

Current Sensor HCMR 1000A-S-50-SB5-N

Part number	20 31 100 9101
Specification	Current Sensor HCMR 1000A-S-50-SB5-N
HARTING eCatalogue	https://b2b.harting.com/20311009101

Image is for illustration purposes only. Please refer to product description.

Identification

Category	Current measurement
Series	HCMR
Element	Current sensor
Sensor technology	Hall-Effekt
<u>.</u>	Closed loop
	Hall effect compensated current sensor
	Measurable currents: AC, DC, pulsed, mixed
Features	High accuracy over the entire measuring range
	Galvanic insulation between primary and secondary current
	Internal screen between primary and secondary circuit
	Switchboard mounting
	Housing material and potting mass have a flammability rating UL 94 V-0
	Applications: frequency converters, electrical drives, auxiliary converters

Version

Termination	4x screw lock with Faston (6.3 x 0.8 mm)
Field of application	Railway version

Technical characteristics

I _{PN} Nominal primary current	1,000 A
I _{PM} Primary current, measuring range	0 ±2,400 A
R _M Measuring resistance @ I _{PM max} , U _{C max} , T _{A max}	2Ω For other primary currents see diagram.
I _{SN} Nominal secondary current	200 mA
K _N Turns ratio	1:5000
U _C Power supply	±15 ±24 V ±5 %

Page 1 / 4 | Creation date 2023-03-08 | Please note that the data specified here were taken as extracts from the online catalogue. Please refer to the user documentation for the complete and up-to-date information and data. Please also note that the user is responsible for validating functionality, conformity with applicable laws and directives, as well as for the electrical safety in the particular application.

HARTING Stiftung & Co. KG | Marienwerderstr. 3 | 32339 Espelkamp | Germany

This product is not orderable anymore. Please contact your local distribution partner.

Technical characteristics

I _C Current consumption @ U _{C min}	20 mA + I _S
X Overall accuracy @ I _{PN} , T _A = 25 °C	±0.4 %
E _L Linearity	<0.1 %
I_O Offset current @ I_P = 0 A, T_A = 25 °C	±0.5 mA
I_{OT} maximum temperature drift of I_{O}	±0.8 mA
t_r Response time @ I_{PN}	<1 µs
di/dt with optimal coupling	>100 A/µs
f Frequency	0 100 kHz
T _A Ambient temperature	-40 +85 °C
T _S Storage temperature	-45 +90 °C
R _S Secondary coil resistance @ T _{A max}	44 Ω
U _D Test voltage, effective (50 Hz, 1 min)	12 kV Primary - secondary 1 kV Secondary - screen
U_{St} Rated impulse voltage (1,2/50 μ s)	20 kV
U _B Rated voltage	2,000 V
Overvoltage category	III
Pollution degree	2
L _s Clearance distance	50 mm
K _s Creepage distance	50.5 mm
Tightening torque	4 Nm (4x steel screw M5 - Horizontal)

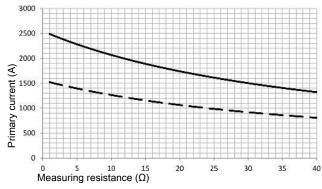
Material properties

Material (hood/housing)	Polycarbonate (PC)
Material flammability class acc. to UL 94	V-0
RoHS	compliant
ELV status	compliant
China RoHS	е
REACH Annex XVII substances	Not contained
REACH ANNEX XIV substances	Not contained
REACH SVHC substances	Not contained

This product is not orderable anymore. Please contact your local distribution partner.

Material properties

California Proposition 65 substances	Yes
California Proposition 65 substances	Nickel


Specifications and approvals

Specifications	EN 50155 IEC 61373
UL / CSA	UL 508 NMTR2.E359667 CSA-C22.2 No. 14-13 NMTR8.E359667
CE	Yes
Approvals	DNV GL

Commercial data

Packaging size	1
Net weight	1,001 g
Country of origin	Romania
European customs tariff number	90303370
GTIN	5713140134010
eCl@ss	27210902 Current transformer

Measuring resistance

---- U_C = ±24 V -5 %, T_A = 85 °C

--- U_C = ±15 V -5 %, T_A = 85 °C

Primary currents higher than $\ensuremath{\mathsf{I}_{PM}}$ only for peak!

Remark

- If $I_{\mbox{\footnotesize P}}$ flows in the direction of the arrow $I_{\mbox{\footnotesize S}}$ is positive.
- Over currents (»I_{PN}) or the missing of the supply voltage can cause an additional permanent magnetic offset.
- The temperature of the primary conductor may not exceed 100 °C.

Product data sheet 20 31 100 9101 Current Sensor HCMR 1000A-S-50-SB5-N

This product is not orderable anymore. Please contact your local distribution partner.

Safety note

These transformers may only be used in electrical or power electronic applications which fulfill the relevant regulations (standards, EMC requirements,...).

This transformer must be used in limited-energy secondary circuits according to IEC 61010-1.

Caution, risk of electric shock

- Pay attention to protect non-insulated high-power current carrying parts against direct contact (e.g. with a protective enclosure).
- When installing this sensor please make sure that the safe separation (between primary circuit and secondary circuit) is maintained over the whole circuits and their connections.
- The sensor may only be connected to a power supply respecting the SELV/PELV protective regulations according to EN 50 178. The installation of the power supply must be short-circuit-proof.
- Disconnecting the main power must be possible.
- The current sensors support a safe separation. The creepage and clearance distances are taken as a basis for the rated voltage. They are the shortest distance between the secondary connection and the sensor's window. The actual clearance and creepage distances depend on the position of the primary conductor respectively on the actual shortest distance between the primary conductor and the secondary connection.