\begin{array}{c|c} I_{C} & \text{the pulse, } T_{C} = 100 \ \mu\text{s} \\ \hline \end{array}$ $\begin{array}{c|c} I_{C} & \text{the pulse, } T_{C} = 100 \ \mu\text{s} \\ \hline \end{array}$ $\begin{array}{c|c} I_{C} & \text{the pulse, } T_{C} = 100 \ \mu\text{s} \\ \hline \end{array}$ $\begin{array}{c|c} I_{C} & \text{the pulse, } T_{C} = 100 \ \mu\text{s} \\ \hline \end{array}$ $\begin{array}{c|c} I_{C} & \text{the pulse, } T_{C} = 100 \ \mu\text{s} \\ \hline \end{array}$ $\begin{array}{c|c} I_{C} & \text{the pulse, } T_{C} = 100 \ \mu\text{s} \\ \hline \end{array}$

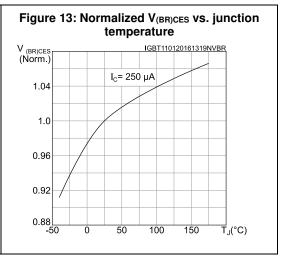


Figure 14: Capacitance variations

C
(pF)

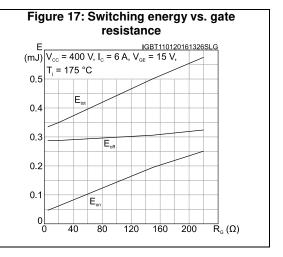
10²

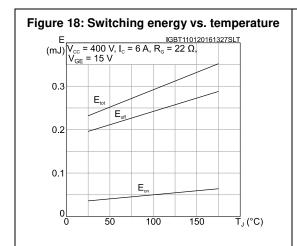
10¹

f = 1 MHz

C
C
ros

10⁰


10⁻¹


10⁰

10¹

10²

V_{CE} (V)

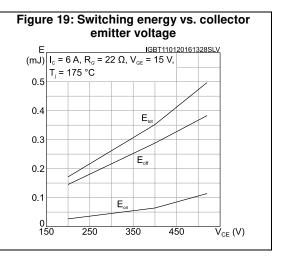


Figure 20: Short-circuit time and current vs.

