ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

PNP resistor-equipped transistor; R1 = 22 k Ω , R2 = 22 k Ω Rev. 2 — 4 May 2012 Product data of the second secon

Product data sheet

Product profile 1.

1.1 General description

PNP Resistor-Equipped Transistor (RET) in a leadless ultra small DFN1006B-3 (SOT883B) Surface-Mounted Device (SMD) plastic package.

NPN complement: PDTC124EMB.

1.2 Features and benefits

- 100 mA output current capability
- Reduces component count
- Built-in bias resistors
- Reduces pick and place costs

1.3 Applications

- Low-current peripheral driver
- Control of IC inputs

- Simplifies circuit design
- AEC-Q101 gualified
- Leadless ultra small SMD plastic package
- Low package height of 0.37 mm
- Replaces general-purpose transistors in digital applications
- Mobile applications

1.4 Quick reference data

Table 1.	Quick reference data					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CEO}	collector-emitter voltage	open base	-	-	-50	V
lo	output current		-	-	-100	mA
R1	bias resistor 1 (input)	T _{amb} = 25 °C	15.4	22	28.6	kΩ
R2/R1	bias resistor ratio		0.8	1	1.2	

PNP resistor-equipped transistor; R1 = 22 k Ω , R2 = 22 k Ω

2. Pinning information

Table 2.	Pinning	information		
Pin	Symbol	Description	Simplified outline	Graphic symbol
1	I	input (base)		
2	G	GND (emitter)		
3	0	output (collector)	2 Transparent top view SOT883B (DFN1006B-3)	1 R1 R2 2 sym003

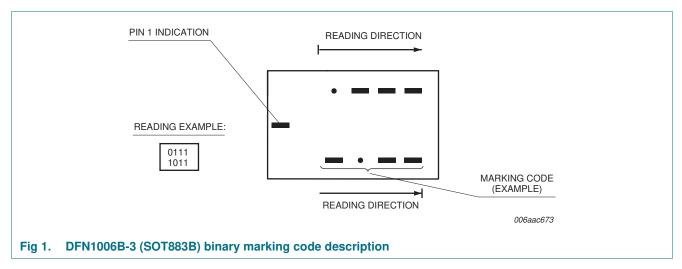

3. Ordering information

Table 3. Ordering information							
Type number	Package						
	Name	Description	Version				
PDTA124EMB	DFN1006B-3	Leadless ultra small plastic package; 3 solder lands; body 1.0 x 0.6 x 0.37 mm	SOT883B				

4. Marking

Table 4.	Marking	codes
----------	---------	-------

Type number	Marking code
PDTA124EMB	0010 0101

PNP resistor-equipped transistor; R1 = 22 k Ω , R2 = 22 k Ω

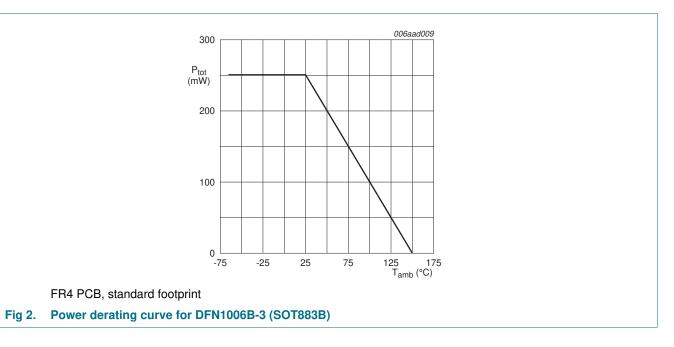
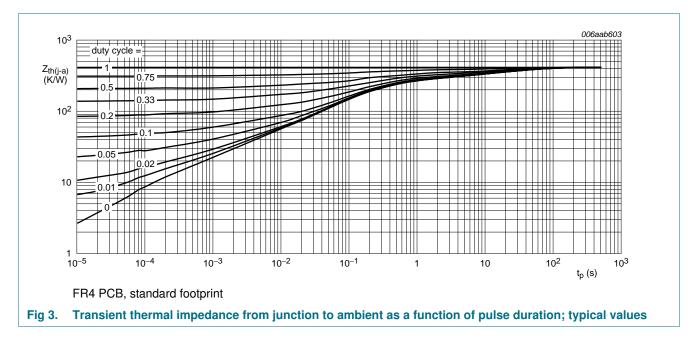

5. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CBO}	collector-base voltage	open emitter		-	-50	V
V _{CEO}	collector-emitter voltage	open base		-	-50	V
V _{EBO}	emitter-base voltage	open collector		-	-10	V
VI	input voltage	positive		-	10	V
		negative		-	-40	V
lo	output current			-	-100	mA
I _{CM}	peak collector current	pulsed; t _p ≤ 1 ms		-	-100	mA
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C	<u>[1]</u>	-	250	mW
Tj	junction temperature			-	150	°C
T _{amb}	ambient temperature			-65	150	°C
T _{stg}	storage temperature			-65	150	°C

[1] Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper, tin-plated and standard footprint.

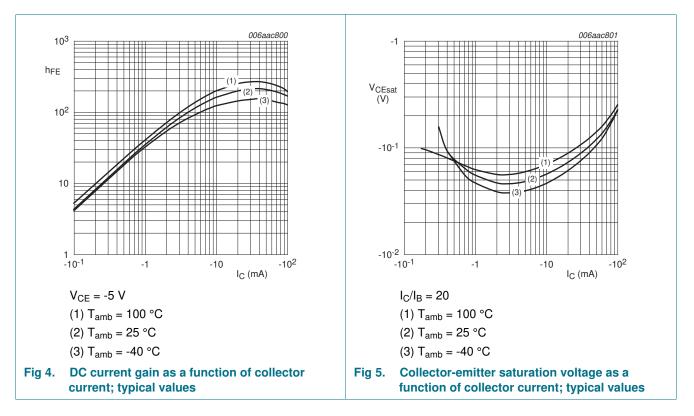


PNP resistor-equipped transistor; R1 = 22 k Ω , R2 = 22 k Ω

6. Thermal characteristics

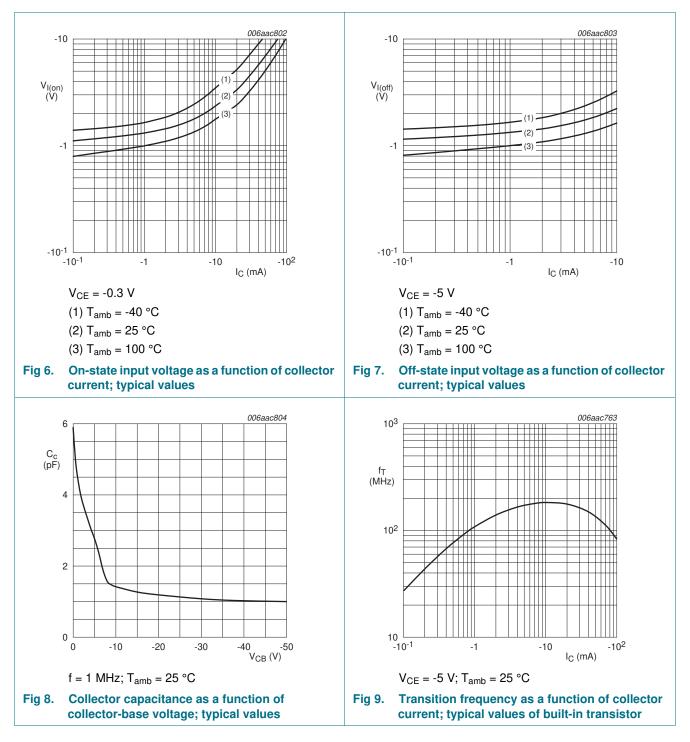
Table 6.	Thermal characteristics						
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
R _{th(j-a)}	thermal resistance from junction to ambient	in free air	[1]	-	-	500	K/W

[1] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint.



