MOSFET – N-Channel, Shielded Gate, POWERTRENCH®

100 V, 80 A, 4.85 m Ω

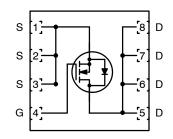
General Description

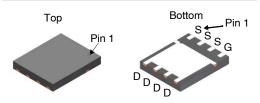
This N-Channel MOSFET is produced using ON Semiconductor's advanced POWERTRENCH process that incorporates Shielded Gate technology. This process has been optimized for the on-state resistance and yet maintain superior switching performance.

Features

- Shielded Gate MOSFET Technology
- Max $r_{DS(on)} = 4.85 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 16 \text{ A}$
- Max $r_{DS(on)} = 7.8 \text{ m}\Omega$ at $V_{GS} = 6 \text{ V}$, $I_D = 13 \text{ A}$
- Advanced Package and Silicon Combination for Low r_{DS(on)} and High Efficiency
- MSL1 Robust Package Design
- 100% UIL Tested
- This Device is Pb-Free and is RoHS Compliant

Applications


- Primary DC-DC MOSFET
- Secondary Synchronous Rectifier
- Load Switch



ON Semiconductor®

www.onsemi.com

N-CHANNEL MOSFET

PQFN8 5X6, 1.27P Power 56 CASE 483AF

MARKING DIAGRAM

\$Y&Z&3&K FDMS 86150A

\$Y = ON Semiconductor Logo &Z = Assembly Plant Code

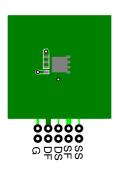
&3 = 3-Digit Date code &K = 2-Digits Lot Run Traceability Code

FDMS86150A = Specific Device Code

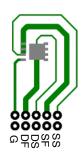
ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

MOSFET MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)


Symbol	Parameter			Ratings	Unit
V _{DS}	Drain to Source Voltage			100	V
V _{GS}	Gate to Source Voltage			±20	V
I _D	Drain Current -Continuous	T _C = 25°C		80	Α
	-Continuous	T _A = 25°C	(Note 1a)	16	
	-Pulsed		(Note 3)	300	
E _{AS}	Single Pulse Avalanche Energy		(Note 2)	726	mJ
P _D	Power Dissipation	T _C = 25°C		113	W
	Power Dissipation	T _A = 25°C	(Note 1a)	2.7	1
T _J , T _{STG}	Operating and Storage Junction Temperature Range			−55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


THERMAL CHARACTERISTICS

Symbol	Parameter	Ratings	Unit
$R_{ heta JC}$	Thermal Resistance, Junction to Case	1.1	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient (Note 1a)	45	

 $R_{\theta JA}$ is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 × 1.5 in. board of FR-4 material. $R_{\theta JC}$ is guaranteed by design while $R_{\theta JA}$ is determined by the user's board design.

a) 45°C/W when mounted on a 1 in² pad of 2 oz copper.

b) 115°C/W when mounted on a minimum pad of 2 oz copper.

- 2. E_{AS} of 726 mJ is based on starting $T_J = 25^{\circ}C$, L = 3 mH, $I_{AS} = 22$ A, $V_{DD} = 100$ V, $V_{GS} = 10$ V, 100% test at L = 0.1 mH, $I_{AS} = 69$ A. 3. Pulse Id measured at td = 250 μ s, refer to Fig 11 SOA graph for more details.

