
www.vishay.com

VS-10CTQ150PbF, VS-10CTQ150-N3

Vishay Semiconductors

Schottky Rectifier, 2 x 5 A Base

PRODUCT SUMMARY						
Package	TO-220AB					
I _{F(AV)}	2 x 5 A					
V _R	150 V					
V _F at I _F	0.73 V					
I _{RM} max.	7 mA at 125 °C					
T _J max.	175 °C					
Diode variation	Common cathode					
E _{AS}	6.75 mJ					

FEATURES

- 175 °C T_J operation
- · Center tap configuration
- Low forward voltage drop
- High frequency operation
- epoxy RoHS • High purity, high temperature COMPLIANT encapsulation for enhanced mechanical strength HALOGEN and moisture resistance FREE

- · Guard ring for enhanced ruggedness and long term reliability
- Compliant to RoHS Directive 2002/95/EC
- Designed and qualified according to JEDEC-JESD47
- Halogen-free according to IEC 61249-2-21 definition (-N3 only)

DESCRIPTION

This center tap Schottky rectifier series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 175 °C junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS								
SYMBOL CHARACTERISTICS VALUES UNITS								
I _{F(AV)}	Rectangular waveform	10	А					
V _{RRM}		150	V					
I _{FSM}	t _p = 5 μs sine	620	А					
V _F	5 A _{pk} , T _J = 125 °C (per leg)	0.73	V					
TJ	Range	- 55 to 175	°C					

VOLTAGE RATINGS							
PARAMETER	SYMBOL	VS-10CTQ150PbF	VS-10CTQ150-N3	UNITS			
Maximum DC reverse voltage	V _R	150	150	V			
Maximum working peak reverse voltage	V _{RWM}	150	150	v			

ABSOLUTE MAXIMUM RATINGS								
PARAMETER	SYMBOL	TEST COND	VALUES	UNITS				
Maximum average per leg		50 % duty cycle at $T_{e} = 155$ %	5	А				
See fig. 5 per device	I _{F(AV)}		0 % duty cycle at T_{C} = 155 °C, rectangular waveform					
Maximum peak one cycle non-repetitive surge current per leg		5 µs sine or 3 µs rect. pulse	Following any rated load condition and with rated	620	А			
See fig. 7	ent per leg I _{FSM} Condition and with V _{RRM} applied			115	~			
Non-repetitive avalanche energy per leg E_{AS} $T_J = 25 \text{ °C}, I_{AS} = 0.30 \text{ A}, L = 150 \text{ mH}$		i0 mH	6.75	mJ				
Repetitive avalanche current per leg		Current decaying linearly to ze Frequency limited by T _J maxim		0.30	А			

Revision: 22-Aug-11

Document Number: 94115

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

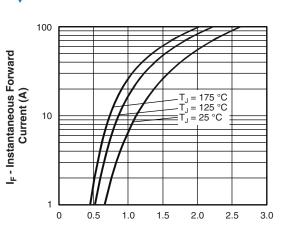
1

Vishay Semiconductors

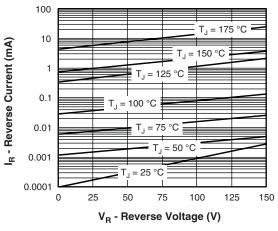
ELECTRICAL SPECIFICATIONS

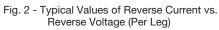
PARAMETER	SYMBOL	TEST CO	NDITIONS	VALUES	UNITS
		5 A	T _{.1} = 25 °C	0.93	
Maximum forward voltage drop per leg	V _{FM} ⁽¹⁾	10 A	1j=25 C	1.10	V
See fig. 1	VFM ("	5 A	T, = 125 °C	0.73	v
		10 A	1j = 125 C	0.86	
Maximum reverse leakage current per leg	I _{RM} ⁽¹⁾	T _J = 25 °C	$V_{\rm B}$ = Rated $V_{\rm B}$	0.05	mA
See fig. 2		T _J = 125 °C	$v_{\rm R} = Raled v_{\rm R}$	7	
Threshold voltage	V _{F(TO)}			0.468	V
Forward slope resistance	r _t	$T_J = T_J maximum$		28	mΩ
Maximum junction capacitance per leg	CT	$V_{R} = 5 V_{DC}$ (test signal ran	ge 100 kHz to 1 MHz) 25 °C	200	pF
Typical series inductance per leg	L _S	Measured lead to lead 5 m	8.0	nH	
Maximum voltage rate of change	dV/dt	Rated V _R	10 000	V/µs	

