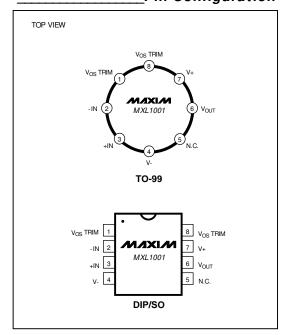
Not Recommended for New Designs

This product was manufactured for Maxim by an outside wafer foundry using a process that is no longer available. It is not recommended for new designs. The data sheet remains available for existing users.

A Maxim replacement or an industry second-source may be available. Please see the QuickView data sheet for this part or contact technical support for assistance.

For further information, contact Maxim's Applications Tech Support.

General Description

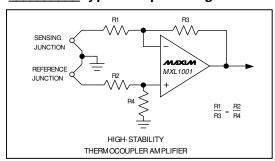

The MXL1001 offers significant specification improvement over earlier precision operational amplifiers and is pincompatible with the industry-standard LT1001. Particular attention has been paid to the optimization of key parameters such as input offset voltage, common-mode rejection, and power-supply rejection. In addition, the high-performance MXL1001C commercial temperature device provides considerable cost savings when compared to equivalent grades of competing precision amplifiers

The input offset voltage of all units is less than $60\mu V$, allowing the premium military device, the MXL1001AM, to be specified at 15µV max. Power dissipation is close to half that of the industry-standard OP-07 precision op amp, without sacrificing noise or speed performance. A useful by-product of lower dissipation is decreased warm-up drift.

Applications

Thermocouple Amplifiers Low-Level Signal Processing Strain Gauge Amplifiers High-Accuracy Data Acquisition

Pin Configuration


Features

- **♦** Guaranteed Low Offset Voltage MXL1001AM: 15µV max MXL1001C: 60µV max
- **♦** Guaranteed Low Drift MXL1001AM: 0.6μV/°C max
- MXL1001C: 1.0μV/°C max **♦** Guaranteed Low Bias Current MXL1001AM: 2nA max
- MXL1001C: 4nA max **♦** Guaranteed CMRR
 - MXL1001AM: 114dB min MXL1001C: 110dB min
- **♦** Guaranteed PSRR
 - MXL1001AM: 110dB min MXL1001C: 106dB min
- **♦ Low Power Dissipation**
 - MXL1001AM: 75mW max MXL1001C: 80mW max
- ♦ Low Noise: 0.3μV_{p-p}

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MXL1001ACN8	0°C to +70°C	8 Plastic DIP
MXL1001CN8	0°C to +70°C	8 Plastic DIP
MXL1001ACS8	0°C to +70°C	8 SO
MXL1001CS8	0°C to +70°C	8 SO
MXL1001ACJ8	0°C to +70°C	8 CERDIP
MXL1001CJ8	0°C to +70°C	8 CERDIP
MXL1001ACH	0°C to +70°C	8 TO-99
MXL1001CH	0°C to +70°C	8 TO-99
MXL1001AMJ8	-55°C to +125°C	8 CERDIP
MXL1001MJ8	-55°C to +125°C	8 CERDIP
MXL1001AMH	-55°C to +125°C	8 TO-99
MXL1001MH	-55°C to +125°C	8 TO-99

Typical Operating Circuit

/VIXI/VI

Maxim Integrated Products 1

Call toll free 1-800-998-8800 for free samples or literature.

ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage (V+ to V-)	±22V	
Continuous Power Dissipation	500mW	(
TO-99(H)—derate at 7.1mW/°C above +80°C		
CERDIP(J)—derate at 6.7mW/°C above +75°C		
Plastic DIP(P)—derate at 5.6mW/°C above +36°	C	,
Small Outline(S)—derate at 5mW/°C above +55	°C	
Differential Input Voltage	±30V	
Input Voltage (Note 1)	±22V	

Duration of Output Short Circuit	Indefinite
Operating Temperature Ranges:	
MXL1001C_/AC	0°C to +70°C
MXL1001M_/AM	55°C to +125°C
Junction Temperature (T _{.I})	65°C to +160°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10sec)	+300°C