ORDERING INFORMATION

Device	Device Marking	Package	Reel Size	Tape Width	Shipping [†]
FDMS86150A	FDMS86150A	PQFN8 5X6, 1.27P Power 56 (Pb-Free)	13"	12 mm	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit	
OFF CHARA	ACTERISTICS			•		•	
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	100	_	-	V	
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C	-	72	_	mV/°C	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V	-	-	1	μΑ	
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20 V, V _{DS} = 0 V	_	-	±100	nA	
ON CHARAC	CTERISTICS						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2.0	3.0	4.0	V	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 μ A, referenced to 25°C	-	-10	-	mV/°C	
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 16 A	-	4.2	4.85	mΩ	
		V _{GS} = 6 V, I _D = 13 A	-	6	7.8	1	
		V _{GS} = 10 V, I _D = 16 A, T _J = 125°C	-	7.8	9.1	1	
9FS	Forward Transconductance	V _{DD} = 10 V, I _D = 16 A	-	53	_	S	
DYNAMIC C	HARACTERISTICS				-		
C _{iss}	Input Capacitance	V _{DS} = 50 V, V _{GS} = 0 V, f = 1 MHz	-	3330	4665	pF	
C _{oss}	Output Capacitance		-	703	985	pF	
C _{rss}	Reverse Transfer Capacitance		-	20	45	pF	
R_{g}	Gate Resistance		0.1	0.7	3.6	Ω	
SWITCHING	CHARACTERISTICS						
t _{d(on)}	Turn-on Delay Time	V_{DD} = 50 V, I_{D} = 16 A, V_{GS} = 10 V, R_{GEN} = 6 Ω	-	21	34	ns	
t _r	Rise Time		-	8.6	17	ns	
t _{d(off)}	Turn-off Delay Time		-	28	45	ns	
t _f	Fall Time		-	6	12	ns	
Q_g	Total Gate Charge	$V_{GS} = 0 \text{ V to } 10 \text{ V}, V_{DD} = 50 \text{ V}, I_D = 16 \text{ A}$	-	47	66	nC	
Q_g	Total Gate Charge	V _{GS} = 0 V to 5 V, V _{DD} = 50 V, I _D = 16 A	-	25	35	nC	
Q _{gs}	Gate to Source Charge	V _{DD} = 50 V, I _D = 16 A	_	14	_	nC	
Q _{gd}	Gate to Drain "Miller" Charge	V _{DD} = 50 V, I _D = 16 A	_	9.7	-	nC	
DRAIN-SOU	JRCE DIODE CHARACTERISTICS			-	-	-	
V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 2.1 A (Note 4)	-	0.69	1.2	٧	
		V _{GS} = 0 V, I _S = 16 A (Note 4)	-	0.78	1.3	1	
t _{rr}	Reverse Recovery Time	I _F = 16 A, di/dt = 100 A/μs	-	64	102	ns	
Q _{rr}	Reverse Recovery Charge		-	86	138	nC	
	1	I .					

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Pulse Test: Pulse Width <300 µs, Duty cycle <2.0%.

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

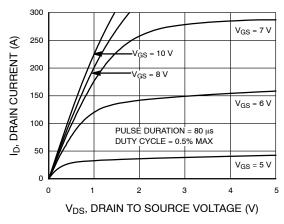


Figure 1. On Region Characteristics

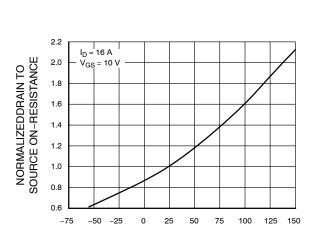


Figure 3. Normalized On Resistance vs Junction Temperature

T_J, JUNCTION TEMPERATURE (°C)