Note


 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 %

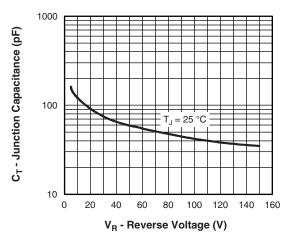
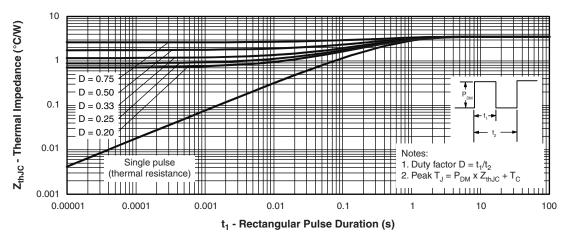
THERMAL - MECHANICAL SPECIFICATIONS							
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Maximum junction and storage temperature range)	T _J , T _{Stg}		- 55 to 175	°C		
Maximum thermal resistance, junction to case per leg	,		DC operation	3.50			
Maximum thermal resistance, junction to case per package		R _{thJC} DC operation	1.75	°C/W			
Typical thermal resistance, case to heatsink (only for TO-220)		R _{thCS}	Mounting surface, smooth and greased	0.50			
Approvimate weight				2	g		
Approximate weight				0.07	oz.		
Mounting torque	minimum			6 (5)	kgf ⋅ cm		
Mounting torque	maximum			12 (10)	(lbf \cdot in)		
Marking device			Case style TO-220AB		Q150		

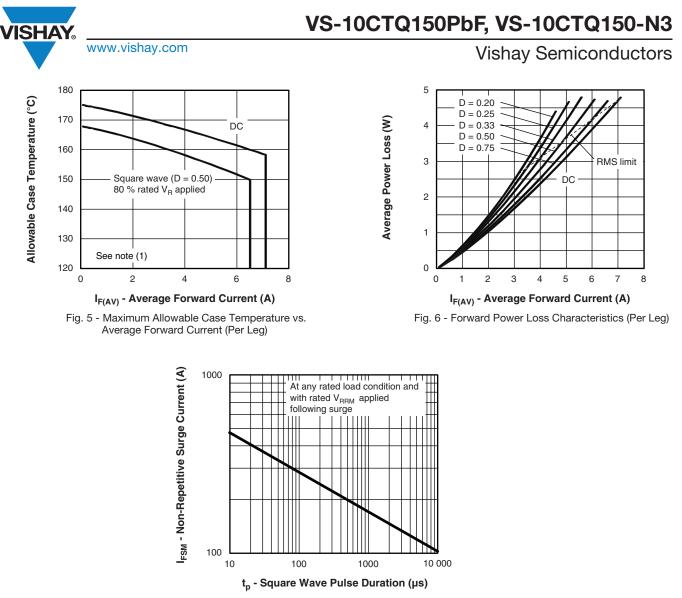

VS-10CTQ150PbF, VS-10CTQ150-N3

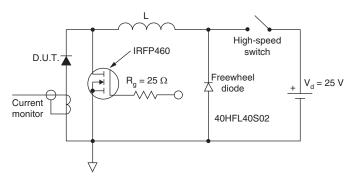

Vishay Semiconductors

V_{FM} - Forward Voltage Drop (V)

Fig. 1 - Maximum Forward Voltage Drop Characteristics (Per Leg)



Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)



 Revision: 22-Aug-11
 3
 Document Number: 94115

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Note

⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$;

 $\begin{array}{l} Pd = Forward power loss = I_{F(AV)} \times V_{FM} \mbox{ at } (I_{F(AV)}/D) \mbox{ (see fig. 6);} \\ Pd_{REV} = Inverse power loss = V_{R1} \times I_{R} \mbox{ (1 - D); } I_{R} \mbox{ at } V_{R1} = 10 \ V \end{array}$

Revision: 22-Aug-11

4

Document Number: 94115

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VS-10CTQ150PbF, VS-10CTQ150-N3

Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code	VS-	10	с	т	Q	150	PbF
		2	3	4	5	6	7
	1 2 3	- Cur	rent rati	niconduo ng (10 = iguration	= 10 A)	oduct	
	4	- Pao	Comm kage TO-220	on catho	ode		
	5 6	- Scł - Vol	nottky "C tage rati)" series ing (150 ntal digil	= 150 \	/)	
		• F	PbF = Le	ead (Pb) alogen-fi	-free ar		

ORDERING INFORMATION (Example)							
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION				
VS-10CTQ150PbF	50	1000	Antistatic plastic tube				
VS-10CTQ150-N3	50	1000	Antistatic plastic tube				

LINKS TO RELATED DOCUMENTS					
Dimensions www.vishay.com/doc?95222					
Port marking information	TO-220AB PbF	www.vishay.com/doc?95225			
Part marking information	TO-220AB -N3	www.vishay.com/doc?95028			

Vishay Semiconductors

3 x b

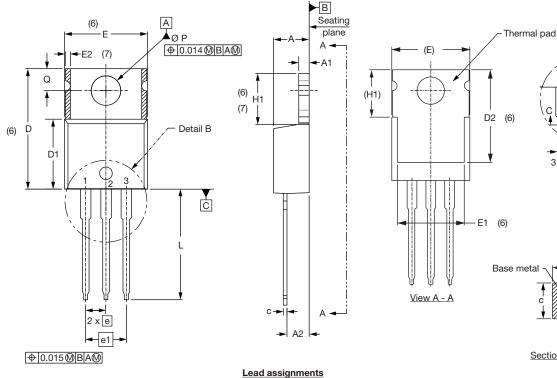
3 x b2

Detail B

(b, b2)

b1. b3 Section C - C and D - D

L1 (2)


- Plating

c1 (4)

(4)

TO-220AB

DIMENSIONS in millimeters and inches

Lead tip

- **Diodes**
- 1. Anode/open 2. - Cathode 3. - Anode

SYMBOL	MILLIM	MILLIMETERS INCHES			NOTES
STMBOL	MIN.	MAX.	MIN.	MAX.	NOTES
A	4.25	4.65	0.167	0.183	
A1	1.14	1.40	0.045	0.055	
A2	2.56	2.92	0.101	0.115	
b	0.69	1.01	0.027	0.040	
b1	0.38	0.97	0.015	0.038	4
b2	1.20	1.73	0.047	0.068	
b3	1.14	1.73	0.045	0.068	4
С	0.36	0.61	0.014	0.024	
c1	0.36	0.56	0.014	0.022	4
D	14.85	15.25	0.585	0.600	3
D1	8.38	9.02	0.330	0.355	
D2	11.68	12.88	0.460	0.507	6

Notes

- ⁽¹⁾ Dimensioning and tolerancing as per ASME Y14.5M-1994
- ⁽²⁾ Lead dimension and finish uncontrolled in L1
- ⁽³⁾ Dimension D, D1 and E do not include mold flash. Mold flash shall not exceed $0.127 \text{ mm} (0.005^{\circ})$ per side. These dimensions are measured at the outermost extremes of the plastic body
- $^{\left(4\right) }$ Dimension b1, b3 and c1 apply to base metal only
- ⁽⁵⁾ Controlling dimensions: inches
- (6) Thermal pad contour optional within dimensions E, H1, D2 and E1

Conforms to JEDEC outline TO-220AB

SYMBOL	MILLIN	IETERS	INCHES		NOTES
STIVIDOL	MIN.	MAX.	MIN.	MAX.	NOTES
E	10.11	10.51	0.398	0.414	3, 6
E1	6.86	8.89	0.270	0.350	6
E2	-	0.76	-	0.030	7
е	2.41	2.67	0.095	0.105	
e1	4.88	5.28	0.192	0.208	
H1	6.09	6.48	0.240	0.255	6, 7
L	13.52	14.02	0.532	0.552	
L1	3.32	3.82	0.131	0.150	2
ØΡ	3.54	3.73	0.139	0.147	
Q	2.60	3.00	0.102	0.118	
θ	90° t	o 93°	90° t	o 93°	

(7) Dimensions E2 x H1 define a zone where stamping and singulation irregularities are allowed

Outline conforms to JEDEC TO-220, except A2 (maximum) and (8) D2 (minimum) where dimensions are derived from the actual package outline

Document Number: 95222 For technical questions within your region, please contact one of the following: Revision: 08-Mar-11 DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.