Note 1: For supply voltages less than ±22V, the absolute maximum input voltage is equal to the supply voltage.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_S = \pm 15V, T_A = +25^{\circ}C, unless otherwise noted.)$

PARAMETER	SYMBOL	CONDITIONS		MXL1001AM MXL1001AC			M M	UNITS			
				MIN	TYP	MAX	MIN	TYP	MAX	1	
Input Offset Voltage	Vos	(Note 2)	MXL1001AM		7	15		18	60	μV	
input Onset voitage	VUS	(Note 2)	MXL1001AC		10	25		18	60	μν	
Long-Term Input Offset Voltage Stability	V _{OS} /Time	(Note 3)			0.2	1.0		0.3	1.5	μV/ Month	
Input Offset Current	los				0.3	2.0		0.4	3.8	nA	
Input Bias Current	ΙΒ				±0.5	±2.0		±0.7	±4.0	nA	
Input Noise Voltage	e _{N p-p}	0.1Hz to 10Hz	(Note 4)		0.3	0.6		0.3	0.6	μV_{p-p}	
Input Noise Voltage Density	e _N	$f_O = 10Hz$ (No	te 4)		10.3	18.0		10.5	18.0	3.0	
		f _O = 100Hz (Note 4) 10.0 13.0			10.0	13.0	nV/√ Hz				
		$f_0 = 1000Hz$ (Note 4)		9.6	11.0		9.8	11.0		
Input Resistance (Differential Mode)	R _{IN}	(Note 5)		30	100		15	80		ΜΩ	
Input Voltage Range	IVR			±13	±14		±13	±14		V	
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 13V$		114	126		110	126		dB	
Power-Supply Rejection Ratio	PSRR	$V_S = \pm 3V$ to \pm	18V	110	123		106	123		dB	
Large-Signal Voltage Gain	A _{VO}	$R_L \ge 2k\Omega$, V_O	= ±12V	450	800		400	800		V/mV	
		$R_L \ge 1k\Omega$, V_O	= ±10V	300	500		250	500		v/mv	
Output Voltage Swing	Vo	$R_L \ge 2k\Omega$		±13.0	±14.0		±13.0	±14.0		V	
		R _L ≥ 1kΩ		±12.0	±13.5		±12.0	±13.5		1 '	
Slew Rate	SR	$R_L \ge 2k\Omega$ (Not	e 4)	0.1	0.25		0.1	0.25		V/µs	
Closed-Loop Bandwidth	BW	A _{VCL} = +1V (N	Note 4)	0.4	0.8		0.4	0.8		MHz	
Power Consumption	PD	$V_S = \pm 15V$, no	load		46	75		48	80	mW	
rower Consumption	ן רט	$V_S = \pm 3V$, no I	oad		4	6		4	8	11100	

Note 2: MXL1001A grade V_{OS} is measured one minute after application of power. For all other grades V_{OS} is measured approximately 0.5 seconds after application of power.

Note 3: Long-Term Input Offset Voltage Stability refers to the average trend line of Vos vs. Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in Vos during the first 30 operating days are typically 2.5µV. Parameter is sample tested.

Note 4: Sample tested.

Note 5: Guaranteed by design.

ELECTRICAL CHARACTERISTICS

(Vs = $\pm 15V$, -55°C \leq TA \leq +125°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	M	(L1001	AM	М	UNITS		
			MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	Vos	(Note 6)		30	60		45	160	μV
Average Temperature Coefficient of Input Offset Voltage	TCV _{OS}			0.2	0.6		0.3	1.0	μV/°C
Input Offset Current	los			0.8	4.0		1.2	7.6	nA
Input Bias Current	lΒ			±1.0	±4.0		±1.5	±8.0	nA
Input Voltage Range	IVR		±13	±14		±13	±14		V
Common-Mode Rejection Ratio	CMRR	V _{CM} = ±13V	110	122		106	120		dB
Power-Supply Rejection Ratio	PSRR	$V_S = \pm 3V$ to $\pm 18V$	104	117		100	117		dB
Large-Signal Voltage Gain	Avo	$R_L \ge 2k\Omega$, $V_O = \pm 10V$	300	700		200	700		V/mV
Output Voltage Swing	Vo	$R_L \ge 2k\Omega$	±12.5	±13.5		±12.5	±13.5		V
Power Dissipation	PD	No load		55	90		60	100	mW

ELECTRICAL CHARACTERISTICS

(VS = ± 15 V, 0°C \leq TA $\leq +70$ °C, unless otherwise noted.)