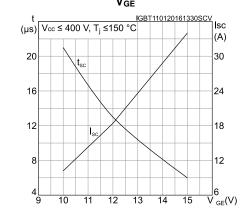


Figure 21: Switching times vs. collector current

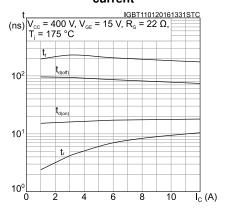


Figure 22: Switching times vs. gate resistance

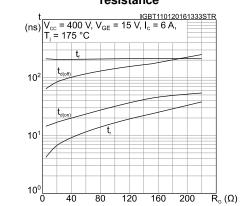


Figure 23: Reverse recovery current vs. diode current slope

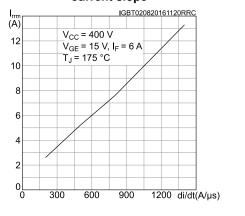


Figure 24: Reverse recovery time vs. diode current slope

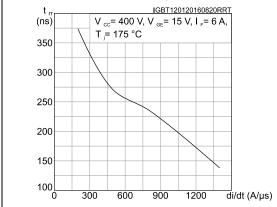
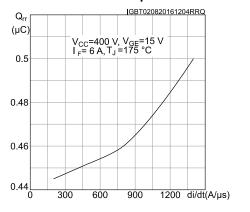
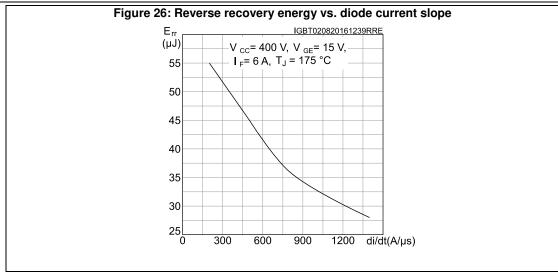
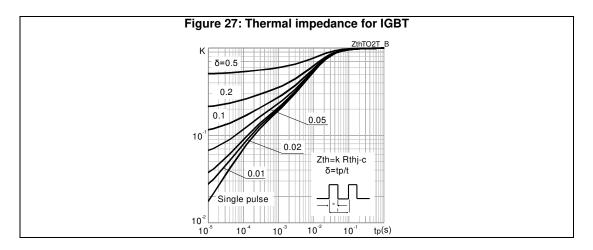
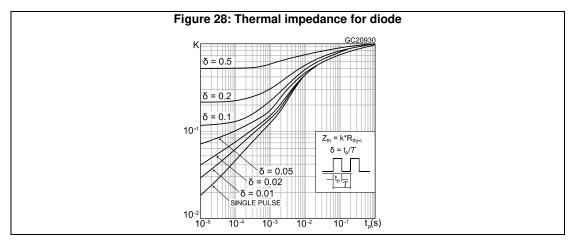
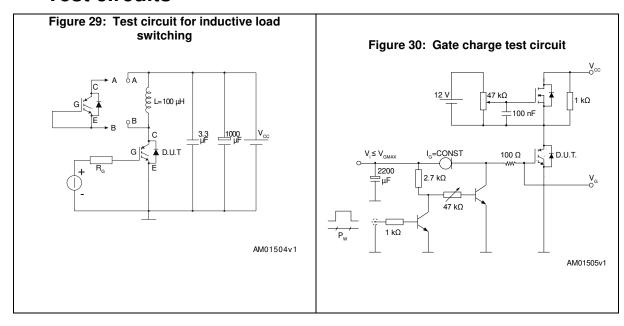
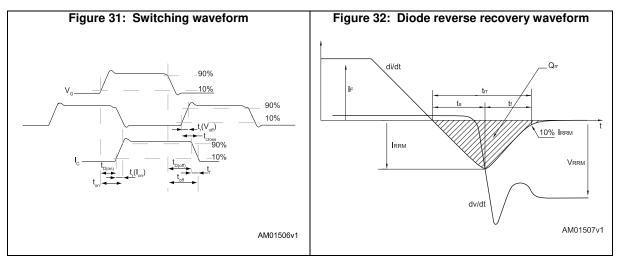






Figure 25: Reverse recovery charge vs. diode current slope





Test circuits STGP6M65DF2

3 Test circuits

STGP6M65DF2 Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220 type A package information

Figure 33: TO-220 type A package outline

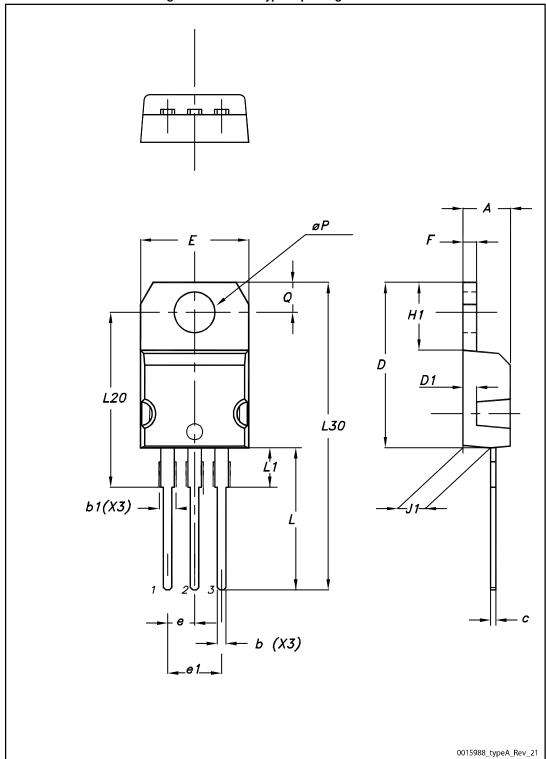


Table 8: TO-220 type A mechanical data

	145.001.0 ===0 typ		
Dim.		mm	
Dim.	Min.	Тур.	Max.
Α	4.40		4.60
b	0.61		0.88
b1	1.14		1.55
С	0.48		0.70
D	15.25		15.75
D1		1.27	
Е	10.00		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13.00		14.00
L1	3.50		3.93
L20		16.40	
L30		28.90	
øΡ	3.75		3.85
Q	2.65		2.95

Revision history STGP6M65DF2

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
30-Nov-2015	1	First release.
13-Jan-2016	2	Modified: Table 4: "Static characteristics", Table 5: "Dynamic characteristics", Table 6: "IGBT switching characteristics (inductive load)", and Table 7: "Diode switching characteristics (inductive load)" Added: Section 2.1: "Electrical characteristics (curves)" Minor text changes.
03-Aug-2016	3	Updated Table 2: "Absolute maximum ratings", Table 4: "Static characteristics", Table 6: "IGBT switching characteristics (inductive load)", Table 7: "Diode switching characteristics (inductive load)". Updated Figure 9: "Forward bias safe operating area", Figure 12: "Normalized VGE(th) vs. junction temperature", Figure 20: "Short-circuit time and current vs. VGE", Figure 23: "Reverse recovery current vs. diode current slope". Changed Figure 25: "Reverse recovery charge vs. diode current slope" and Figure 26: "Reverse recovery energy vs. diode current slope".

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