PNP resistor-equipped transistor; R1 = 22 k Ω , R2 = 22 k Ω

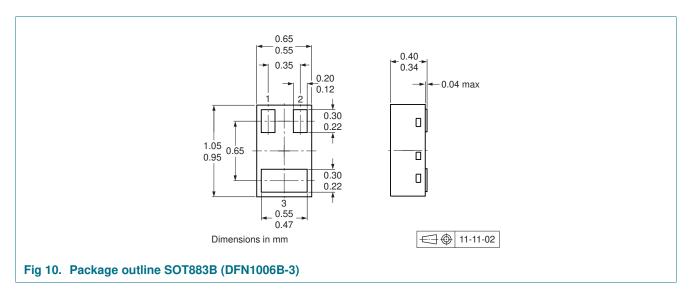
7. Characteristics


Parameter	Conditions		Min	Тур	Max	Unit
collector-base cut-off current	$V_{CB} = -50 \text{ V}; \text{ I}_{E} = 0 \text{ A}; \text{ T}_{amb} = 25 \text{ °C}$		-	-	-100	nA
collector-emitter cut-off	V_{CE} = -30 V; I _B = 0 A; T _{amb} = 25 °C		-	-	-100	nA
current	V_{CE} = -30 V; I _B = 0 A; T _j = 150 °C		-	-	-5	μA
emitter-base cut-off current	V_{EB} = -5 V; I_C = 0 A; T_{amb} = 25 °C		-	-	-180	μA
DC current gain	V_{CE} = -5 V; I_{C} = -5 mA; T_{amb} = 25 °C		60	-	-	
collector-emitter saturation voltage	I_{C} = -10 mA; I_{B} = -0.5 mA; T_{amb} = 25 °C		-	-	-150	mV
off-state input voltage	$V_{CE} = -5 \ V; \ I_C = -100 \ \mu A; \ T_{amb} = 25 \ ^\circ C$		-	-1.1	-0.8	V
on-state input voltage	$V_{CE} = -0.3 \text{ V}; \text{ I}_{C} = -5 \text{ mA}; \text{ T}_{amb} = 25 \text{ °C}$		-2.5	-1.7	-	V
bias resistor 1 (input)	T _{amb} = 25 °C		15.4	22	28.6	kΩ
bias resistor ratio			0.8	1	1.2	
collector capacitance	$V_{CB} = -10 \text{ V}; I_E = 0 \text{ A}; i_e = 0 \text{ A}; f = 1 \text{ MHz}; T_{amb} = 25 \text{ °C}$		-	-	3	pF
transition frequency	$\label{eq:Vce} \begin{array}{l} V_{CE} = -5 \ V; \ I_C = -10 \ m\text{A}; \ f = 100 \ \text{MHz}; \\ T_{amb} = 25 \ ^{\circ}\text{C} \end{array}$	<u>[1]</u>	-	180	-	MHz
	collector-base cut-off currentcollector-emitter cut-off currentemitter-base cut-off currentDC current gain collector-emitter saturation voltageoff-state input voltage on-state input voltagebias resistor 1 (input) 	$\begin{array}{ll} \mbox{collector-base cut-off current} & V_{CB} = -50 \ V; \ I_E = 0 \ A; \ T_{amb} = 25 \ ^{\circ}C \ & V_{CE} = -30 \ V; \ I_B = 0 \ A; \ T_{amb} = 25 \ ^{\circ}C \ & V_{CE} = -30 \ V; \ I_B = 0 \ A; \ T_{amb} = 25 \ ^{\circ}C \ & V_{CE} = -30 \ V; \ I_B = 0 \ A; \ T_{j} = 150 \ ^{\circ}C \ & V_{CE} = -30 \ V; \ I_B = 0 \ A; \ T_{amb} = 25 \ ^{\circ}C \ & V_{CB} = -5 \ V; \ I_C = 0 \ A; \ T_{amb} = 25 \ ^{\circ}C \ & Collector-emitter \ & U_{CE} = -5 \ V; \ I_C = -5 \ mA; \ T_{amb} = 25 \ ^{\circ}C \ & Collector-emitter \ & I_C = -10 \ mA; \ I_B = -0.5 \ mA; \ T_{amb} = 25 \ ^{\circ}C \ & Collector-emitter \ & V_{CE} = -5 \ V; \ I_C = -100 \ \muA; \ T_{amb} = 25 \ ^{\circ}C \ & Con-state \ input \ voltage \ & V_{CE} = -0.3 \ V; \ I_C = -5 \ mA; \ T_{amb} = 25 \ ^{\circ}C \ & Dias \ resistor \ 1 \ (input) \ & T_{amb} = 25 \ ^{\circ}C \ & Dias \ resistor \ 1 \ (input) \ & T_{amb} = 25 \ ^{\circ}C \ & Dias \ resistor \ ratio \ & Collector \ capacitance \ & V_{CB} = -10 \ V; \ I_E = 0 \ A; \ i_e = 0 \ A; \ f = 1 \ MHz; \ T_{amb} = 25 \ ^{\circ}C \ & Transition \ frequency \ & V_{CE} = -5 \ V; \ I_C = -10 \ mA; \ f = 100 \ MHz; \ \end{array}$	$\begin{array}{c} \mbox{collector-base cut-off current} & V_{CB} = -50 \ V; \ I_E = 0 \ A; \ T_{amb} = 25 \ ^{\circ}C \\ \mbox{collector-emitter cut-off current} & V_{CE} = -30 \ V; \ I_B = 0 \ A; \ T_{amb} = 25 \ ^{\circ}C \\ \hline V_{CE} = -30 \ V; \ I_B = 0 \ A; \ T_{j} = 150 \ ^{\circ}C \\ \mbox{emitter-base cut-off current} & V_{EB} = -5 \ V; \ I_C = 0 \ A; \ T_{amb} = 25 \ ^{\circ}C \\ \hline DC \ current \ gain & V_{CE} = -5 \ V; \ I_C = -5 \ mA; \ T_{amb} = 25 \ ^{\circ}C \\ \mbox{collector-emitter saturation voltage} & I_C = -10 \ mA; \ I_B = -0.5 \ mA; \ T_{amb} = 25 \ ^{\circ}C \\ \hline on-state \ input \ voltage & V_{CE} = -5 \ V; \ I_C = -100 \ \muA; \ T_{amb} = 25 \ ^{\circ}C \\ \hline bias \ resistor \ 1 \ (input) & T_{amb} = 25 \ ^{\circ}C \\ \hline bias \ resistor \ 1 \ (input) & T_{amb} = 25 \ ^{\circ}C \\ \hline bias \ resistor \ ratio & V_{CB} = -10 \ V; \ I_E = 0 \ A; \ i_e = 0 \ A; \\ \ f = 1 \ MHz; \ T_{amb} = 25 \ ^{\circ}C \\ \hline transition \ frequency & V_{CE} = -5 \ V; \ I_C = -10 \ mA; \ f = 100 \ MHz; \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c c} \mbox{collector-base cut-off} & V_{CB} = -50 \mbox{ V; } I_E = 0 \mbox{ A; } T_{amb} = 25 \mbox{ °C} & - \\ \hline \mbox{current} & V_{CE} = -30 \mbox{ V; } I_B = 0 \mbox{ A; } T_{amb} = 25 \mbox{ °C} & - \\ \hline \mbox{vc} = -30 \mbox{ V; } I_B = 0 \mbox{ A; } T_j = 150 \mbox{ °C} & - \\ \hline \mbox{vc} = -30 \mbox{ V; } I_B = 0 \mbox{ A; } T_j = 150 \mbox{ °C} & - \\ \hline \mbox{emitter-base cut-off} & V_{EB} = -5 \mbox{ V; } I_C = 0 \mbox{ A; } T_{amb} = 25 \mbox{ °C} & - \\ \hline \mbox{current} & V_{CE} = -5 \mbox{ V; } I_C = -5 \mbox{ mA; } T_{amb} = 25 \mbox{ °C} & - \\ \hline \mbox{collector-emitter} & I_C = -10 \mbox{ mA; } I_B = -0.5 \mbox{ mA; } T_{amb} = 25 \mbox{ °C} & - \\ \hline \mbox{collector-emitter} & I_C = -10 \mbox{ mA; } I_B = -0.5 \mbox{ mA; } T_{amb} = 25 \mbox{ °C} & - \\ \hline \mbox{on-state input voltage} & V_{CE} = -5 \mbox{ V; } I_C = -5 \mbox{ mA; } T_{amb} = 25 \mbox{ °C} & - \\ \hline \mbox{on-state input voltage} & V_{CE} = -0.3 \mbox{ V; } I_C = -5 \mbox{ mA; } T_{amb} = 25 \mbox{ °C} & - \\ \hline \mbox{on-state input voltage} & V_{CE} = -0.3 \mbox{ V; } I_C = -5 \mbox{ mA; } T_{amb} = 25 \mbox{ °C} & - \\ \hline \mbox{on-state input voltage} & V_{CE} = -10 \mbox{ V}; I_C = -5 \mbox{ mA; } T_{amb} = 25 \mbox{ °C} & - \\ \hline \mbox{on-state input voltage} & V_{CE} = -10 \mbox{ V}; I_C = -0 \mbox{ A}; I_e = 0 \mbox{ A}; \\ \mbox{bias resistor ratio} & 0.8 \\ \hline \mbox{collector capacitance} & V_{CB} = -10 \ V; I_E = 0 \mbox{ A}; I_e = 0 \ A; \\ \mbox{f} = 1 \ \mbox{ MHz}; \ T_{amb} = 25 \ \mbox{ °C} & - \\ \hline \mbox{f} = 100 \ \mbox{ MHz}; \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	collector-base cut-off current $V_{CB} = -50 \text{ V}; \text{ I}_E = 0 \text{ A}; \text{ T}_{amb} = 25 \text{ °C}$ - - collector-emitter cut-off current $V_{CE} = -30 \text{ V}; \text{ I}_B = 0 \text{ A}; \text{ T}_{amb} = 25 \text{ °C}$ - - emitter-base cut-off current $V_{CE} = -30 \text{ V}; \text{ I}_B = 0 \text{ A}; \text{ T}_j = 150 \text{ °C}$ - - emitter-base cut-off current $V_{CE} = -30 \text{ V}; \text{ I}_E = 0 \text{ A}; \text{ T}_{amb} = 25 \text{ °C}$ - - DC current gain $V_{CE} = -5 \text{ V}; \text{ I}_C = -5 \text{ mA}; \text{ T}_{amb} = 25 \text{ °C}$ 60 - collector-emitter saturation voltage $I_C = -10 \text{ mA}; \text{ I}_B = -0.5 \text{ mA}; \text{ T}_{amb} = 25 \text{ °C}$ - - off-state input voltage $V_{CE} = -5 \text{ V}; \text{ I}_C = -100 \mu\text{ A}; \text{ T}_{amb} = 25 \text{ °C}$ - - on-state input voltage $V_{CE} = -0.3 \text{ V}; \text{ I}_C = -5 \text{ mA}; \text{ T}_{amb} = 25 \text{ °C}$ - - bias resistor 1 (input) $\text{T}_{amb} = 25 \text{ °C}$ 15.4 22 bias resistor ratio 0.8 1 - - collector capacitance $V_{CB} = -10 \text{ V}; \text{ I}_E = 0 \text{ A}; \text{ I}_e = 0 \text{ A};$ - - transition frequency $V_{CE} = -5 \text{ V}; \text{ I}_C = -10 \text{ mA}; f = 100 \text{ MHz};$ 11 - - <td>collector-base cut-off current $V_{CB} = -50 \text{ V}; I_E = 0 \text{ A}; T_{amb} = 25 \text{ °C}$ -</td>	collector-base cut-off current $V_{CB} = -50 \text{ V}; I_E = 0 \text{ A}; T_{amb} = 25 \text{ °C}$ - -

[1] Characteristics of built-in transistor.

NXP Semiconductors

PNP resistor-equipped transistor; R1 = 22 k Ω , R2 = 22 k Ω


8. Test information

8.1 Quality information

This product has been qualified in accordance with the Automotive Electronics Council (AEC) standard Q101 - Stress test qualification for discrete semiconductors, and is suitable for use in automotive applications.

PNP resistor-equipped transistor; R1 = 22 k Ω , R2 = 22 k Ω

Package outline 9.

10. Soldering

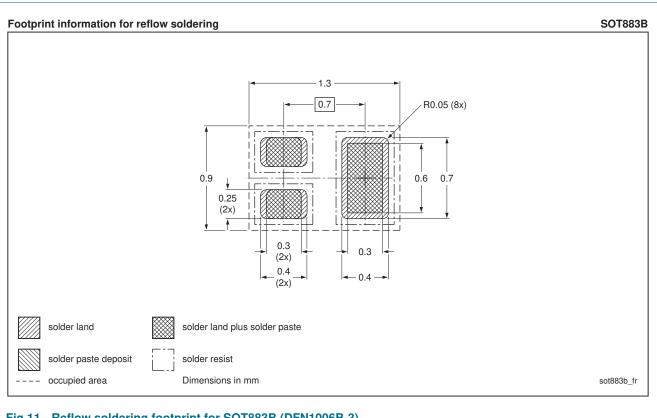


Fig 11. Reflow soldering footprint for SOT883B (DFN1006B-3)

PDTA124EMB **Product data sheet**

PNP resistor-equipped transistor; R1 = 22 k Ω , R2 = 22 k Ω

11. Revision history

Table 8.Revision	history			
Document ID	Release date	Data sheet status	Change notice	Supersedes
PDTA124EMB v.2	20120504	Product data sheet	-	PDTA124EMB v.1
Modifications:	• 7 "Characteris	stics": parameter name corre	ected	
PDTA124EMB v.1	20120426	Product data sheet	-	-

PNP resistor-equipped transistor; R1 = 22 k Ω , R2 = 22 k Ω

12. Legal information

12.1 Data sheet status

Document status[1] [2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL<u>http://www.nxp.com</u>.

12.2 Definitions

Preview — The document is a preview version only. The document is still subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

12.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the

Product data sheet

PDTA124EMB

© NXP B.V. 2012. All rights reserved.

PNP resistor-equipped transistor; R1 = 22 k Ω , R2 = 22 k Ω

Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published athttp://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

13. Contact information

For more information, please visit:http://www.nxp.com

For sales office addresses, please send an email to:<u>salesaddresses@nxp.com</u>

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

12.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Adelante,Bitport,Bitsound,CoolFlux,CoReUse,DESFire,EZ-HV,FabKey,G reenChip,HiPerSmart,HITAG,I²C-bus logo,ICODE,I-CODE,ITEC,Labelution,MIFARE,MIFARE Plus,MIFARE Ultralight,MoReUse,QLPAK,Silicon Tuner,SiliconMAX,SmartXA,STARplug,TOPFET,TrenchMOS,TriMedia andUCODE — are trademarks of NXP B.V.

 ${\rm HD}\ {\rm Radio}\ {\rm and} {\rm HD}\ {\rm Radio}\ {\rm logo}\ -$ are trademarks of iBiquity Digital Corporation.

PNP resistor-equipped transistor; R1 = 22 k Ω , R2 = 22 k Ω

14. Contents

1	Product profile1
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Marking
5	Limiting values
6	Thermal characteristics4
7	Characteristics5
8	Test information6
8.1	Quality information6
9	Package outline7
10	Soldering7
11	Revision history8
12	Legal information9
12.1	Data sheet status9
12.2	Definitions9
12.3	Disclaimers
12.4	Trademarks
13	Contact information10

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2012.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 4 May 2012 Document identifier: PDTA124EMB