PARAMETER	SYMBOL CONDITIONS	CONDITIONS	MXL1001AC				MXL1001C			
		CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
Input Offset Voltage	Vos	(Note 6)		20	60		30	110	μV	
Average Temperature Coefficient of Input Offset Voltage	TCVos			0.2	0.6		0.3	1.0	μV/°C	
Input Offset Current	los			0.5	3.5		0.6	5.3	nA	
Input Bias Current	lΒ			±0.7	±3.5		±1.0	±5.5	nA	
Input Voltage Range	IVR		±13	±14		±13	±14		V	
Common-Mode Rejection Ratio	CMRR	V _{CM} = ±13V	110	124		106	123		dB	
Power-Supply Rejection Ratio	PSRR	$V_S = \pm 3V \text{ to } \pm 18V$	106	120		103	120		dB	
Large-Signal Voltage Gain	Avo	$R_L \ge 2k\Omega$, $V_O = \pm 10V$	350	750		250	750		V/mV	
Output Voltage Swing	Vo	$R_L \ge 2k\Omega$	±12.5	±13.8		±12.5	±13.8		V	
Power Dissipation	PD	No load		50	85		55	90	mW	

Note 6: MXL1001A grade offset voltage is measured one minute after application of power. For all other grades V_{OS} is measured 0.5 seconds after power on.

Applications Information

The MXL1001 series devices are pin-compatible with the OP-07, OP-05, 725, 108A or 101A amplifiers. The MXL1001 amplifiers can be used to upgrade older designs using these devices, with or without removal of external frequency compensation or nulling components. The MXL1001 can also be used in 741, LF156 or OP-15 applications provided the nulling circuitry is removed.

The MXL1001 is specified over a wide supply voltage range from $\pm 3V$ to $\pm 18V.$ Operation with lower supplies is possible down to $\pm 1.2V$ (two NiCd batteries), however, at this level the device is stable only in closed-loop gains of +2 and above (or inverting gain of one or higher). Unless proper care is exercised, thermocouple effects caused by temperature gradients across dissimilar metals at the input terminal connections, can exceed the inherent offset-voltage drift of the amplifier. Air currents over the device leads should be minimized, package leads should be short, and the two input leads should be as close together as possible and maintained at the same temperature.

Offset-Voltage Adjustment

The input offset voltage of the MXL1001, and its temperature drift, are minimized by zener-zap trimming at the wafer level. If further nulling of V_{OS} is required, this can be performed using a $10k\Omega$ or $20k\Omega$ potentiometer with no degradation of V_{OS} drift with temperature. Trimming to a value other than zero creates a drift of $(V_{OS}/300)\mu V/^{\circ}C$; i.e., if V_{OS} is adjusted to $300\mu V$, the change in drift will be $1\mu V/^{\circ}C$. The adjustment range with a $10k\Omega$ or $20k\Omega$ potentiometer is approximately $\pm 2.5 mV$. If less adjustment range is needed, the sensitivity and resolution of the offset nulling can be improved by using a potentiometer of lower ohmic value in conjunction with fixed resistors.

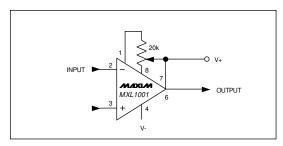
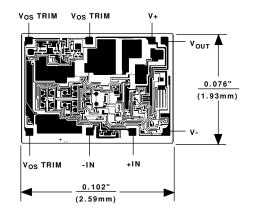



Figure 1. Optional Offset Nulling Circuit

Chip Topography

SUBSTRATE IS CONNECTED TO V-

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.