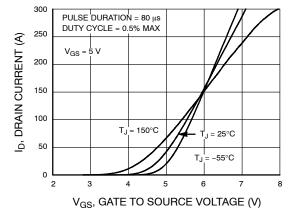


Figure 5. Transfer Characteristics

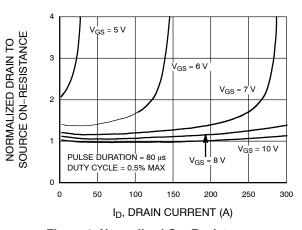


Figure 2. Normalized On–Resistance vs
Drain Current and Gate Voltage

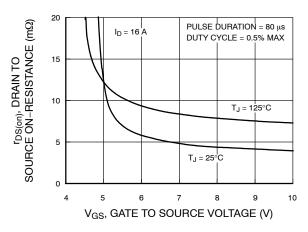


Figure 4. On-Resistance vs Gate to Source Voltage

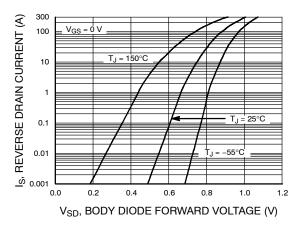


Figure 6. Source to Drain Diode Forward Voltage vs Source Current

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

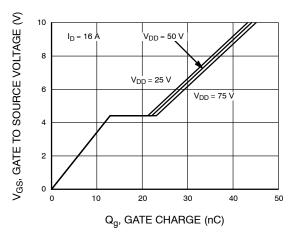


Figure 7. Gate Charge Characteristics

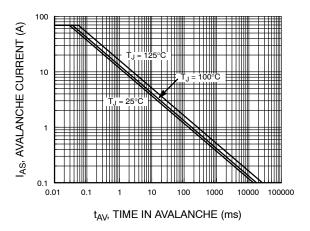


Figure 9. Unclamped Inductive Switching Capability

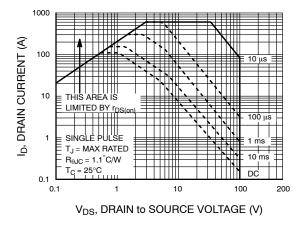
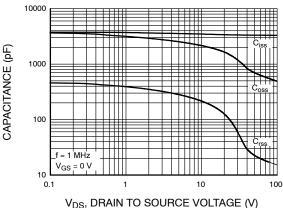



Figure 11. Forward Bias Safe Operating Area

V_{DS}, DRAIN TO SOURCE VOLTAGE (V)

Figure 8. Capacitance vs Drain to Source Voltage

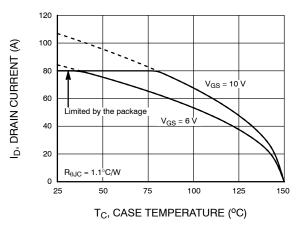


Figure 10. Maximum Continuous Drain Current vs Case Temperature

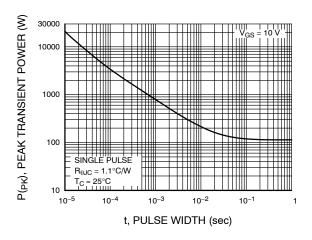


Figure 12. Single Pulse Maximum Power Dissipation

$\textbf{TYPICAL CHARACTERISTICS} \ (T_J = 25^{\circ}\text{C unless otherwise noted}) \ (\text{continued})$

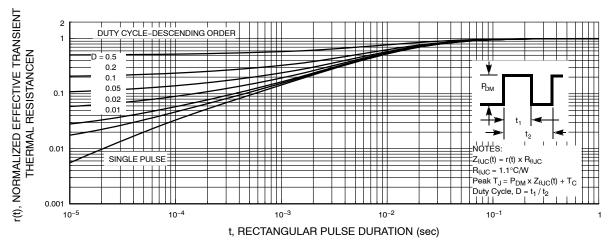
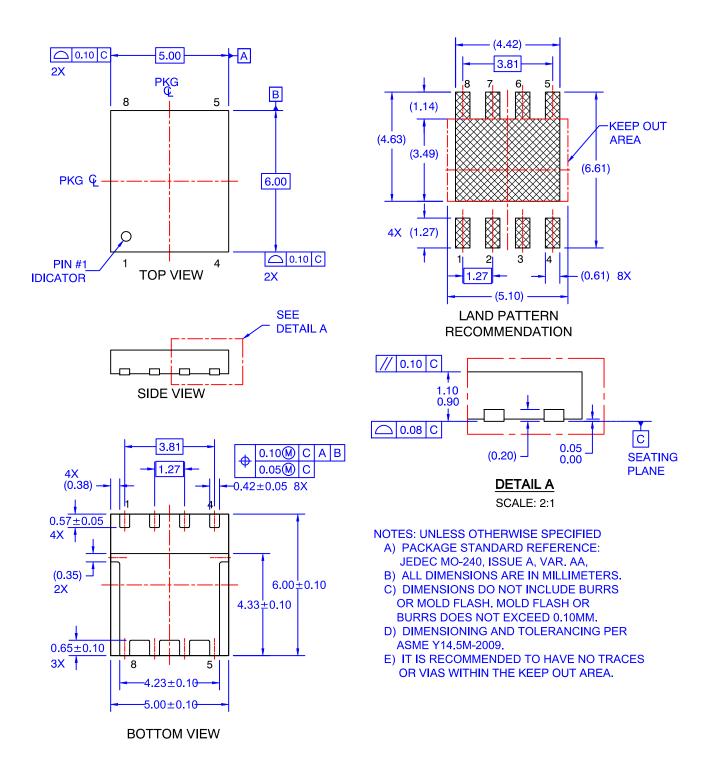



Figure 13. Junction-to-Ambient Transient Thermal Response Curve

PACKAGE DIMENSIONS

PQFN8 5X6, 1.27P CASE 483AF ISSUE O

POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

ON Semiconductor and ill are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any product herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semicon

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative