HFE3637-001/XBA

FEATURES

- High speed low cost VCSEL.
- Industry standard ST-LP fibre connector.
- Designed for drive currents between 5 and 15mA
- Optimised for low temperature dependence

DESCRIPTION

The HFE3637-001/XBA is a high-performance 850nm VCSEL (vertical cavity surface emitting laser) intended for medium to high speed data communications. It combines many of the desirable features of an LED with the desirable features of a laser diode, operating in a single longitudinal mode but with multiple transverse modes reducing coherence and consequent modal noise in multimode fibre applications.

APPLICATION

The HFE3637-001/XBA is a high radiance VCSEL packaged in a TO-46 header with a metal can assembled in a ST-LP connector.

The component produces a circularly symmetric, narrow divergence beam. The stability of operating characteristics with temperature allows operation without continuous photo diode control, simplifying drive current considerably. The HFE3637-001/XBA is designed to be used with inexpensive silicon or gallium arsenide detectors, but excellent performance can also be achieved with some indium gallium arsenide detectors.

The low drive current of the HFE3637-001/XBA makes direct drive from PECL or ECL logic gates feasible and eases driver design.

Note: ST is a trademark of AT&T

ABSOLUTE MAXIMUM RATINGS

Storage temperature	-40 to +100°C
Operating temperature	0 to +70°C
Forward current	15mA
Reverse voltage	5V @ 10μA

NOTICE

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operations section for extended periods of time may affect reliability.

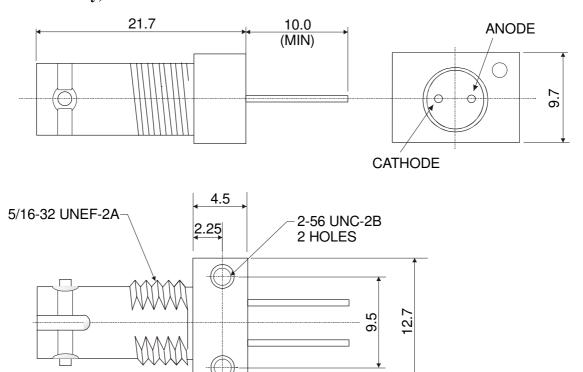
ELECTRO-OPTICAL CHARACTERISTICS (Tests made at 25°C unless otherwise stated)

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions
Coupled power	P _{OC}	100	400		μ W	$I_F = 10 \text{mA}^{(1)}$
50/125μm fibre		-10.0	-4.0		dBm	
Rise / Fall Time	t _r /t _f		400		pS	$I_F = 10mA$
Threshold Current	I_{TH}	1.5	3.5	7	mA	$I_F = 10mA$
Threshold current	ΔI_{TH}	-1.9		1.9	mA	$I_F = 10$ mA.
temperature variation						$T_A = 0$ °C to 70 °C
Slope Efficiency	η		0.3		mW/mA	$I_F = 10mA$
Slope efficiency temperature	Δη/ΔΤ		-0.5		%/°C	$I_F = 10$ mA.
variation.						$T_A = 0$ °C to 70 °C
Peak Wavelength	$\lambda_{ m P}$	820	850	850	nm	$I_F = 10$ mA DC
λ_P Temperature variation	Δλ/ΔΤ		0.06		nm/°C	$I_F = 10mA$
Spectral Bandwidth	Δλ			0.85	nm	$I_F = 10$ mA DC
Laser forward voltage	V_{F}	1.5	1.75	2.2	V	$I_F = 10mA$
Series Resistance	r_{S}	15	25	40	Ω	DC
Beam divergence	Θ		10		Degrees	

^{1.} Tested into $50/125\mu m$ graded index fibre, 0.2NA, @10mA I_F

The inherent design of this component causes it to be sensitive to electrostatic discharge (ESD). To prevent ESD-induced damage and/or degradation to equipment, take normal ESD precautions when handling this product.

Fibre Optic LAN Components Low Cost VCSEL


HFE3637-001/XBA

ORDER GUIDE

Catalogue Listing	Description
HFE3637-001/XBA	Low cost VCSEL

MOUNTING DIMENSIONS

(for reference only)

SALES AND SERVICE

Honeywell serves its customers through a world-wide network of sales offices and distributors. For application assistance, current specifications, pricing or name of the nearest Authorised Distributor, contact a nearby sales office or call:

011- 44 -1- 189 06 2600 UK 1-800-367-6786 USA & Canada 1-214-470-4271 International

INTERNET

http://www.honeywell.sensing.com info@micro.honeywell.com

Specifications may change at anytime and without notice. The information we supply is believed to be accurate and reliable as of this printing. However, we assume no responsibility for its use.

While we provide application assistance, personally and through our literature, it is up to the customer to determine the suitability of the product in the application.